Latest Posts:

Mostrando las entradas con la etiqueta celulas. Mostrar todas las entradas
Mostrando las entradas con la etiqueta celulas. Mostrar todas las entradas

10 de marzo de 2020

Comer poco alarga la vida

Una investigación aporta la descripción más detallada de los beneficios de la restricción calórica para frenar el envejecimiento.

Los investigadores Concepción Rodríguez y Juan Carlos Izpisúa, del Instituto Salk

Desde hace décadas, los científicos conocen el secreto para hacer que casi cualquier animal viva mucho más de lo normal. Pueden hacer que un ratón duplique sus años de vida y que un macaco viva tres más de lo normal. El equivalente en personas sería vivir nueve años más y, además, con mucho menos riesgo de sufrir enfermedades asociadas al envejecimiento: cáncer, alzhéimer, diabetes. El problema es que el precio a pagar puede ser demasiado alto para muchos: comer menos, en concreto quitarse en torno a un 30% de las calorías diarias.

El 26 de febrero de 2020 se publicó el estudio más detallado que se ha realizado nunca para aclarar qué le sucede a un cuerpo cuando se somete a esta restricción calórica. Sus resultados apuntan muchas claves de qué genes y moléculas son culpables del envejecimiento y trazan nuevas vías para conseguir posibles fármacos que consigan algo a priori imposible: parar el tiempo, detener el envejecimiento.

“Este estudio muestra que el envejecimiento es un proceso reversible”, explica el investigador Juan Carlos Izpisúa (Hellín, 1960), uno de los autores principales del trabajo. “Hemos mostrado que determinados cambios metabólicos que llevan a una aceleración del envejecimiento se pueden reprogramar de una manera relativamente sencilla, reduciendo nuestra ingesta calórica, con la finalidad no ya de extender nuestras vidas, sino, mucho más importante, de que nuestra vejez sea más saludable”, resalta este farmacólogo y biólogo molecular que trabaja en el Instituto Salk (EE UU).
El trabajo ofrece el atlas celular más detallado del envejecimiento en un mamífero y los efectos beneficiosos de moderar la dieta. El equipo se ha servido de la nueva tecnología de análisis genético célula a célula para analizar unas 200.000 células de nueve órganos y tejidos diferentes de ratas. En un grupo había roedores que comían lo que querían y en el otros animales que comían un 30% menos calorías.

Los investigadores usaron solo ratas adultas a las que estudiaron desde los 18 a los 27 meses de edad, lo que en humanos equivaldría a un seguimiento entre los 50 y los 70 años. Esto es importante, pues los estudios realizados en primates han mostrado que los beneficios de comer menos son solo patentes en individuos adultos, a la mitad —más o menos— de sus vidas.

Los resultados, publicados este jueves en Cell, aportan un catálogo completo de todos los cambios que suceden con la edad y la dieta tanto dentro de cada célula como en la comunicación entre estas.

El artículo completo en: El País (España)

También puede leer unh resumen en Vitónica


12 de noviembre de 2019

Los hongos solo tienen sexo si han comido y están a oscuras

Los hongos tienen hambre no se reproducen sexualmente. Sí, así es, y este descubrimiento podría ayudar a combatir patógenos micóticos al interferir en su evolución, según un estudio científico publicado este lunes en la revista PLOS. 


Esta investigación encaró “problema fundamental de la biología básica que puede tener repercusiones en el control de los hongos que causan enfermedades tanto en humanos como en las plantas”, señaló Gustavo Goldman de la Universidad de Sao Paulo (Brasil).

El equipo investigador, que incluyó a científicos de las Universidades de Sao Paulo y de Bath (Reino Unido), logró caracterizar por primera vez a un grupo de receptores único para los hongos, que les impiden reproducirse sexualmente.

El blanco de esta investigación fue el hongo Aspergillus nidulans que solo tiene sexo cuando está bien alimentado y se encuentra a oscuras. La reproducción sexual recombina el ADN de los progenitores para crear una descendencia genéticamente diversa que se disemina rápidamente en el entorno como esporas.

Esta diversidad y esta capacidad para propagarse son factores importantes en la adaptación de los hongos a ambientes nuevos, ya sea para la difusión de enfermedades o en la evolución de su resistencia a los fungidas.

Este artículo se elaboró con información de: La República (Perú), Deustche Well y Televisa


11 de noviembre de 2019

Científicos de IMUGENE descubren un virus que mata todos los tipos de cáncer conocidos

Los científicos de la farmacéutica Imugene, empresa que trabaja en inmunoterapia contra el cáncer, revelan cómo actúa este nuevo virus concebido en un laboratorio.

Señalan que pronto empezarán a hacer pruebas en humanos.


Un equipo de científicos liderados por Yuman Fong ha diseñado un nuevo virus basado en la viruela de la vaca, el cuál ha demostrado tener la capacidad de eliminar células que producen todos los tipos conocidos de cáncer.

El tratamiento se llama CF33, y ha sido desarrollado por la empresa australiana de biotecnología Imugene, que ha autorizado su innovación para combatir el cáncer. La vacuna es un virus de ADN bicatenario de la familia Poxviridae.


Después de que el profesor Fong realizó una serie de estudios y diseñó el virus, se comprobó que podía reducir toda clase de tumores en ratones. Por ello, viajó a Australia para planificar las pruebas en humanos, que estiman que comenzarán a principios del año 2020.

En décadas pasadas se utilizaron virus para el cáncer, pero fracasaron porque eran demasiado tóxicos. Otros tratamientos solo pueden tratar tipos de cáncer en células específicas como la piel o el tejido hepático. “El problema era que si se lograba que virus fuera lo suficientemente tóxico como para matar el cáncer, preocupaba que también matara al hombre”, advirtió Yuman Fong.

Al parecer estamos cerca a la cura para el cáncer, pero la gran pregunta es ¿los costos de esta medicina serán elevados o estarán al alcance de todos los bolsillos? Si los precios son elevados este medicamento estaría fuera del alcance de las grandes mayorías. 

