Latest Posts:

Mostrando las entradas con la etiqueta vida. Mostrar todas las entradas
Mostrando las entradas con la etiqueta vida. Mostrar todas las entradas

18 de diciembre de 2018

Francis Crick, el detective de la vida

¿Qué tienen en común Francis Crick, codescubridor de la estructura del ADN y premio Nobel en 1962, y el antiguo cantante y periodista Rael, líder de una secta ufológica que defiende el amor libre entre sus miembros? El vínculo parece improbable, pero existe, y se llama panspermia dirigida: la hipótesis según la cual la vida en la Tierra es producto de los designios de una avanzada civilización alienígena.


Claro que ahí acaban los parecidos. El líder de los raelianos se basa en su presunto encuentro personal con seres de otro mundo. Crick, por su parte, se preguntaba cómo era posible que la naturaleza hubiera inventado al mismo tiempo dos elementos mutuamente interdependientes para la vida: el material genético –ácidos nucleicos, como ADN o ARN– y el mecanismo necesario para perpetuarlo –las proteínas llamadas enzimas–. La síntesis de ácidos nucleicos depende de las proteínas, pero la síntesis de proteínas depende de los ácidos nucleicos. Con este problema del huevo y la gallina, Crick y su colaborador Leslie Orgel razonaban que la vida debería haber surgido en un lugar donde existiera un “mineral o compuesto” capaz de reemplazar la función de las enzimas, y que desde allí habría sido diseminada a otros planetas como la Tierra por “la actividad deliberada de una sociedad extraterrestre”.

Lo cierto es que la panspermia dirigida no desmerece en absoluto el pensamiento de Crick. Más bien al contrario, revela con qué potencia funcionaban los engranajes de una mente teórica, incisiva e inquieta, ávida de respuestas racionales, aunque no fueran convencionales. Para comprender cómo llegó Crick a la panspermia debemos remontarnos unos años atrás. Hijo de un fabricante de zapatos de Weston Favell (Northampton, Reino Unido), Francis Harry Compton Crick (8 de junio de 1916 – 28 de julio de 2004) llegó al final de su infancia con sus principales señas de identidad ya definidas: su inclinación por la ciencia y su convencido ateísmo. En cuanto a la primera, escogió la física.
Curiosamente, la biología molecular habría perdido uno de sus padres fundadores de no haber sido por la guerra. Crick comenzó su investigación en el University College de Londres trabajando en lo que él mismo describió como  “el problema más aburrido imaginable”: medir la viscosidad del agua a alta presión y temperatura. Con el estallido de la Segunda Guerra Mundial fue reclutado por el ejército para el diseño de minas. Tras el fin del conflicto, descubrió que su aparato había sido destruido por una bomba (en su autobiografía él hablaba de una “mina de tierra”), lo que le permitió abandonar aquella tediosa investigación.

Crick debía entonces elegir un nuevo campo de investigación, y fue entonces cuando descubrió lo que llamó el test del chismorreo: “lo que realmente te interesa es aquello sobre lo que chismorreas”. En su caso, “la frontera entre lo vivo y lo no vivo, y el funcionamiento del cerebro”. En resumen, la biología. O como físico, la biofísica. Comenzó a trabajar en la estructura de las proteínas en el Laboratorio Cavendish de Cambridge, hasta que conoció a un estadounidense llamado James Watson, 12 años más joven que él pero ya con un doctorado que él aún no había conseguido.

Los dos investigadores descubrieron que ambos compartían una hipótesis. Por entonces se creía que la sede de la herencia eran las proteínas. Crick y Watson pensaban que los genes residían en aquella sustancia ignota de los cromosomas, el ácido desoxirribonucleico (ADN). Y aquel convencimiento, con la participación de Maurice Wilkins y Rosalind Franklin, alumbraría el 28 de febrero de 1953 uno de los mayores hallazgos de la ciencia del siglo XX, la doble hélice del ADN. El trabajo se publicó en Nature el 25 de abril de aquel año. Crick no obtendría su título de doctor hasta el año siguiente.

Lea el artículo completo en: Open Mind

11 de diciembre de 2018

Cuando la Tierra se volvió líquida: cómo fue el colosal impacto que acabó con los dinosaurios

Es difícil imaginar cómo miles de millones de toneladas de roca pueden de pronto salpicar como un líquido, pero es exactamente lo que ocurrió cuando un asteroide impactó la Tierra hace 66 millones de años.

Así lo aseguran científicos en Estados Unidos que lograron reconstruir en forma detallada cada paso del evento colosal que acabó con los dinosaurios.

Muestras obtenidas del cráter del impacto permitieron concluir que las rocas sufrieron un proceso de "fluidización".

En otras palabras, el material pulverizado comenzó a comportarse como una sustancia similar al agua.

Cráter de 200 kilómetros

Modelos informáticos permitieron determinar qué sucedería si un objeto de piedra de 12 km de ancho proveniente del espacio impactara la superficie de la Tierra.

Inicialmente se crearía en forma casi instantánea un espacio cóncavo de unos 30 km de profundidad y 100 km de ancho.

La inestabilidad del terreno causaría posteriormente el colapso hacia adentro de los márgenes del cráter. Y ese colapso generaría a su vez una reacción de rebote desde el fondo del cráter hasta alturas superiores al Himalaya.

Esos movimientos gigantescos en determinado momento se estabilizarían, y lo que permanecería sería un cráter de unos 200 km de ancho y 1 km de profundidad.
Ése cráter es precisamente el que se encuentra ahora enterrado bajo sedimentos en el Golfo de México, cerca del puerto de Chicxulub.

Como en la Luna

El modelo se llama "modelo de colapso dinámico de formación de un cráter" y el impacto que describe sólo es posible si las rocas, por un período breve, pierden su solidez y fluyen sin fricción.

El nuevo estudio presenta pruebas de ese proceso de fluidización, que se basan en material por la perforación de rocas en un anillo de colinas en el centro de la depresión de Chicxulub.

"Lo que encontramos al examinar el tubo de material de roca es que ésta se había fragmentado", dijo a la BBC Ulrich Riller, investigador de la Universidad de Hamburgo, en Alemania.

