Latest Posts:

Mostrando las entradas con la etiqueta peces. Mostrar todas las entradas
Mostrando las entradas con la etiqueta peces. Mostrar todas las entradas

17 de febrero de 2020

La primera especie extinguida de 2020: un pez de hasta siete metros de largo

La construcción de represas bloqueó los hábitos migratorios del animal y su reproducción.


El año 2020 abre sus puertas con la confirmación alarmante de una nueva especie extinguida: el pez remo gigante chino de hasta siete metros de largo. El animal, Psephurus gladius, vivía en el río Yangtsé, el tercer más largo del mundo con más de 6.300 kilómetros y la cuna de más de 400 especies distintas. Desde 2009, el  llamado "rey de los peces de agua dulce" no da signos de vida, pero los científicos esperaron a tener pruebas más claras antes de darlo por perdido. 

Un estudio publicado recientemente en la revista Science of the Total Environment explica que la especie sufrió un claro descenso desde 1970 como resultado de una sobrepesca y la fragmentación de su hábitat. Además, en 1981, los seres humanos construyeron la presa Gezhouba, que bloqueó los hábitos migratorios de un animal que necesita nadar río arriba para reproducirse y bajar de nuevo para alimentarse. Y las fechas coinciden. Entre 1981 y 2003, se observó tan solo 201 veces a la especie —el 95,2% de los avistamientos fueron anteriores a 1995— que desde 1996 está declarada en peligro de extinción, según la lista roja de la Unión Internacional para la Conservación de la Naturaleza.

En 2003 se construyó otro embalse, el de las Tres Gargantas, fue construido y empeoró la situación hasta acabar con los últimos ejemplares del pez remo que, en vano, buscaban nuevos lugares de incubación. Fue el año en el cual se confirmó el último avistamiento. El estudio de los investigadores del laboratorio de Conservación de la Biodiversidad en Agua Dulce del Ministerio de Agricultura y Asuntos Rurales de la República Popular China confirma que la especie ha desaparecido por completo y probablemente entre 2005 y 2010. Durante un análisis exhaustivo por toda la región, los expertos han identificado 322 especies de peces distintas y ninguna de ellas, "ni siquiera un solo espécimen", era un pez remo.

Lea el artículo completo en: El País (España)

12 de noviembre de 2019

Mercurio en el pescado: ¿cuánto atún puedo comer a la semana?

El atún rojo es uno de los pescados con mayor acumulación de mercurio, por ello conviene consumirlo con moderación.

¿De dónde procede el mercurio del pescado? 

Hasta que apareció la mano del hombre, el mercurio llegaba al mar únicamente por las erupciones volcánicas o por la erosión de las rocas por el agua y el viento. Actualmente, al explotar el mercurio como materia prima también se vierten sus residuos al mar. Es importante diferenciar el mercurio inorgánico del mercurio orgánico, que es más tóxico. Cuando las bacterias reaccionan con el mercurio lo convierten en metilmercurio y esta nueva molécula acaba formando parte de la carne de los peces.

No todos los peces son iguales

Por suerte, no todos los pescados presentan la misma cantidad de mercurio. El factor principal es su cantidad de grasa. Esto se debe a que el mercurio «se pega» mejor a la grasa que a otras zonas del cuerpo del animal. Así, los pescados azules, que tienen más grasa, pueden contener más mercurio. Por otro lado, en cuestión de peces y mercurio, el tamaño sí importa. Ya sabemos que pez grande se come al pez chico. Y si el pez chico tiene mercurio y el pez grande se come muchos peces chicos... al final son los grandes depredadores los que van más argados de mercurio. 

¿Con qué pescados tenemos que tener más precaución?

Se clasifican como «con alto contenido en mercurio» únicamente cuatro especies: el pez espada o emperador, el lucio, el tiburón (cazón, marrajo, mielgas, pintarroja y tintorera) y el atún rojo, que ahora se consume de formas como el tataki, el tartar o el sushi. Esto debe tenerse en cuenta especialmente en los niños. 

¡Importante! Cuando hablamos de atún rojo no nos referimos al atún en conserva, que generalmente es atún claro o bonito del norte. 

Como especies «con bajo contenido en mercurio» se consideran gran parte de las de de consumo muy frecuente como salmón, sardina, palometa, trucha, anchoa, dorada, lubina, merluza, pulpo, sepia, chipirón o mejillón.

¿Qué consecuencias tiene consumir mercurio en exceso?

El metilmercurio es una neurotoxina que afecta al sistema nervioso central en desarrollo, de ahí que el feto y los niños más pequeños sean los más sensibles a este metal. Esto ocurre porque es lipofílico, le gusta la grasa, y hace que pueda atravesar fácilmente la placenta y la barrera hematoencefálica. También se han observado efectos sobre la ganancia de peso, la función locomotora y la función auditiva.

En resumen: comer pescado es seguro.