Con información:



10 de junio de 2019

Edvard Moser, el Nobel que descubrió el GPS de nuestros cerebros

El paciente HM

Cuando tenía 7 años, Henry Molaison se dio un golpe en la cabeza y se fracturó el cráneo. 

Tres años después empezó a tener unas convulsiones que cada vez se volvieron más intensas y frecuentes, a pesar de la medicación.

Para cuando cumplió los 27 años ya no podía tener una vida normal.

Es por eso que, en 1953, Molaison aceptó formar parte de un procedimiento experimental en el que le extirparon los dos hipocampos del cerebro.

La operación funcionó y el hombre dejó de tener convulsiones. Incluso su coeficiente intelectual aumentó.

Pero entonces los médicos se dieron cuenta de que, en el proceso, habían dañado su memoria. El joven no podía recordar si había desayunado o cómo llegar hasta el baño.

Olvidaba las caras y nombres del personal médico y, lo que era más perturbador, debían decirle una y otra vez que su tío había muerto.

El trágico desenlace de su cirugía dio inicio a cinco décadas de estudios que lo inmortalizaron como el paciente "HM", el más famoso de la historia de la neurociencia.

Molaison no llegaría a verlo, pero su caso derivó en un descubrimiento crucial sobre el funcionamiento del cerebro y la memoria.

No en vano le valió el premio Nobel de Medicina al neurocientífico noruego Edvard Moser.


Filosofía y ciencia

"El espacio y tiempo son propiedades totalmente fundamentales de nuestra propia experiencia subjetiva", dice Edvard Moser.

"Es difícil mantener cierto entendimiento del mundo si no podemos colocar las cosas en algún lugar del espacio y organizar los eventos en un tiempo", agrega.

"Por eso, cuando estas habilidades se pierden, de alguna manera nos perdemos a nosotros mismos".

La propia Academia Sueca reconoció al anunciar su premio en 2014 que había logrado resolver "un problema que ha ocupado a filósofos y científicos durante siglos".

El GPS del cerebro
 
"El premio Nobel fue por descubrir las células que forman parte del sistema que nos permite saber dónde estamos y encontrar el camino" para ir de un lugar a otro, explica Moser.

En otras palabras, se trata de células que funcionan como el "GPS interno" del cerebro.

Pero el galardón no lo recibió en solitario, sino que lo compartió con el estadounidense John O'Keefe y la noruega May-Britt Moser.

El apellido Moser no es una extraña coincidencia.
Edvard y May-Britt no solo forman parte del selecto club de los laureados por la Academia Sueca, sino que además son parte de uno todavía más reducido: el de los cinco matrimonios Nobel.

Un camino difícil

A pesar de no haber crecido en una familia ni un lugar con tradición académica (un poblado de 500 habitantes en Noruega), a través de su ávido consumo de libros descubrió la ciencia y se apasionó por ella.

Cumplió con el servicio militar obligatorio, hizo algunos cursos de matemáticas y estadística, se doctoró en neuropsicología y comenzó un periplo internacional por distintos laboratorios.

"Creo que venir de un lugar donde no había nada más me ayudó a tener una perspectiva diferente y original sobre los problemas".

A lo largo de esos años, May-Britt se convertiría en su esposa, pero también en su compañera de investigación y cofundadora del Instituto Kavli para Sistemas de Neurociencia en la Universidad Noruega de Ciencia y Tecnología en Trondheim, en el centro del país.

Y si bien los Moser ahora están divorciados, sus carreras siguen profundamente interrelacionadas.

Espacio y tiempo

"El intrincado sistema de mapeo del espacio que derivó en el descubrimiento de la célula red en 2005 y el premio en 2014 fue apenas el principio", afirma Moser.

En estos años, por ejemplo, descubrieron que esas células "no solo se encargan del espacio, sino también del tiempo, por lo que hay un cambio a medida que el tiempo pasa".

"Ahora sabemos también que el espacio y tiempo son elementos de los recuerdos que son almacenados en este sistema".

Hasta han dado inicio a lo que llaman la "fase dos" de sus investigaciones: "Entender la enfermedad de Alzheimer y, ojalá, contribuir al desarrollo de algún tipo de tratamiento".
"El área del cerebro que contiene todas estas células especializadas y registra el pasaje del tiempo suele ser la primera área que se daña en el alzhéimer", dice el Nobel.

Esta enfermedad, que aún no tiene cura, afecta a entre el 60 y 70% de personas con demencia, que son nada menos que 50 millones alrededor del mundo, según la Organización Mundial de la Salud.

Tomado de BBC Mundo

5 de junio de 2019

¿Cuál es la mayor célula biológica del mundo?


Llevo toda la vida contestando mal. Ayer mismo, cuando mis hijos me preguntaron cuál era la célula más grande del mundo contesté: el huevo de avestruz. ¡Mal! Puede que en efecto este “pedazo” de huevo, de hasta 15 centímetros de largo y 1,4 kilos de peso sea la célula más pesada del mundo, pero hay varias células biológicas más grandes en extensión. (Recordemos que el término “grande” se refiere a tamaño, no a peso).

¿Ejemplos de células más grandes? Pues cualquier célula nerviosa de un animal grande. Un calamar gigante por ejemplo, podría contar con neuronas de hasta 12 metros de largo, lo cual supera en 80 veces a la altura de un huevo de avestruz. Las jirafas cuentan también con nervios que recorren la totalidad de su cuello, el cual puede llegar a medir dos metros de largo.
Pero tampoco hace falta buscar animales tan exóticos, los humanos también tenemos neuronas mucho más largas que un huevo de avestruz. Mi admirado Xurxo Mariño así lo reconoció, al determinar que las neuronas que componen el nervio ciático son las más largas del cuerpo humano, ya que pueden superar el metro al ir desde la punta de los dedos del pie hasta la base de la espina dorsal. Hay que recordar que pese a que una neurona humana mide menos de 0,1 milímetros, en el sistema nervioso periférico cada fibra nerviosa en toda su longitud es una prolongación de una sola célula nerviosa, razón por la que puede considerarse parte de la misma.