El artículo completo en: BBC Mundo


3 de diciembre de 2018

¿Por qué están desapareciendo las tortugas?

El 60% de las 356 especies de tortuga cuyo linaje se remonta a más de 200 millones de años están amenazadas o se han extinguido.


Cuando uno piensa en los indicadores del Antropoceno —las cosas que los arqueólogos del futuro lejano identificarán como marcadores de como los procesos básicos de la Tierra adquirieron un matiz característicamente humano— lo que suele venir a la cabeza son las innovaciones. Cuestiones que, para bien o para mal, se han añadido a la biogeoquímica del planeta: cemento, plástico, residuos radioactivos, ciudades, minas, niveles de gases invernadero extremadamente elevados y cosas por el estilo.

Pero el Antropoceno también puede quedar marcado por lo que ha desaparecido. Por ejemplo, las tortugas.

“Las tortugas luchan por subsistir en el mundo moderno y en general ese hecho no se reconoce o incluso se pasa por alto”, escribe un grupo de biólogos dirigidos por Jeffrey Lovich, del Servicio Geológico de EE UU, en la revista BioScience.

De las 356 especies de tortuga cuyo linaje se remonta a más de 200 millones de años, escriben Lovich y sus compañeros, “aproximadamente el 61% de ellas están amenazadas o se han extinguido en tiempos modernos”. Son “supuestamente el más amenazado de los grandes grupos de vertebrados”, y su futuro es aún más precario que “los muy asediados y promocionados anfibios”.

Los investigadores lamentan que ni los conservacionistas ni la opinión pública en general reconozcan la difícil situación de las tortugas, pero su artículo —titulado ¿A dónde han ido todas las tortugas y por qué importa?— no es simplemente un llamamiento para evitar que desaparezca un legado biológico insustituible. El equipo de Lovich más bien enmarca el declive de las tortugas dentro de las funciones ecológicas perdidas.

“Los descensos y las extinciones de poblaciones de tortugas a escala global significan que sus funciones ecológicas se ven ahora enormemente reducidas en comparación con los tiempos en que las tortugas eran más abundantes”, sostienen los autores. “Las consecuencias de la disminución de sus funciones no se valoran debidamente ni se entienden suficientemente”.

El artículo completo en: El País (España)

 

2 de diciembre de 2018

Los primeros peces se originaron en aguas marinas cerca de la costa

El lugar de origen de los primeros vertebrados ha sido siempre un tema debatido en paleontología. Las hipótesis apuntaban hasta ahora a las zonas de arrecifes, de agua dulce o incluso del océano abierto, basadas en el análisis de escasos y pequeños fragmentos fósiles. Un nuevo estudio señala que la cuna de los primeros vertebrados fueron en realidad las aguas costeras intermareales y poco profundas.

Recreación de un Bothriolepis, un placodermo acorazado que vivió principalmente en la costa.

Los primeros vertebrados en la Tierra fueron peces, y los científicos creen que aparecieron por primera vez hace unos 480 millones de años. Pero los registros fósiles son irregulares y solo se han podido identificar pequeños fragmentos. Unos 60 millones de años más tarde, hace 420 millones de años, el registro fósil muestra algo completamente diferente: una gran variedad de especies de peces en masa.

¿Pero dónde estaban realmente los peces? ¿Dónde se originaron? Un equipo de científicos, liderados por Lauren Sallan de la Universidad de Pennsylvania en EE UU, ha tratado de responder a estas cuestiones en un estudio publicado en la revista Science.

Hasta ahora la comunidad científica presumía que los primeros peces se desarrollaron en arrecifes de coral, dada la gran biodiversidad de peces que existe en la actualidad en esos ecosistemas, pero la búsqueda durante décadas en estos lugares no ha dado resultados.

El grupo de científicos analizó los fósiles de vertebrados desde el Paleozoico medio (entre hace 480 y 360 millones de años), así como los marcadores ambientales que indican sus antiguos hábitats. Con esta información los investigadores crearon una base de datos con 2.728 registros tempranos para peces con mandíbulas y sin mandíbulas. “Es un nuevo conjunto de datos realmente grande”, dice Sallan.

Los resultados indican que todos los grupos principales de vertebrados tempranos, incluidos los peces con y sin mandíbula, se originaron y diversificaron en entornos intermareales y submareales cerca de la costa, a lo largo de un período de 100 millones de años.

El artículo completo en : Agencia SINC


27 de noviembre de 2018

China afirma que está creando los primeros bebés editados genéticamente


China ya es oficialmente el salvaje oeste de la ingeniería genética. Si en 2015, cuando un grupo de investigadores chinos anunciaron que habían ‘tocado’ el ADN de un embrión en el laboratorio, los expertos se llevaron las manos a la cabeza. Cuando a principios de 2018 trascendió que llevaban años editando genéticamente a sus ciudadanos, la alarma fue brutal.

La mayor parte de expertos coinciden en que no estamos preparados para hacerlo: aún no sabemos lo suficiente como para asegurar que estos experimentos van a llegar a buen puerto. Pero el gigante asiático no se da por aludido: Según informa AP, un equipo de investigadores chinos dice que los dos primeros bebés editados con CRIPSR acaban de nacer en Shenzhen, a pocos kilómetros de Hong Kong.

Falta confirmación independiente, pero los indicios son claros


Quién hace las declaraciones es el mismo coordinador del proyecto, He Jiankui, según el cual dos mellizas editadas genéticamente nacieron este mes de noviembre. Por ahora ni AP ni ningún medio occidental ha podido confirmarlo de forma independiente, por lo que hemos de recordar el caso de la falsa clonación humana de Hwang Woo-suk y mantener un sano escepticismo.

Sin embargo, sí que tenemos pruebas de que el equipo de la Universidad de Ciencia y Tecnología del Sur lleva meses reclutando parejas para esto. A la luz de los documentos que se manejan, el equipo de He Jiankui lleva bastante tiempo haciendo experimentos con fetos de hasta seis meses con la idea de 'inactivar' el gen CCR5 con un enfoque técnicamente sencillo.