No solo es seguro sino que también es recomendable y se aconseja consumirlo varias veces por semana. El consumo de alrededor de una o dos raciones de pescado/marisco por semana y hasta tres o raciones por semana durante el embarazo se asocia con mejores resultados funcionales del neurodesarrollo en los niños en comparación con la ausencia de consumo. Y en adultos, con un menor riesgo de mortalidad por enfermedad cardiaca coronaria. 

Por tanto no te hagas muchos problemas con el consumo de pescado. Solo hay que tener precaución con las especies citadas, y... ¡a disfrutar de lo que nos trae el mar!

Con información de:

El País (España)

El Mundo (España)
 

1 de abril de 2019

Perú: ¿Qué nos impide ser campeones acuícolas?

La producción piscícola para exportación y para el mercado local crece, pero no termina de despegar. De hacerlo, ayudaría a reducir la dependencia de importaciones de pescado. ¿Qué retos existen para logralo? ¿Podrá el ‘boom’ gastronómico impulsar este negocio?


A pocos días de Semana Santa, hablemos de pescado. De acuerdo a cifras de Produce, en el Perú en el 2017 (es el último registro que existe), se consumen por año alrededor de un millón de toneladas de pescado para consumo humano directo (CHD).

De este, según Oceana, un 30% corresponde a especies importadas, de las cuales el 10% proviene de cultivos en piscigranjas de mar, río o lagos. Ese tercio podría producirse localmente, si se redujeran las mermas por fallas en la cadena de frío y supervisión, opina Juan Carlos Riveros, director científico de la ONG.

En la Asociación de Restaurantes Marinos del Perú (ARMAP)-que integra a 467 marcas- también creen que existe una solución para reducir las importaciones de pescado. En efecto, un 12% de las compras de un restaurante marino en el Perú durante el otoño y el invierno (cuando escasea el pescado fresco) proviene del exterior, estima Javier Vargas, su presidente. Por eso, se han propuesto desarrollar una cadena productiva que organice a productores para garantizar compras corporativas.

Empezarán con envíos de paiche de Iquitos, Tarapoto y Pucallpa, cuenta Miguel Tang, biólogo de la asociación Amazónicos por la Amazonía, que apoya a ARMAP. Dice que el paiche, según el corte, funciona tanto en cebiche como en chicharrón y explica que buscarán atender tanto restaurantes premium como aquellos orientados a los segmentos B y C.

“En lo único que nadie nos gana es en la cocina. Hay que empezar el camino por ahí”, afirma, resaltando la oportunidad que representa el ‘boom’ culinario peruano, para poner en valor la acuicultura peruana en el mercado local. La principal ventaja, dice, es que a diferencia de la pesca de captura, permite programar y garantizar la oferta.

Los retos

 Sin embargo, para que se masifique el negocio, habría que partir por invertir en plantas de procesamiento, lo que optimizaría los envíos por cortes y los costos logísticos, reduciendo a su vez el precio del filete hasta en 40% en Lima, señala Tang.

Para Christian Berger, coordinador de la carrera de ingeniería acuícola la Universidad Científica del Sur, un paso estratégico sería la creación de un clúster de proveedores de bienes y servicios acuícolas, que incluya actores especializados en provisión de semilla o alevines. No menos importante, dice, es el alimento, que supone el 60% del costo productivo. En este subsector el Perú también es campeón como principal productor mundial de harina y aceite de anchoveta. Según TASA -principal exportadora del subproducto- por cada kilo de anchoveta se pueden producir entre 3 y 4,5 kilos de peces de cultivo para CHD.

En Vitapro (de Alicorp) -para el que el Perú representa el 10% de sus ventas de alimento de pescado- “están convencidos” de que el Perú podría emular a Chile y Ecuador, jugadores globales en salmón y langostino. El año pasado crecieron 40% en ventas a productores de trucha en Puno y Huancayo. En camarón bajo sistemas de cultivo intensivo en Tumbes también tuvieron un dinamismo importante, dice Hugo Carrillo, gerente general de la firma a Día1, sin precisar cifras.

La experiencia con la trucha va en esa dirección. Según Víctor Camacho, gerente general de Piscifactorías de los Andes, que comercializa el 30% de su producción en el Perú a través de supermercados, la trucha se ha convertido en una alternativa en precio al lenguado, la corvina y la tilapia. Como ARMAP, proyectan afinar la logística para llegar a restaurantes -y también a hoteles- el año que viene. Según el ejecutivo, el pez está conquistando el mercado local gracias a su aporte proteico y sabor, quizá la mayor barrera de acceso a la costa para las especies amazónicas, señalan las fuentes consultadas.