No obstante, habrá quien quiera argumentar que, en términos de volumen, un huevo de avestruz sigue siendo comparativamente más grande que las células nerviosas, que pueden ser muy largas pero son extremadamente delgadas (del orden de 10 micrones o menos). ¡De nuevo mal! Incluso ignorando a las neuronas y sus extensiones nerviosas, hay otro tipo de células más grande que el huevo de avestruz: algas extremadamente grandes como la Caulerpa taxifolia. En efecto, este alga que puede llegar a crecer hasta los 3 metros de longitud o más, es en términos anatómicos un organismo unicelular a pesar de sus cientos de ramificaciones (similares a hojas), que “intuitivamente” le hacen parecer superficialmente una planta vascular.
La Caulerpa (y otras algas con características similares) es un tipo de célula que contiene numerosos núcleos, razón por la que a menudo se la descarta cuando emprendemos la búsqueda de la célula biológica más grande del planeta. Por cierto, pese a no ser originaria de nuestros mares, este alga se ha hecho tristemente famosa al invadir el Mediterráneo, y se la conoce popularmente como un alga asesina. Es una pena que no podamos comérnosla, como se hace en Indonesia con su pariente la grapa de mar (Caulerpa lentillifera), otro organismo unicelular multinucleado que según dicen tiene un sabor picante.

Me enteré al leer el Quora.

Tomado de: Mailkenais Blog

26 de diciembre de 2018

Elizabeth Blackburn: “La pobreza acorta los telómeros”

La Nobel de Medicina investiga la conexión entre la longevidad, las enfermedades y las estructuras que protegen los cromosomas.


Hay almejas que viven más de 500 años y tiburones antárticos que sobrepasan los 400. En cuanto a los humanos, la persona más longeva conocida fue la francesa Jeanne Calment, que vivió 122, aunque técnicamente se desconoce si hay algún límite de edad para los humanos. Si se le pregunta a la científica Elizabeth Blackburn (Australia, 1948) responderá que puede haber pistas en los telómeros, unas fundas protectoras de los cromosomas que se suelen comparar a las que hay en la punta de los cordones para impedir que se deshilachen.

La longitud de los telómeros está relacionada con el número de veces que una célula se podrá dividir para tener hijas. Hay un mecanismo natural por el que una enzima llamada telomerasa reconstruye los telómeros que se han acortado demasiado. Blackburn ganó el Nobel de Medicina en 2009 por codescubrir estas estructuras y la proteína que los protege. Desde entonces, estudios con humanos han demostrado una conexión entre los telómeros cortos y enfermedades crónicas y también con otras agresiones como el estrés; por ejemplo, hay madres que se tienen que hacer cargo de hijos enfermos y tienen telómeros más cortos que las de hijos sanos.

Blackburn también es famosa por haber llevado la contraria al expresidente de EE UU George Bush. En 2004 no fue renovada como miembro del consejo de asesores en bioética, según ella por oponerse a la postura del presidente a la investigación con células madre, de la que ella fue acérrima defensora.
En 2017 vivió otro pequeño terremoto ajeno a la ciencia cuando tres científicas del prestigioso Instituto Salk de California (EE UU), del que era presidenta, denunciaron a la institución por el acoso que sentían por parte de algunos hombres. Poco después la científica anunció su dimisión del cargo, que se hizo efectiva el verano pasado.

De visita en Madrid para participar en una gala de mujeres y ciencia organizada por el CNIO (Centro Nacional de Investigaciones Oncológicas) y por la iniciativa Constantes y Vitales, la bióloga molecular habla de telómeros y aborda la cuestión del acoso.

Pregunta. ¿Qué se ha demostrado científicamente  sobre la relación entre los telómeros, la salud y la longevidad?

Respuesta. Hemos demostrado que cuando los telómeros se desgastan y acortan aumenta la probabilidad de sufrir alguna de las enfermedades crónicas relacionadas con el envejecimiento. Sabemos también que la velocidad con la que se degradan varía mucho de persona a persona, por lo que intentamos estudiar desde un punto de vista estadístico cuáles son los factores que les afectan. Es interesante porque aunque los genes juegan un papel, son los factores externos y los hábitos de vida los que hacen más contribución. Básicamente reduces esos impactos haciendo caso de lo que te decían tus padres: duerme bien, come bien, ten una buena actitud, no fumes, no bebas demasiado, come una dieta mediterránea y haz ejercicio. El estrés crónico debido a situaciones sociales como una situación económica mala, la pobreza, acorta los telómeros. Tenemos que empezar a pensar en nuevas políticas sociales en términos de cuánto afectan a los telómeros. Si miras a un nivel de poblaciones generales ves efectos cuantificables y los políticos que toman las decisiones podrían cambiar mucho de esos factores.

P. Usted creó una empresa que mide la longitud de los telómeros. ¿Aconseja a la población general que lo hagan?

R. No, no lo necesitan. Como individuos esta información no tiene tanto valor. Por ejemplo, recordemos el caso del tabaco. ¿De dónde venía la información que demostró que era malo para la salud? De estudios de población que demostraban que los fumadores tenían más cáncer de pulmón. Sabemos que fumar es una mala idea desde el punto de vista social y también individual, pero no porque tengamos una biopsia de pulmón para saberlo.


20 de octubre de 2018

Logran eliminar el VIH en seis pacientes con trasplantes de células madre

Científicos del Instituto de Investigación del Sida IrsiCaixa de Barcelona y del Hospital Gregorio Marañón de Madrid han logrado eliminar el virus de la sangre.


Científicos del Instituto de Investigación del Sida IrsiCaixa de Barcelona y del Hospital Gregorio Marañón de Madrid han logrado que seis pacientes infectados por el VIH hayan eliminado el virus de su sangre y tejidos tras ser sometidos a trasplantes de células madre.