Brevísima introducción a CRISPR

Descubierto por el español Francis Mojica en las marismas de Santa Pola, CRISPR es una especie de sistema inmunológico que tienen las células y que en la última década hemos aprendido a usar como un mecanismo para cortar, pegar y modificar material genético.

Gracias a él, las células procariotas podían cambiar partes de su ARN y de ADN de tal forma que incluir ‘trozos’ defensivos frente a los virus que se “alimentan de ellas” (los fagos). Y gracias a él, usando una secuencia de de ARN como guía, podemos inmunizar microorganismos importantes de uso comercial (como el Penicillium roqueforti, responsable del queso roquefort), recuperar especies animales o hacer modificaciones genéticas en personas para erradicar las peores enfermedades hereditarias. Todo, y hasta donde sabemos, de forma barata, sencilla y muy precisa.

Lo que dice haber hecho el equipo chino se trata de lo que se conoce como ‘inactivación genética’ y es la aplicación más simple y eficiente de todas las que conocemos hasta el momento. No obstante, no está exento de polémica porque no se trata de una intervención "médica" (no tratan de curar), estamos ante una intervención de "mejora". Una de las líneas rojas de la investigación genética actual.

La mayoría de expertos (y las grandes instituciones científicas del mundo) consideran que las "intervenciones de mejora" presentan muchos problemas éticos, médicos y sociales. En el caso de intervenciones para curar enfermedades, la gravedad de la enfermedad justifica los riesgos de la intervención. En este caso, justificar esos riesgos es mucho más complejo. Por eso, muy poca gente las considera en estos momentos y están prohibidas en la mayor parte del mundo.

El artículo completo en: Xataka Ciencia

20 de noviembre de 2018

Joven de 24 años inició la limpieza del océano más grande del mundo

Boyan Slat es el joven de 24 años detrás del ambicioso plan de limpiar el basurero entre California y Hawai.


San Francisco.- Los ingenieros se lanzaron al mar el sábado 08 de setiembre de 2018 para desplegar un dispositivo de recolección de basura para acorralar la basura de plástico que flota entre California y Hawai en un intento de limpiar el mayor basurero del mundo en el corazón del Océano Pacífico.

La pluma flotante de 2,000 pies (600 metros) de largo estaba siendo remolcada desde San Francisco hasta el Great Pacific Garbage Patch, una isla de basura del doble del tamaño de Texas.

El sistema fue creado por The Ocean Cleanup, una organización fundada por Boyan Slat, un innovador de origen holandés de 24 años que se apasionó por la limpieza de los océanos cuando fue a bucear a los 16 años en el mar Mediterráneo y vio más plástico bolsas de pescado.

"El plástico es realmente persistente y no desaparece por sí solo y el momento de actuar es ahora", dijo Slat, agregando que los investigadores de su organización descubrieron que el plástico se remonta a los años 60 y 70 flotando en el parche.

La barrera flotante, en forma de U hecha de plástico y con una pantalla de 3 pies de profundidad, pretende actuar como una línea de costa, atrapando algunos de los 1,8 billones de piezas de plástico que los científicos estiman están girando en ese giro pero permitiendo que la vida marina nade con seguridad debajo de ella.


Equipado con luces de energía solar, cámaras, sensores y antenas satelitales, el sistema de limpieza comunicará su posición en todo momento, permitiendo que un buque de apoyo recoja el plástico recogido cada pocos meses y lo transporte a tierra firme donde será reciclado, dijo Lama.

Se espera que los contenedores llenos de redes de pesca, botellas de plástico, cestos de ropa y otros desperdicios plásticos recogidos por el sistema que se despliega el sábado vuelvan a la tierra dentro de un año, dijo.

Slat dijo que él y su equipo prestarán mucha atención a si el sistema funciona de manera eficiente y resiste las duras condiciones oceánicas, incluidas las enormes olas. Dijo que estaba deseando que un barco cargado de plástico volviera a puerto.

"Todavía tenemos que probar la tecnología ... que nos permitirá ampliar una flota de sistemas", dijo.

Ocean Cleanup, que recaudó $35 millones en donaciones para financiar el proyecto, incluido el director ejecutivo de Salesforce.com, Marc Benioff, y el cofundador de PayPal, Peter Thiel, desplegará 60 barreras de flotación libre en el Océano Pacífico para 2020.

Las barreras flotantes están hechas para resistir las duras condiciones climáticas y el desgaste constante. Permanecerán en el agua durante dos décadas y en ese momento recogerán el 90 por ciento de la basura en el parche, agregó.


George Leonard, científico en jefe de Ocean Conservancy, un grupo de defensa del medio ambiente sin fines de lucro, dijo que es escéptico. Slat puede lograr ese objetivo porque incluso si la basura plástica se puede sacar del océano, cada año se derrama mucho más.

Leonard dijo que 9 millones de toneladas (8 millones de toneladas métricas) de desechos de plástico ingresan al océano anualmente y que una solución debe incluir un enfoque múltiple, que incluye impedir que el plástico llegue al océano y más educación para que las personas reduzcan el consumo de contenedores de plástico de un solo uso.

"Si no impide que los plásticos fluyan hacia el océano, será una tarea de Sísifo", dijo Leonard, citando el mito griego de una tarea que nunca se completó. Agregó que el 15 de septiembre, alrededor de 1 millón de voluntarios de todo el mundo recogerán basura de playas y canales como parte de la Limpieza Costera Internacional anual de Ocean Conservancy. El año pasado, los voluntarios recogieron unas 10.000 toneladas de plásticos en todo el mundo durante más de dos horas, dijo.

Leonard también expresó su preocupación de que los animales marinos y la vida silvestre podrían enredarse con la red que colgará debajo de la superficie. Dijo que espera que el grupo de Slat sea transparente con sus datos y comparta información con el público sobre lo que sucede con el primer despliegue.

El sistema actuará como un "bote grande que permanece inmóvil en el agua" y tendrá una pantalla y no una red para que no haya nada con lo que la vida marina se enrede. Como una medida de precaución adicional, se desplegará un bote con biólogos marinos experimentados para asegurarse de que el dispositivo no dañe la vida silvestre, dijo Slat.