La investigación, que publica este lunes la revista 'Annals of Internal Medicine', ha confirmado que los seis pacientes que recibieron un trasplante de células madre tienen el virus indetectable en sangre y tejidos e incluso uno de ellos ni siquiera tiene anticuerpos, lo que indica que el VIH podría haber sido eliminado de su cuerpo.


Potencial desaparición del VIH

Los pacientes mantienen el tratamiento antirretroviral, pero los investigadores creen que la procedencia de las células madre —de cordón umbilical y médula ósea— así como el tiempo transcurrido para lograr el reemplazo completo de las células receptoras por las del donante —18 meses en uno de los casos— podrían haber contribuido a una potencial desaparición del VIH, lo que abre la puerta a diseñar nuevos tratamientos para curar el sida.

Fuentes:

El Confidencial (España)

BBC Mundo

10 de octubre de 2018

Modelos matemáticos para entender el funcionamiento del sistema inmunológico

Las ecuaciones diferenciales son claves en los modelos de poblaciones empleados para estudiar y comprender los procesos de enfermedades autoinmunes.

Los linfocitos T son células que forman parte del sistema inmune del cuerpo humano. Sus procesos de creación y maduración son especialmente delicados, ya que cualquier fallo puede derivar en problemas graves para el individuo, como leucemias y otras enfermedades autoinmunes. En los últimos años, las ecuaciones diferenciales han resultado ser la clave de los modelos matemáticos de poblaciones empleados para estudiar y comprender estos procesos.

Los linfocitos T participan en la respuesta inmune adaptativa, la segunda etapa de acción del sistema inmunológico para proteger al organismo de las infecciones causadas por virus, bacterias y toda clase de patógenos. Se crean en la médula ósea, a partir de células madre hematopoyéticas. Estas células se convierten en precursoras de los linfocitos T mediante la selección tímica, un proceso de diferenciación celular que dura aproximadamente tres semanas y tiene lugar en el timo.


En cada instante del proceso, cada una de las células puede (1) morirse, (2) dividirse y dar lugar a dos células hijas, o (3) diferenciarse y dar origen a una célula diferente. Es muy importante entender dónde y cuándo recibe cada timocito una señal que le indica la opción que ha de seguir. Estas señales dependen tanto de las células epiteliales del timo, en particular del tipo de moléculas (antígenos) que tengan en su membrana celular, como del tipo de receptor T que el timocito muestre en su superficie. Es precisamente la interacción entre los receptores T de un timocito y los antígenos de las células epiteliales lo que determina su futuro.

Si la interacción es de gran afinidad bioquímica, el timocito ha de morir por apoptosis (muerte celular programada); si la afinidad es muy pequeña o nula, la muerte es por ``negligencia”; en el caso de afinidades intermedias, el timocito sufre un proceso de diferenciación y continúa la maduración. Para cuantificar la cinética de la selección tímica se introducen tasas de muerte (la frecuencia con la que un timocito recibe una señal de muerte) y tasas de diferenciación o proliferación (la frecuencia con la que recibe una señal de diferenciación o de división celular). Conocer estas tasas permitiría predecir, por ejemplo, el tiempo medio que un timocito pasa en cada fase del proceso de maduración tímica.

Sin embargo, no es posible determinar de manera experimental estos parámetros, ya que requeriría observar la trayectoria de cada pre-linfocito T en el timo del individuo estudiado, y las técnicas de microscopía actuales solamente permiten hacerlo durante una hora como máximo, lo que es un periodo muy inferior a las escalas de tiempo del proceso tímico.

Las matemáticas brindan herramientas precisas para describir poblaciones de células y sus cambios en el tiempo, mediante modelos deterministas de poblaciones. En esencia, estos modelos describen la evolución temporal de la población. Si se supone que a tiempo inicial la población consta de un cierto número de individuos, la ecuación describe cuántos habrá un poco después, si la población cambia por migración, por muerte o por nacimiento de nuevos individuos. Cada modelo de población depende de lo que se suponga como mecanismos de migración (por ejemplo, un flujo constante o no de individuos), de muerte y de nacimiento.

Lea el artículo completo en: El País (España)

27 de septiembre de 2018

Yasmine Belkaid: “Las personas solo somos un envoltorio con microbios”

La científica argelina dirige un proyecto para entender la interacción entre los 30 billones de células propias y los 39 billones de microorganismos que hay en un único ser humano.

“Si crees que eres una persona muy importante, recuerda que la mayor parte de tus genes pertenecen a microbios. Y la mayoría de las funciones de tu cuerpo las llevan a cabo microbios. Solo somos un envoltorio”. Yasmine Belkaid sonríe mientras reflexiona sobre qué es en realidad un ser humano. Una persona está compuesta por unos 30 millones de millones de células humanas, el 84% de ellas glóbulos rojos, encargados de transportar el oxígeno en la sangre. Pero “no estamos solos”, según subraya Belkaid. En un cuerpo humano también hay, al menos, 39 millones de millones de microbios. La proporción es de 1,3 células microbianas por cada una humana. “Estamos colonizados por todo aquello a lo que nos han enseñado a tener miedo: bacterias, virus, arqueas, protozoos, hongos”, expone. Incluso nuestros ojos están cubiertos por una multitud de microbios.

Belkaid sabe de lo que habla. Dirige el Programa Microbioma del Instituto Nacional de Alergias y Enfermedades Infecciosas de EE UU, dedicado a entender las interacciones entre los 30 billones de células humanas y los 39 billones de microbios. Es una tarea descomunal. Una persona tiene su genoma, el ADN de sus propias células. Pero también alberga un segundo genoma: el microbioma, el ADN de todos los microorganismos que viven en su interior. El equipo de Belkaid ha demostrado que los microbios de la piel y de los intestinos desempeñan un papel clave para controlar las defensas de un ser humano. En la piel, por ejemplo, las bacterias beneficiosas se alían con el sistema inmune para acelerar la curación de las heridas. La vida de una persona está en manos de las señales que envían sus inquilinos microscópicos.