"Soy el primero en reconocer que esto nunca ha sucedido antes y que es importante recoger plástico en la tierra y cerrar los grifos del plástico que ingresa al océano, pero también creo que la humanidad puede hacer más de una cosa a la vez para abordar este problema ", dijo Slat.

Tomado de: DEBATE

7 de noviembre de 2018

Cambio climático ahora amenaza al árbol de la quina

Emblema nacional en peligro de extinción. Aumento de temperatura de la Tierra se suma a otros factores que ponen en riesgo su existencia. Su población se redujo a menos del 5% de lo reportado antes de la llegada de los españoles. Solo una especie está protegida. El próximo mes lanzarán plan para su conservación.


De la quina, árbol que representa nuestra riqueza vegetal en el escudo nacional, podría quedar solo el recuerdo y su dibujo en uno de nuestros símbolos patrios si es que se sigue depredando y no se implementa una estrategia para su recuperación y conservación.

Pese a que el Perú es considerado como el centro de su diversidad genética, ya que preserva 19 de las 25 especies reportadas en el mundo, hoy esta emblemática planta que curó a millones de enfermos de la mortal malaria el siglo pasado se encuentra en peligro, pues su población se ha visto reducida a una mínima parte de lo que cientos de años atrás narraron los cronistas, advierten investigadores de la Universidad Nacional Agraria La Molina (UNALM).

De acuerdo con el investigador, la extracción desmesurada de la que fue víctima la quina siglos atrás al conocerse sus poderes medicinales, sumado a la actual degradación de los bosques de neblina (considerado como su hábitat natural) a consecuencia de la agricultura migratoria, la ganadería extensiva, el incremento de las rutas de acceso y la apertura de vías carrozables en zonas alejadas, entre otros, pueden acabar con todo el acervo y “pool genético” de las especies y variedades que hoy existen en el Perú.

Si antes era fácil encontrar los bosques de quina entre los 800 y 2.800 metros sobre el nivel del mar, actualmente sus árboles son muy escasos y en algunas de sus especies estos se reducen a un contado número de individuos. Hay que precisar que para extraer la quinina, componente utilizado de este árbol, se tiene que retirar la corteza de la planta matándola inmediatamente.

“La destrucción se da en todas las variantes del grupo. Solo hay una o dos, de las 19 especies que conserva el Perú, que tiene una población algo considerable. Otras están tan golpeadas que ya no sabemos si existen árboles, pues en las épocas recientes ya no se les ha vuelto a reportar”, añade el especialista.

Lea el artículo completo en: La República (Perú)

4 de noviembre de 2018

Acuerdo de Escazú: Perú firmó acuerdo ambiental más importante de la historia

Junto con 11 países suscribió el Acuerdo de Escazú, que dicta disposiciones para la protección de los defensores de derechos humanos en asuntos ambientales.


En el marco de la Asamblea General de las Naciones Unidas que se lleva a cabo en Nueva York, doce países firmaron este jueves 27 de setiembre el Acuerdo Regional sobre el Acceso a la Información, la Participación Pública y el Acceso a la Justicia en Asuntos Ambientales en América Latina y el Caribe (Acuerdo de Escazú), un instrumento que tiene por objetivo garantizar los derechos de todas las personas a un ambiente sano y a su participación en las decisiones que afectan sus vidas y entornos. Cada país deberá ratificar el acuerdo para que entre en vigencia.

Se esperaba que firmaran 33 países pero solo lo hicieron 14: Argentina, Antigua y Barbuda, Brasil, Costa Rica, Ecuador, Guatemala, Guyana, México, Panamá, Perú, Santa Lucía, Uruguay, República Dominicana y Haití. 

El acuerdo marca un hito en la historia ambiental de la región porque es el primer tratado sobre asuntos ambientales de la región y primero en el mundo que incluye disposiciones sobre los defensores de los derechos humanos en asuntos ambientales. Protege los derechos de acceso a la información, la participación pública y la justicia en ámbitos como el uso sostenible de los recursos naturales, la conservación de la biodiversidad, la lucha contra la deforestación y el cambio climático, así como la calidad del agua y del aire.

Es un tratado clave para proteger a los defensores ambientales, aquellos quienes han estado dispuestos a dar su vida por un planeta más sano y sostenible. Esto es especialmente relevante, en momentos en los que la región es escenario de múltiples crímenes y enfrentamientos a causa de la posesión de la tierra y los recursos del subsuelo.

Este consenso regional, firmado el 4 de marzo de 2018 en Escazú, Costa Rica, es producto de cuatro años de negociación y se deriva del Principio 10 de la Declaración de Río sobre Medio Ambiente y Desarrollo, adoptado durante la conferencia Rio + 20 en 2012. 


El acuerdo es el único de su tipo en contener disposiciones específicas para la promoción y protección de los defensores de derechos humanos en asuntos ambientales. Esto es de especial relevancia en una de las regiones más críticas para quienes defienden el ambiente y la tierra.

El artículo completo en: La Mula 

26 de octubre de 2018

Marte puede tener oxígeno suficiente para sustentar microbios y esponjas

Un estudio de la NASA explora las implicaciones de la presencia del gas en el planeta rojo,


Posibles rastros de agua líquida en Marte fotografiadas por la sonda 'MRO'.

Los primeros héroes de la Tierra fueron microbios. Hace 2.700 millones de años la atmósfera comenzó a acumular oxígeno producido por cianobacterias que vivían en los océanos y eran capaces de realizar fotosíntesis. El oxígeno fue fundamental para la aparición de vida más compleja, incluidos los primeros animales, y hoy sustenta el tipo de metabolismo más habitual del planeta.

Ahora, un nuevo estudio apunta a que en zonas de Marte también puede haber suficiente oxígeno como para mantener a algunos seres vivos terrestres. Vlada Stamenkovic, investigador de la NASA, y colegas del Instituto Tecnológico de California han desarrollado un modelo que calcula la cantidad de oxígeno que podría encontrarse en disolución en las aguas saladas que pueden existir en algunas zonas del planeta. Las sales presentes en estas salmueras permiten que el agua permanezca líquida a temperaturas por debajo de los cero grados. Según el estudio, publicado hoy en Nature Geoscience, en torno a un 6,5% de todo el planeta puede albergar cantidades de oxígeno en la superficie o a unos centímetros por debajo de ella similares a las que en la Tierra bastan para sustentar a algunos microbios y esponjas.

Estudios recientes apuntan a que los primeros ancestros de los animales actuales eran esponjas y que estos seres vivos pueden proliferar en concentraciones de oxígeno muy bajas. Las zonas con posible oxígeno están por encima de los 50 grados de latitud en torno a los polos. Entre las misiones marcianas que analiza el estudio solo una ha explorado estas zonas: la misión Phoenix, que aterrizó sobre lo que podría ser hielo de agua en 2008.

Este mismo año se descubrió en Marte un gran lago de agua salada oculto bajo el hielo del polo sur. El nuevo estudio especula que la concentración de oxígeno en su interior podría ser “alta” si hay un contacto temporal con la superficie o si hay radiación suficiente para que se separen el oxígeno y el hidrógeno. Los responsables del trabajo consideran que estos resultados teóricos pueden explicar el estado de oxidación de algunas rocas marcianas e implican “que hay oportunidades para la vida basada en el oxígeno en el Marte actual u otros cuerpos planetarios gracias a fuentes de oxígeno alternativas a la fotosíntesis”.

Víctor Parro, investigador del Centro de Astrobiología (CAB-CSIC), destaca que hasta ahora la presencia de oxígeno en Marte se ha “despreciado”, debido a las bajas concentraciones. Aunque se trata de un estudio teórico que habría que confirmar con mediciones reales, el científico destaca que “estos modelos resaltan el papel que puede jugar el O₂ disuelto incluso actualmente tanto para la respiración de microorganismos como en la oxidación de metales”.

“Los microorganismos no necesitan O₂ para respirar”, explica, “pero el oxígeno molecular permite obtener mayor energía en los procesos de respiración y su presencia en Marte en concentraciones adecuadas aumenta las posibilidades de nuevos metabolismos y más eficientes. “Por ejemplo permitiría la existencia de bacterias como las que se encuentran en río Tinto [Huelva], que oxidan el hierro de la pirita para obtener energía. Y algo que abunda en Marte es el hierro”, destaca.

“Los autores eligen el grupo de organismos terrestres que son capaces de vivir a concentraciones de oxígeno disuelto en agua más bajas, que son básicamente ciertos tipos de bacterias y las esponjas, y concluyen que las concentraciones de oxígeno que calculan que pueden existir en las salmueras marcianas serían suficientes para que estos organismos pudieran medrar en Marte hoy”, explica Alberto González Fairén, investigador del CAB y la Universidad Cornell. “Por supuesto, es solo una comparación gráfica para resaltar lo elevado de los niveles de oxígeno disuelto en estas salmueras y los autores no insinúan que puedan existir esponjas en bolsas de líquido escondidas en los hielos de Marte. Los posibles habitantes de las salmueras no solo dependerían del oxígeno disponible para respirar: las bajísimas temperaturas, la altísima concentración de sales y la radiación no permiten la existencia de vida similar a la terrestre cerca de la superficie de Marte hoy”, añade.

Otra de las preguntas sin responder que deja el trabajo es si realmente hay salmueras de agua líquida en la superficie de Marte, ya que las pruebas acumuladas hasta ahora no son concluyentes.

20 de octubre de 2018

¿Los virus son inmortales?

No hay consenso en la comunidad científica sobre si los virus son o no organismos vivos.
Los virus plantean un problema a los biólogos porque no tienen células, por lo que no forman parte de ninguno de los tres grupos principales de seres vivos.
Responder a esta pregunta no es trivial puesto que no hay consenso en la comunidad científica sobre si los virus son o no organismos vivos. En ocasiones se habla de ellos como estructuras al límite de la vida. Pero vayamos a lo que sí son con toda seguridad: agentes infecciosos que necesitan de un organismo vivo para multiplicarse, es decir, parásitos. No son células pero infectan a todo tipo de organismos vivos: animales, plantas, hongos, bacterias y protozoos, ¡hasta se han encontrado parasitando a otros virus! Son tan pequeños –100 nanómetros de media o lo que es lo mismo, una milésima parte del grosor de un cabello- que no pueden observarse con el microscopio óptico, solo cuando se inventó el microscopio electrónico, en 1931, que es capaz de ver objetos minúsculos, pudimos tener una imagen de ellos. Al observar al microscopio electrónico los virus extraídos de un organismo infectado se pudo comprobar que aparecían múltiples partículas. Cada una de esas partículas víricas era extraordinariamente sencilla, estaba formada por una cubierta hecha de proteína y llamada cápside en cuyo interior se protege el material genético que puede ser ADN o ARN. En algunos tipos de virus las partículas tienen también un envoltorio lipídico, es decir formado por lo que normalmente llamamos grasas, que roban de las membranas de las células que infectan.
1) El virus de la gripe se une a una célula epitelial diana. 2) La célula engulle el virus mediante endocitosis. 3) Se libera el contenido del virus. El ARN vírico se introduce en el núcleo, donde la polimerasa de ARN lo replica. 4) El ARN mensajero (ARNm) del virus sirve para fabricar proteínas víricas. 5) Se fabrican nuevas partículas víricas y se liberan al líquido extracelular. La célula, que no muere en el proceso, sigue fabricando nuevos virus.
Un virus puede existir como ente individual pero en cuanto entra en un organismo vivo, si es competente para multiplicarse, o como decimos los biólogos para replicarse, lo hará en muy poco tiempo creando múltiples copias de sí mismo. Así que cuando en ciencia nos referimos a un virus que infecta un organismo no hablamos de una sola de esas partículas sino de una población de partículas. Sobre si son o no inmortales la respuesta no es obvia. Para ser mortal -o inmortal en este caso- un organismo debe, primero, estar vivo y, tal como decía antes, no está del todo claro que los virus lo estén. Es verdad que los virus tienen estructura genética, evolucionan por selección natural y se reproducen creando réplicas, aunque no idénticas, de sí mismos pero no están compuestos de células y, según la teoría celular, esas son las estructuras básicas de la vida así que sin ellas no podría considerarse que un virus sea un ser vivo. Hay otro argumento más en contra de considerarlos seres vivos, los virus no tienen metabolismo propio, necesitan las células de los organismos que infectan para replicarse.