El artículo: El País (España)

10 de abril de 2018

Describen cómo las células del pez cebra regeneran el corazón tras un infarto

  • Sus células cardiacas tienen un alto grado de plasticidad para reparar un daño

  • Los cardiomiocitos internos contribuyen a regenerar las paredes del corazón

Científicos del Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) y la Universidad de Berna (Suiza) han descubierto un mecanismo que ayuda a las células cardiacas del pez cebra a regenerar el corazón después de un infarto, un hallazgo que podría tener implicaciones en el abordaje de esta enfermedad en humanos.

Tras un infarto agudo de miocardio el corazón humano pierde millones de cardiomiocitos, las células que componen el músculo cardiaco, según explican los autores de este trabajo, cuyos resultados publica la revista Nature Communications.

Pero algunos animales, como el pez cebra, tienen una alta capacidad regenerativa y logran recuperarse tras un daño cardiaco con nuevos cardiomiocitos, lo que hace que se hayan convertido en un modelo muy usado en investigación como "inspiración para el desarrollo de futuras terapias regenerativas", ha explicado Héctor Sánchez-Iranzo, uno de los autores del estudio.

Durante ese proceso las células que componen el músculo cardiaco de estos peces se dividen para renovar el tejido lesionado, pero se desconoce en gran medida si todas las células contribuyen de la misma manera a la reconstrucción del músculo cardiaco.

La plasticidad celular, esa capacidad de las células de convertirse en otros tipos de células, es un proceso que se observa frecuentemente durante el desarrollo, pero nunca se ha observado durante la regeneración en un animal adulto.

Acción regeneradora de los cardiomiocitos

Por ello, en este caso los autores estudiaron dos tipos de cardiomiocitos, unos localizados en la parte más interna del corazón, las trabéculas, y otros en el exterior.

Durante el proceso de regeneración se ha asumido por norma que cada tipo celular da lugar al mismo tipo celular. Pero en la investigación del CNIC se muestra que, durante el proceso de regeneración del corazón, los cardiomiocitos trabeculares también contribuyen a la regeneración de las paredes del corazón.

En concreto, concluyen los investigadores, "indican que hay un alto grado de plasticidad en los cardiomiocitos del pez cebra y que, además, existen distintas formas de reconstruir un corazón dañado".
Fuente:

4 de octubre de 2016

2016: Yoshinori Ohsumi gana el premio Nobel de Medicina por iluminar el sistema de reciclaje del cuerpo

El investigador japonés es galardonado por el descubrimiento de los mecanismos de la autofagia.



El japonés Yoshinori Ohsumi (Fukuoka, 1945) ha sido galardonado hoy con el premio Nobel de Medicina por el descubrimiento de los mecanismos de la autofagia, el sistema de reciclaje del organismo. La palabra autofagia tiene su origen en el idioma griego y quiere decir "comerse a uno mismo". El concepto emergió durante la década de 1960, cuando los investigadores observaron que las células podían destruir sus propios contenidos, encerrándolos en membranas y enviando los vesículos resultantes al lisosoma, un orgánulo celular encargado del reciclaje, según ha detallado en un comunicado el Instituto Karolinska, que otorga el premio.

Poco se sabía sobre este fenómeno, hasta que a comienzos de la década de 1990, "en una serie de experimentos brillantes" con levaduras de panadero, según el Karolinska, Ohsumi identificó los genes de la autofagia. El investigador japonés trabajaba entonces en el Instituto de Tecnología de Tokio.

"Los descubrimientos de Ohsumi condujeron a un nuevo paradigma en nuestra comprensión sobre cómo la célula recicla su contenido", prosigue el comunicado. El japonés observó que las células humanas empleaban una maquinaria similar a la de las levaduras. Desde entonces, la comunidad científica ha detectado que las mutaciones en los genes de la autofagia pueden provocar enfermedades. Y que el propio proceso de autofagia está implicado en varios trastornos, incluyendo el cáncer y el párkinson, además de participar en la respuesta a las infecciones y en la adaptación a la falta de alimento.

El científico belga Christian de Duve acuñó el término autofagia. Ganó el premio Nobel de Medicina de 1974 por el descubrimiento del lisosoma dos décadas antes. Su equipo había descrito un nuevo orgánulo celular que contenía enzimas que digerían proteínas, azúcares y grasas. Posteriormente, se observó que la célula podía llevar grandes cantidades de material al lisosoma para su degradación, dentro de vesículas llamadas autofagosomas.

Nuestras células tienen diferentes compartimentos. Los lisosomas son semejantes a basura de sus celdas. Contienen enzimas para la digestión de los contenidos celulares. Oshumi ganó el Nobel 2016 en Medicina por sus investigaciones en un compartmiento celular llamaado autofagosoma. Se envuelven porciones más grandes de la célula, antes de fundirse con el lisosoma, donde los contenidos se degradan en contenidos más pequeños. Este proceso proporciona a la célula nutrientes y bloques de construcción para la renovación.

El artículo completo en:

El País

1 de noviembre de 2015

¿Por qué unas personas envejecen antes que otras?

A todos nos ha pasado tras reencontrarnos con viejas amistades, el darnos cuenta de que por algunos parece que no pasan los años, como si su proceso de envejecimiento estuviera paralizado o, al menos, ralentizado. Ahora, un nuevo estudio llevado a cabo por un equipo de científicos de la Escuela Universitaria de Medicina de Duke (EE.UU.) confirma que en realidad sí que hay personas que envejecen más lento o más rápido, dependiendo de una serie de factores.

Con objeto de descubrir qué factores aceleran el envejecimiento (y poder así prevenir algunas de las enfermedades asociadas a la edad), los investigadores analizaron la variación de 18 biomarcadores concretos en cerca de 1.000 participantes nacidos en la misma ciudad entre 1972 y 1973 y procedentes de un estudio longitudinal realizado en Nueva Zelanda .

“La mayoría de estudios se centran en personas mayores, pero pensamos que si queríamos prevenir las enfermedades asociadas a la edad, necesitábamos empezar a estudiar el proceso de envejecimiento en adultos jóvenes”, explica Daniel Belsky, líder del estudio.