Pero volvamos sobre la cuestión inicial. Una partícula de virus tiene una existencia muy corta fuera de un ser vivo pero cuando entra en un hospedador empieza a replicarse a un ritmo fortísimo. Sabemos, por ejemplo, que en un individuo infectado por el virus del VIH o de la hepatitis C puede haber entre 10.000 millones y 100.000 millones de virus. Su vida media es de 6 a 24 horas pero como se replican tan rápido esas poblaciones enormes están en continua renovación. Y eso quiere decir que nunca estamos hablando de un solo virus sino de poblaciones de virus en equilibrio que en virología se conocen con el nombre de cuasiespecies víricas. Así que la respuesta a la pregunta de si son inmortales es que si estamos hablando de un solo virus o partícula vírica, por supuesto que no es inmortal, está claro que desaparece. Pero dado que realmente no podemos hablar de un solo virus sino de una población de virus esa sí podría no desaparecer nunca si a la muerte de su hospedador se hubiera transmitido ya a otro huésped. No será exactamente la misma entidad porque se replica en copias que no son idénticas pero a menos que evolucione tanto como para convertirse en otro virus diferente seguirá siendo el mismo virus. En mi opinión no hay nada inmortal pero lo más cercano a la inmortalidad sería ese conjunto de mutantes que sin parar de replicarse van poco a poco cambiando en el tiempo para seguir manteniéndose ellos mismos y en condiciones óptimas podrían perdurar indefinidamente. Ello sucedería hasta el momento en que no tuvieran ningún ser vivo al que parasitar, entonces desaparecerían.

3 de octubre de 2018

¿Se hereda la longevidad?

Las mellizas Phyllis Jones e Irene Crump

El estilo de vida influye, pero existe un factor genético hereditario que ayuda a vivir más años.

Las mellizas Phyllis Jones e Irene Crump, que el 20 de noviembre de 2016 cumplieron cien años en la ciudad británica de Stourport-on-Severn, atribuyen el secreto de su larga vida al trabajo duro y a la dieta. Así se lo explicaron a los medios al mismo tiempo que les informaban de los familiares que habían fallecido superados los noventa años. Sin embargo, también hay un factor genético. Estas hermanas son un ejemplo de que la longevidad se hereda, según confirman todos los estudios.

El último, financiado en el Reino Unido por el Consejo de Investigación Médica (MRC, por sus siglas en inglés), apunta que el riesgo de morir por una enfermedad cardiaca es un 20 % menor por cada década de más que viven los padres cumplidos los setenta años. La investigación, publicada en el Journal of The American College of Cardiology, ha llegado a esta conclusión tras analizar los datos de unas 190.000 personas.

Este tipo de estudios reviste especial importancia porque permite identificar, en función de su perfil genético, a los pacientes con mayor riesgo de morir y poner así en marcha medidas preventivas. Por ejemplo, puede conocerse si una persona es propensa a tener resistencia a la insulina y evitar que llegue a desarrollar diabetes. Una de las características de los centenarios es que envejecen con salud, conservan las facultades y pueden valerse por sí mismos hasta muy poco antes de la muerte. Biólogos y médicos investigan estos casos con un objetivo: diseñar medicamentos que eviten el desgaste del cuerpo, igual que existen para controlar el colesterol.

Tomado de: Muy Interesante

27 de septiembre de 2018

Yasmine Belkaid: “Las personas solo somos un envoltorio con microbios”

La científica argelina dirige un proyecto para entender la interacción entre los 30 billones de células propias y los 39 billones de microorganismos que hay en un único ser humano.

“Si crees que eres una persona muy importante, recuerda que la mayor parte de tus genes pertenecen a microbios. Y la mayoría de las funciones de tu cuerpo las llevan a cabo microbios. Solo somos un envoltorio”. Yasmine Belkaid sonríe mientras reflexiona sobre qué es en realidad un ser humano. Una persona está compuesta por unos 30 millones de millones de células humanas, el 84% de ellas glóbulos rojos, encargados de transportar el oxígeno en la sangre. Pero “no estamos solos”, según subraya Belkaid. En un cuerpo humano también hay, al menos, 39 millones de millones de microbios. La proporción es de 1,3 células microbianas por cada una humana. “Estamos colonizados por todo aquello a lo que nos han enseñado a tener miedo: bacterias, virus, arqueas, protozoos, hongos”, expone. Incluso nuestros ojos están cubiertos por una multitud de microbios.

Belkaid sabe de lo que habla. Dirige el Programa Microbioma del Instituto Nacional de Alergias y Enfermedades Infecciosas de EE UU, dedicado a entender las interacciones entre los 30 billones de células humanas y los 39 billones de microbios. Es una tarea descomunal. Una persona tiene su genoma, el ADN de sus propias células. Pero también alberga un segundo genoma: el microbioma, el ADN de todos los microorganismos que viven en su interior. El equipo de Belkaid ha demostrado que los microbios de la piel y de los intestinos desempeñan un papel clave para controlar las defensas de un ser humano. En la piel, por ejemplo, las bacterias beneficiosas se alían con el sistema inmune para acelerar la curación de las heridas. La vida de una persona está en manos de las señales que envían sus inquilinos microscópicos.

El artículo: El País (España)

22 de agosto de 2018

Equipo científico peruano gana concurso promovido por The National Geographic

KillaLab, que enviará el próximo año una misión a la Luna, obtuvo una beca de US$ 10 mil para invertirlo en la investigación.

Equipo peruano podría predecir cómo sobrevivirán las especies al cambio climático 


Ruth Quispe Pilco, Rómulo Cruz Simbrón, Marco Capcha Mansilla y Sofía Rodríguez son cuatro científicos peruanos que piensan en la Luna, literalmente. Ellos son integrantes del equipo  KillaLab que el próximo año lanzará una misión al satélite de la Tierra y que ahora ganaron una beca de 10 mil dólares en un concurso promovido por The National Geographic.

El monto, obtenido través del comité para la investigación y exploración de la prestigiosa revista, será invertido en la investigación de su proyecto “Cianobacteria y sus estrategias en las lagunas altoandinas del Perú, como base de adaptación para un ecosistema de cambio climático”.



El proyecto de KillaLab es enviar cultivos de cianobacterias de ambientes extremos peruanos a fin de analizar su comportamiento y margen de supervivencia en la superficie lunar, ambiente inhóspito para la vida. Con ello, buscan sustentar la vida del humano en el espacio.

Las cianobacterias serán introducidas en una especie de minilaboratorio especial (que tiene forma y tamaño de una lata de leche). El lanzamiento a la Luna será vía la compañía india TeamIndus, de acuerdo con lo proyectado indicó Sofía Rodríguez, integrante del KillaLab a la agencia Andina.
El equipo detalló en su página de Facebook que, según el cronograma del proyecto financiado por Concytec, el lanzamiento está previsto entre enero a diciembre del 2019.

El nombre de KillaLab proviene de la voz quechua para designar a la Luna, conocida como ‘Mama Quilla’ en la mitología incaica.

Tomado de: El Comercio (Perú)

21 de agosto de 2018

No busquéis más, estamos solos en el Universo

Un equipo de científicos británicos llega a la conclusión de que somos la única civilización inteligente.

Anders Sandberg, Eric Drexler y Toby Ord, investigadores de la Universidad de Oxford, acaban de publicar en arxiv.org un demoledor artículo en el que reinterpretan con rigor matemático dos de los pilares de la astrobiología: la Paradoja de Fermi y la Ecuación de Drake. Y sus conclusiones son que, por mucho que las busquemos, jamás encontraremos otras civilizaciones inteligentes. ¿Por qué? Porque, sencillamente, no existen.

La mayor parte de los astrofísicos y cosmólogos de la actualidad están convencidos de que "ahí arriba", en alguna parte, deben existir formas de vida inteligente. Es la conclusión lógica de pensar en la enormidad del Universo: miles de millones de galaxias, con cientos de miles de millones de estrellas cada una y billones de planetas orbitando alrededor de esas estrellas.

Lo abultado de estas cifras, consideran esos científicos, convertiría en una auténtica "perversión estadística" la mera idea de que la inteligencia hubiera surgido solo una vez en un sistema de tales proporciones. ¿Pero qué pasaría si la posibilidad más inverosimil resultara ser la correcta y resultara que, a pesar de todo, estamos completamente solos?

Según los tres investigadores de Oxford, los cálculos hechos hasta ahora sobre la probabilidad de que exista vida inteligente fuera de la Tierra se basan en incertidumbres y suposiciones, lo que lleva a que sus resultados tengan márgenes de error de "múltiples órdenes de magnitud" y, por lo tanto, inaceptables.

Por eso, Sandberg, Drexer y Ord han tratado de reducir al máximo ese enorme grado de incertidumbre, ciñéndose a los mecanismos químicos y genéticos plausibles. Y el resultado, afirman, es que "hay una probabilidad sustancial de que estemos completamente solos".

Lea el artículo completo en:

ABC (España)

8 de julio de 2018

Qué le ocurre realmente a tu cuerpo si dejas de comer (y cuánto tardas en morir de hambre)

Probablemente, la mayoría de los que nos leen no se pueden hacer una idea de lo que significa pasar hambre de verdad. Cuando nuestro organismo realmente siente que la inanición está activa, encienda las luces rojas y pone en marcha un plan de emergencias de hasta tres etapas críticas antes del fatal desenlace.

Desde el punto de vista médico, la inanición ocurre cuando un cuerpo no obtiene las suficientes calorías y nutrientes. Ya sea provocada por la pobreza, la hambruna, las huelgas de hambre voluntarias o algunas condiciones médicas, la fisiología del hambre sigue el mismo proceso sin importar la causa.

Lo cierto es que lo que te puedes imaginar como “morir de hambre” no es algo rápido, es más bien todo lo contrario. Morir sin ingerir un solo alimento toma su tiempo, y con ello un sufrimiento al que nuestro cuerpo trata de adaptarse paulatinamente.

Si bien nuestros cuerpos se apagan entre cinco o diez minutos después de estar sin oxígeno, o un par de días (una semana máximo) sin agua, dependiendo de las circunstancias, una persona puede durar hasta dos meses sin ningún alimento. Como decíamos, durante este tiempo el cuerpo pasa a través de tres fases metabólicas distintas para tratar desesperadamente de mantenerse con vida hasta que encuentres comida nuevamente.

La primera fase es aquella donde tu cuerpo elige la quema de glucosa. En tu estado normal (bien alimentado) tu cuerpo descompone moléculas de glucógeno para producir glucosa: el carbohidrato “amigable” que mantiene tus células bien alimentadas y funcionando. A una persona promedio generalmente le lleva unas seis horas después de alimentarse antes de que comiencen a sentir hambre.

El artículo completo en:

Gizmodo

4 de julio de 2018

Juan Carlos Izpisúa: “Hemos alargado la vida de animales y nada indica que no se podrá hacer en humanos”

El investigador español habla de avances que pueden retrasar el envejecimiento o producir órganos en animales para trasplantes.


Javier Sampedro contó en este periódico que hace unos años a Juan Carlos Izpisúa (Hellín, Albacete, 1960) le diagnosticaron una enfermedad renal grave, una que afecta a sus dos riñones y puede costarle la vida. Su reacción ayuda a compartir la fe que transmite el investigador del Instituto Salk de la Jolla en California (EE UU) cuando habla de lo que hace en su laboratorio, hazañas que parecen de ciencia ficción, pero son solo ligeramente futuristas. Tras asimilar la noticia, abrió una línea de investigación renal en sus laboratorios de medicina regenerativa y en 2013, presentó unos minirriñones construidos a partir de células madre humanas. El trabajo fue incluido por la revista Science entre los más destacados del año.