Analizando factores biológicos como el colesterol, la presión sanguínea, el índice de masa corporal, los sistemas metabólico e inmunitario, la inflamación o la longitud de los telómeros a las edades de 26, 32 y 39 años, los científicos pudieron calcular la edad real y la velocidad de envejecimiento individual de los voluntarios.

Los resultados revelaron que, por lo general, la mayoría envejecía un año biológico por cada año cronológico pero, otras personas, aumentaban tres años biológicos cada vez que cumplían un año más; esto es, envejecían tres veces más rápido que los demás. Esta característica se vio asociada a un peor estado físico, un cociente intelectual más bajo y un mayor riesgo de desarrollar algún tipo de demencia, según las pruebas físicas, cognitivas y de equilibrio posteriores. Los más afortunados presentaban un envejecimiento negativo: tras 12 años desde las primeras pruebas del estudio, algunos de ellos no presentaban cambios biológicos en su organismo.

“Esto es sólo el principio. El próximo paso será averiguar de qué forma esa información nos puede ayudar por ejemplo a identificar las causas del envejecimiento acelerado para poder hallar formas de ralentizarlo. También esta información nos podrá ayudar a evaluar las terapias que buscan aminorar la velocidad del proceso de hacernos mayores”, explica Belsky.

El trabajo ha sido publicado en la revista Proceedings of the National Academy of Sciences (PNAS).

Tomado de:

18 de octubre de 2015

La célula de la que venimos todos




Chimeneas hidrotermales en el fondo del Ártico cercanas al punto donde se encontraron las Loquiarkeas.



Los humanos sabemos más de la superficie de Marte que de las profundidades del océano, y hoy un ser microscópico nos lo vuelve a dejar meridiano. Un barco de exploración científica ha encontrado en el fondo del Ártico unos microbios que permiten aclarar cómo, hace más de 2.000 millones de años, una célula solitaria y primitiva dio lugar a la espectacular orgía de vida compleja que abarca a humanos, animales, plantas y hongos.

Los nuevos organismos han sido bautizados como lokiarqueas, un término que probablemente abarca a varias especies hasta ahora desconocidas. Su material genético se ha encontrado a 3.283 metros de profundidad, cerca de unas chimeneas hidrotermales entre Noruega y Groenlandia conocidas como el Castillo de Loki, el misterioso dios nórdico. Sus descubridores creen que son el puente entre la vida celular más sencilla, los procariotas, y el resto de seres vivos, los eucariotas.

Usted y todos los seres vivos que puede ver a su alrededor son miembros del gran imperio eucariota. Toda forma de vida cuyas células tienen un núcleo diferenciado para guardar el ADN, un citoesqueleto bien desarrollado y orgánulos que las mantienen vivas es un eucariota.
Este hallazgo nos acerca un poco más a poder responder la eterna pregunta, ¿de dónde venimos?"
Las arqueas componen otro dominio fundamental de la vida más desconocido. No tienen núcleo celular, pero sí rasgos genéticos que las acercan a nosotros y las alejan de las bacterias y otros procariotas. Los primeros fósiles de procariotas datan de hace unos 3.500 millones de años. Unos 1.500 millones de años después, en una Tierra irreconocible, evolucionaron las primeras células eucariotas que sustentaron una incomparable proliferación de nuevos seres vivos. Cómo sucedió es un misterio que varias hipótesis científicas compiten por explicar.

Las lokiarqueas pueden ser la respuesta. "Parecen descendientes directos de nuestro ancestro microbio”, explica a Materia Thijs Ettema, uno de sus descubridores. "Nuestro hallazgo nos acerca un poco más a poder responder la eterna pregunta, ¿de dónde venimos?", añade.

Solo el 1% de todos los microorganismos que habitan la Tierra se pueden criar en el laboratorio y estas nuevas arqueas no son una excepción. Ettema, de la Universidad de Uppsala (Suecia), y el resto de su equipo, han podido identificarlas y estudiarlas gracias a una técnica, la metagenómica, que identifica el código de barras genético de cada ser vivo de entre los sedimentos marinos y luego intenta recomponer el resto de su genoma.

Años para reproducirse

Según el trabajo, publicado en Nature, las arqueas de Loki son los microbios sin núcleo más parecidos a nuestras propias células eucariotas, de las que parecen “hermanas” en términos filogenéticos. Su genoma es mucho más evolucionado de lo esperado y contiene “unos 100 genes eucariotas” relacionados con aspectos fundamentales de este grupo, según Ettema. Algunos de estos genes producen actina, “una proteína que indica que el ancestro de los eucariotas tenía ya un citoesqueleto dinámico y tal vez un mecanismo primitivo de fagocitosis”, explica este microbiólogo. Esto es un dato clave, pues explicaría cómo apareció la mitocondria, el orgánulo que proporciona energía a todas nuestras células, cuando nuestro antepasado arquea se tragó una bacteria primitiva.
Una de las encendidas polémicas que rodea esta etapa fundamental de la vida en la Tierra es si los eucariotas evolucionaron de los procariotas antes o después de la aparición de las arqueas. El nuevo trabajo dibuja un árbol de la vida con dos ramas principales (arqueas y resto de procariotas) con los eucariotas surgiendo de la primera hace más de 2.000 millones de años. Las lokiarqueas son descendientes directos de ese ancestro común del que hablaba Ettema.

Tal vez lo más frustrante de este descubrimiento es que no sabemos qué aspecto tienen las arqueas de Loki. El estudio no se basa en el organismo en sí, sino en sus genes y proteínas. El nuevo objetivo de Ettema será sacar a estos microbios del fondo del mar y estudiarlos bajo el microscopio, lo que ofrece una doble dificultad. Primero, estas arqueas están tan esparcidas en el tenebroso y gélido fondo marino dada la escasez de nutrientes que las muestras recogidas por los barcos contienen muy pocas. Segundo, su ritmo de división celular es extremadamente lento, puede llevar años, y eso si hay suerte y los científicos adivinan de qué se alimentan. Por eso, al mismo tiempo, van a seguir secuenciando el metagenoma de las profundidades en busca de nuevas especies que aclaren cómo la unión entre los dos grandes imperios procariotas dieron lugar a un tercero, el nuestro.

El linaje perdido

La búsqueda de vida desconocida gracias a las nuevas técnicas de secuenciación genética ha empezado hace muy poco tiempo y ya están dando resultados sorprendentes, explican T. Martin Embley y Tom Williams, de la Universidad de Newcastle, en un artículo complementario publicado en Nature. “La identificación de las lokiarqueas tan pronto en la historia de este campo naciente sugiere que pronto descubriremos entre las arqueas a parientes incluso más cercanos a nosotros”, opinan ambos investigadores, que no han participado en el trabajo.

Purificación López-García, una experta española en evolución microbiana que trabaja en la Universidad París Sur, ofrece una opinión independiente sobre el estudio. La hipótesis propuesta, dice, “sigue en liza con otros modelos para explicar la aparición de los eucariotas, como que surgiesen por simbiosis entre bacterias y arqueas”, resalta. Uno de los mayores problemas de este y muchos oitros trabajos es que “no tienen al organismo en sí, sino que deducen su presencia a partir de los genes”, resalta.

“Se trata de un estudio muy interesante, sobre todo por descubrir un linaje perdido que ayuda a entender un momento clave de la historia evolutiva sobre el que existen bastantes teorías alternativas”, opina Iñaki Ruiz-Trillo, investigador del Instituto de Biología Evolutiva (CSIC-UPF).

Toamdo de:

El Mundo Ciencia

17 de octubre de 2015

El sonido de las células

Hay que escuchar muy, muy de cerca, pero sí, las células emiten una sinfonía de sonidos. Aunque no van a ganar nunca un Grammy por ello, los diversos pitidos producidos por las células están ofreciendo a los científicos una visión interna de su funcionamiento biomecánico, algo que podría utilizarse incluso para detectar el cáncer.


Investigadores de la Universidad de California, en Los Ángeles, estudiaron las células de la levadura de cerveza, y descubrieron que sus paredes celulares vibraban a un ritmo de 1.000 pulsaciones por segundo. Unos movimientos demasiado leves para ser captados en vídeo, pero que, transformados en sonido, crean lo que los científicos han descrito como un sonido de alta frecuencia (que equivale aproximadamente a dos octavas por encima de la nota media Do en un piano, aunque no pueden ser percibidos a oído desnudo.) 

"Creo que si lo oyes durante demasiado tiempo, puedes volverte loco", asegura el biólogo Andrew Pelling desde la Escuela Universitaria de Londres. También sugiere que los motores moleculares que transportan las proteínas por el interior de una célula son los causantes de la vibración de sus paredes.

¿Pueden aprender algo los científicos del ruido de las células humanas?

Parece que es algo más difícil obtener sonidos de una célula humana que de la levadura de cerveza. Por el momento, los científicos aún no han observado sonidos en las células mamarias, en parte debido a que las células animales poseen membranas cuya ondulación dificulta las vibraciones, al contrario que las rígidas paredes celulares de la levadura o las plantas. Pero las células humanas "se quejan" cuando reciben luz, y el fenómeno podría ser sorprendentemente útil para la ciencia, en especial para la investigación sobre el cáncer.

Cuando Richard Snook y Peter Gardner, biólogos de la Universidad de Manchester, bombardearon células de próstata humana con rayos infrarrojos, los micrófonos detectaron miles de notas simultáneas generadas por las células. El análisis estadístico de estos sonidos, creados por células que, calentadas y enfriadas con rapidez, provocan vibraciones en las moléculas del aire, permitió a Snook y Gardner diferenciar entre células normales y células cancerígenas. "Las diferencias entre una célula sana y otra cancerígena es la que hay entre dos grandes orquestas interpretando a la vez, solo que en la orquesta cancerígena la tuba desafina horriblemente", afirma Gardner.

Gardner está perfeccionando la técnica para conseguir reemplazar los actuales test de detección prebiótica de cáncer de próstata que son poco fiables.

Tomado de:

QUO

11 de junio de 2015

El ADN borra su "disco duro" en cada generación

Los genes están regulados por la epigenética, que indica cómo deben leerse. Ahora han descubierto cómo se borran algunas de estas instrucciones para originar nuevas células en el embrión.


No hay dos personas que saquen las mismas conclusiones al leer un mismo libro. Aunque las palabras sean objetivamente las mismas, cada una interpreta esas frases de acuerdo con sus recuerdos y su forma de pensar. Pues con los genes pasa algo parecido. Y es que, aunque casi todas las células de una persona compartan las mismas instrucciones genéticas, hay una enorme variedad de tipos celulares (desde las células musculares a las células del hígado) que se diferencian precisamente en el modo de leer las secuencias de los genes.
En realidad, en vez de recuerdos y opiniones, las células leen una cosa u otra en función de la epigenética, un conjunto de etiquetas del ADN y de mecanismos de regulación que encienden y apagan genes. Así por ejemplo, las células del riñón no leen la información necesaria para las células de los huesos. Esto es especialmente importante y complejo durante el desarrollo embrionario, un proceso en el que se pasa de una célula (el zigoto), que está «poco regulada», a un organismo compuesto por muchos tipos celulares y por ello mucho más jerarquizado y regulado. Este martes, un grupo de investigadores de laUniversidad de Cambridge ha dado un paso más en la comprensión de este proceso, al haber descrito con exactitud cómo en un momento dado algunas células del embrión se resetean y pierden sus marcas epigenéticas. El estudio, publicado en la revista «Cell», describe cómo se reprograman las células germinales primordiales del embrión, que son aquellas que en adulto permitirán generar espermatozoides y óvulos, y además sugiere que algunas zonas del ADN no se resetean para evitar que algunas secuencias dañen al organismo y produzcan enfermedades.
«La información epigenética es importante para regular los genes, pero cualquier metilación incorrecta (este es uno de los mecanismos de control) puede ser perjudicial si pasa a la descendencia. Por eso, la información debe ser reseteada en cada generación antes de que se desarrolle el zigoto. Es como borrar el disco duro antes de añadir nuevos datos», ha explicado Azim Surani, uno de los participantes en el estudio.
En este sentido, los investigadores creen que las células germinales primordiales (las que luego originan los gametos en los adultos) son reprogramadas entre las semanas dos y nueve del desarrollo embrionario. Según han descrito, durante ese proceso una red de genes actúa para resetear los patrones de metilación del ADN. Esto es importante, porque permite entender cómo funciona un proceso crucial en la regulación de los genes y por lo tanto en el funcionamiento de las células.