En un estudio más reciente, mostró cómo había modificado la expresión génica de ratones enfermos doblando su esperanza de vida. El tipo de tratamiento no actuaba sobre la mutación causante de la dolencia sino que modificaba una serie de marcas químicas que se acumulan sobre el genoma. Izpisúa cree que estos tratamientos epigenéticos (del griego epi, sobre, porque van por encima de los genes) son una llave para combatir el envejecimiento y prolongar el número de años que podremos vivir con salud. “Hemos prolongado la vida de animales con cambios epigenéticos y no hay nada que me indique que no se podrá hacer en humanos”, afirma.

Si todas estas promesas se hacen realidad, el impacto social será inmenso y el investigador cree que los políticos no parecen conscientes de esta revolución que ya se está gestando. “Todo esto se debe regular, pero nuestros gobernantes desconocen hasta los experimentos que estamos haciendo. ¿Cómo van a poder regular? Deberían tener un poquitín más de interés en saber qué es lo que están haciendo los científicos para apoyarlo, regularlo y que se beneficie toda la sociedad y no solo unos pocos”, remacha poco antes de dar una conferencia en Madrid con motivo del 350 aniversario de la farmacéutica Merck.

Lea el artículo completo en:

El País Ciencia

26 de junio de 2018

La ciencia, clave para alargar la vida de las flores

Investigadores de la Facultad de Biología de la Universidad de Barcelona (UB) han comprobado que se puede alargar la vida de las flores cortadas si se retrasa el proceso de apertura floral, según recoge un estudio publicado en la revista especializada “Plant Science”.

Hasta el momento, las investigaciones sobre la longevidad de las plantas se habían centrado en el proceso de senescencia o muerte celular de las flores, sin embargo, este trabajo analiza por primera vez el proceso de apertura floral como factor determinante de la vida de la flor cortada.

De hecho, en el momento en el que la flor empieza a abrir se produce un aumento del estrés fotooxidativo en la planta; este es un proceso que provoca la síntesis de especies químicas reactivas de oxígeno, la inhibición de la fotosíntesis y, en algunos casos, la senescencia o muerte celular, según una nota de prensa de la UB.

Además, el estrés fotooxidativo, que condiciona todo el proceso de crecimiento de la planta, puede estar causado por condiciones ambientales extremas.

Lea el artículo completo en:

EFE Futuro

Los hombres viven menos que las mujeres en todo el mundo y la ciencia lleva décadas buscando por qué

Las mujeres sufren más estrés, más depresión, más ansiedad. Además, son más proclives a enfermedades crónicas. En muchos países, ganan menos dinero que sus compañeros masculinos; en otros tantos, tienen (muchos) menos derechos civiles y políticos. Y, sin embargo, viven más.

Es así. Las mujeres viven más tiempo que los hombres en todos los países del mundo. En todos, sin excepción. Y, en muchos de ellos, la diferencia es de más de una década. Como decían Austad y Bartke en 2016, “no hay patrón más robusto en la biología humana”. La cuestión es que no sabemos por qué.

Veamos los factores biológicos y culturales de este fenómeno AQUÍ

25 de junio de 2018

Los baobab, árboles de África, están muriendo (y nadie sabe por qué)

Una de las imágenes más espectaculares y reproducidas de África, ese fondo del atardecer con las extrañas siluetas de los baobab sobre el escenario rojizo, podría tener los días contados. Los árboles sagrados que se creen de entre 1.100 y hasta 2.500 años están muriendo, y nadie sabe exactamente por qué.

Según describen en la revista científica Nature Plants:
Informamos que nueve de los 13 árboles más antiguas ... han muerto, o al menos algunas de sus partes / tallos más antiguos se han colapsado y han perecido en los últimos 12 años, un evento sin precedentes de gran magnitud.
En el mismo trabajo, el coautor del estudio, Adrian Patrut de la Universidad Babeş-Bolyai en Rumania, explica que “es impactante y triste experimentar durante nuestra vida la desaparición de tantos árboles con edades milenarias”. De hecho, de entre los nueve, cuatro fueron de los baobabs africanos más grandes.

Si bien la causa de la muerte no está clara, los investigadores “sospechan que la desaparición de baobabs monumentales puede estar asociada, al menos en parte, con modificaciones significativas de las condiciones climáticas que afectan al sur de África en particular”.

El artículo completo en:

Gizmodo

La creencia de que un año humano equivale a siete de perro es falsa


Existe la creencia popular de que un año de vida en los perros equivale a siete humanos en términos de envejecimiento. A menudo hasta establecemos comparaciones sobre la edad de nuestros amigos peludos en base a esta equivalencia. La realidad, sin embargo, es bien distinta.

Los perros alcanzan la madurez sexual al año de vida. Si el mito fuera cierto, los seres humanos ya seríamos capaces de reproducirnos a los siete años, lo que no es para nada cierto. Eso por no mencionar que si fuera así, los seres humanos viviríamos unos 150 años de media.

La realidad es que los perros envejecen de manera muy diferente a nosotros. En el primer año de vida, un perro madura muchísimo más rápido que una persona. A partir de ahí, todo depende de la raza y sobre todo del tamaño del animal. Los perros pequeños maduran mucho más rápido al principio de sus vidas, pero después su envejecimiento se ralentiza y tienden a vivir más años que las razas grandes. Priceonomics ofrece esta tabla como referencia:


Como se aprecia en la tabla, un perro pequeño de 8 años tiene unos 48 si expresamos su edad en términos humanos. Sin embargo uno grande ya tiene 64. Esta medición es puramente indicativa, y en ningún caso puede servir como medida de la salud del animal. Hay perros que desafían las estadísticas viviendo muy por encima de la esperanza de vida que su tamaño y peso les adjudica.


¿Por qué seguimos confiando en la idea de que un año de persona equivalen a siete de perro? Es un misterio. Una inscripción de la Abadía de Wensminster que data de nada menos que 1268 establece una paridad de 9 a 1. En el siglo XVII se creía que la paridad era de 10 a 1. En algún momento de la década de los 50 surgió la idea de que la paridad era de 1 a 7, probablemente como una reducción de que la esperanza de un ser humano era de 70 años y la de un perro de 10. Se cree que pudo surgir como algún tipo de slogan o campaña de marketing, pero no existe constancia de ello. [Priceonomics vía Science Insider]

Tomado de:

Gizmodo
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0