El ADN olvida

Esto se sabía desde hace tiempo, pero ahora se ha propuesto un mecanismo que podría permitir entender el panorama global. Así,cuando se produce la fecundación, la célula resulsante sufre unreseteo de su epigenoma y adquiere la capacidad de convertirse en cualquier otra célula. A medida que se desarrolla, «el desarrollo es por definición epigenética», tal como se afirma en este artículo de revisiónsobre el tema, las células van diferenciándose y adquiriendo su propio código epigenético. Pero a partir de un momento dado, algunas de ellas se vuelven a resetear para en el futuro permitir que el nuevo individuo produzca espermatozoides y óvulos. Y todo ello tratando de silenciar algunos genes que podrían ser perjudiciales.

Esposas para evitar peligros

Pero ahora, los investigadores han encontrado que el cinco por ciento del ADN de las células primordiales no se reseteaba y que permanecían con sus esposas epigenéticas, como si fuera importante que pasaran de una generación a otra sin sufrir cambios: «Nuestro estudio nos ha dado una fuente de regiones candidatas donde la información epigenética no solo se pasa a la siguiente generación, sino también a las siguientes», ha explicado Walfred Tang, el director de la investigación. Curiosamente, al analizarlas, encontraron que estas secuencias de ADN estaban asociadas a importantes genes neuronales y a fenómenos como la esquizofrenia, los desórdenes metabólicos y la obesidad.
Los investigadores sospechan que si una pequeña parte de los genes de las células germinales primordiales no sufren su reseteo epigenético es por algún motivo. Opinan que quizás ocurra porque estén silenciando a secuencias de ADN que al liberarse de sus esposas podrían tener efectos negativos sobre el organismo.

ADN basura

De hecho, después de secuenciar el genoma y analizar sus metilaciones en embriones humanos, los investigadores encontraron que una buena parte de estas regiones que no se resetean se corresponden con el ADN más misterioso: se le suele llamar ADN basura o estructural, y proviene del ataque de virus que en el pasado infectaron al ser humano y que consiguieron introducir sus genes en nuestro genoma.
Este mal llamado ADN basura comprende la mitad de todo el genoma humano y tiene un importante papel en la epigenética y en el patrón de regulación de los genes. Puede actuar como un motor de la evolución y tener efectos beneficiosos (algunos de los genes que activan el desarrollo de la placenta provienen de invasores microbianos), pero también negativos, ya que este ADN basura puede interferir en el funcionamiento de los genes. Por ello mismo, resulta crucial seguir investigándolo.
Fuente:

19 de marzo de 2015

La joven con ADN de tres personas

El Parlamento de Reino Unido aprobó este martes la legalización de una controvertida técnica científica que permite la creación de bebés utilizando el ADN de tres personas.

Los expertos dicen que este tratamiento de fertilización in vitro podría eliminar enfermedades de la mitocondria que son debilitantes y potencialmente fatales.
Les recordamos la historia de Alana, que cautivó a nuestros lectores en septiembre.
--------------------------------------------------------------------------------
A Alana Saarinen le gusta jugar al golf y tocar el piano, escuchar música y salir con sus amigos. En eso, ella es igual a muchos adolescentes de todo el mundo. Pero no lo es, porque cada célula de su cuerpo es diferente a las mías o las tuyas: Alana es una de las pocas personas en el mundo que tiene ADN de tres personas.
"Mucha gente dice que tengo los rasgos de mi madre, mis ojos se parecen a los de mi papá… Tengo algunas características de ellos y mi personalidad es la misma también", dice Alana.
"También tengo ADN de una tercera mujer. Pero no la consideraría un tercer padre, sólo tengo algo de su mitocondria".
A las mitocondrias a menudo se las llama las fábricas de las células. Son las partes que crean la energía que todas nuestras células necesitan para funcionar y mantener el cuerpo vivo. Pero también contienen un poco de ADN.
Alana Saarinen es una de las entre 30 y 50 personas en todo el mundo que tienen mitocondrias –y por lo tanto ADN– de una tercera persona.


Célula

Ella fue concebida mediante un tratamiento de fertilidad pionero en Estados Unidos que luego fue prohibido.
Pero pronto podría haber más personas como Alana, con tres padres genéticos, porque Reino Unido está pensando en legalizar una nueva técnica similar que usaría mitocondrias de una donante para eliminar enfermedades genéticas.
Se denomina reemplazo mitocondrial, y si el parlamento británico vota a favor, Reino Unido se convertirá en el único país del mundo que permite el nacimiento de bebés con ADN de tres personas.
Su madre, Sharon Saarinen, había estado intentado tener un bebé durante diez años a través de varios procedimientos de fertilización asistida.
"Me sentía inútil. Me sentía culpable porque no podía darle un hijo a mi marido. Cuando quieres un hijo biológico pero no puedes tenerlo, estás desconsolada. No puedes dormir, está constantemente en tu mente", cuenta.

Una técnica pionera

El investigador clínico experto en embriología Jacques Cohen y su equipo del Instituto Saint Barnabus de Nueva Jersey, EE.UU., fueron pioneros en la transferencia citoplasmática a finales de los años 90.
El artículo completo en:
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0