2 de diciembre de 2018

Los primeros peces se originaron en aguas marinas cerca de la costa

El lugar de origen de los primeros vertebrados ha sido siempre un tema debatido en paleontología. Las hipótesis apuntaban hasta ahora a las zonas de arrecifes, de agua dulce o incluso del océano abierto, basadas en el análisis de escasos y pequeños fragmentos fósiles. Un nuevo estudio señala que la cuna de los primeros vertebrados fueron en realidad las aguas costeras intermareales y poco profundas.

Recreación de un Bothriolepis, un placodermo acorazado que vivió principalmente en la costa.

Los primeros vertebrados en la Tierra fueron peces, y los científicos creen que aparecieron por primera vez hace unos 480 millones de años. Pero los registros fósiles son irregulares y solo se han podido identificar pequeños fragmentos. Unos 60 millones de años más tarde, hace 420 millones de años, el registro fósil muestra algo completamente diferente: una gran variedad de especies de peces en masa.

¿Pero dónde estaban realmente los peces? ¿Dónde se originaron? Un equipo de científicos, liderados por Lauren Sallan de la Universidad de Pennsylvania en EE UU, ha tratado de responder a estas cuestiones en un estudio publicado en la revista Science.

Hasta ahora la comunidad científica presumía que los primeros peces se desarrollaron en arrecifes de coral, dada la gran biodiversidad de peces que existe en la actualidad en esos ecosistemas, pero la búsqueda durante décadas en estos lugares no ha dado resultados.

El grupo de científicos analizó los fósiles de vertebrados desde el Paleozoico medio (entre hace 480 y 360 millones de años), así como los marcadores ambientales que indican sus antiguos hábitats. Con esta información los investigadores crearon una base de datos con 2.728 registros tempranos para peces con mandíbulas y sin mandíbulas. “Es un nuevo conjunto de datos realmente grande”, dice Sallan.

Los resultados indican que todos los grupos principales de vertebrados tempranos, incluidos los peces con y sin mandíbula, se originaron y diversificaron en entornos intermareales y submareales cerca de la costa, a lo largo de un período de 100 millones de años.

El artículo completo en : Agencia SINC


10 de abril de 2018

Describen cómo las células del pez cebra regeneran el corazón tras un infarto

  • Sus células cardiacas tienen un alto grado de plasticidad para reparar un daño

  • Los cardiomiocitos internos contribuyen a regenerar las paredes del corazón

Científicos del Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) y la Universidad de Berna (Suiza) han descubierto un mecanismo que ayuda a las células cardiacas del pez cebra a regenerar el corazón después de un infarto, un hallazgo que podría tener implicaciones en el abordaje de esta enfermedad en humanos.

Tras un infarto agudo de miocardio el corazón humano pierde millones de cardiomiocitos, las células que componen el músculo cardiaco, según explican los autores de este trabajo, cuyos resultados publica la revista Nature Communications.

Pero algunos animales, como el pez cebra, tienen una alta capacidad regenerativa y logran recuperarse tras un daño cardiaco con nuevos cardiomiocitos, lo que hace que se hayan convertido en un modelo muy usado en investigación como "inspiración para el desarrollo de futuras terapias regenerativas", ha explicado Héctor Sánchez-Iranzo, uno de los autores del estudio.

Durante ese proceso las células que componen el músculo cardiaco de estos peces se dividen para renovar el tejido lesionado, pero se desconoce en gran medida si todas las células contribuyen de la misma manera a la reconstrucción del músculo cardiaco.

La plasticidad celular, esa capacidad de las células de convertirse en otros tipos de células, es un proceso que se observa frecuentemente durante el desarrollo, pero nunca se ha observado durante la regeneración en un animal adulto.

Acción regeneradora de los cardiomiocitos

Por ello, en este caso los autores estudiaron dos tipos de cardiomiocitos, unos localizados en la parte más interna del corazón, las trabéculas, y otros en el exterior.

Durante el proceso de regeneración se ha asumido por norma que cada tipo celular da lugar al mismo tipo celular. Pero en la investigación del CNIC se muestra que, durante el proceso de regeneración del corazón, los cardiomiocitos trabeculares también contribuyen a la regeneración de las paredes del corazón.

En concreto, concluyen los investigadores, "indican que hay un alto grado de plasticidad en los cardiomiocitos del pez cebra y que, además, existen distintas formas de reconstruir un corazón dañado".
Fuente:

30 de abril de 2016

Tully, un extraño pez prehistórico





Es probable que nunca haya visto una imagen de la extraña criatura, ya extinguida, sobre la que trata este artículo. Pero Tullimonstrum gregarium, conocido popularmente como monstruo Tully, es toda una celebridad en Illinois (EEUU). En 1989 fue declarado fósil oficial de este estado donde se han encontrado todos los especímenes hallados hasta ahora. Hasta tal punto es famoso allí el monstruo Tully que sus dibujos decoran las caravanas y los camiones de la firma U-Haul.


Aunque fue descubierto por primera vez en 1958 y descrito científicamente en 1966, los paleontólogos todavía no sabían qué tipo de animal fue esta criatura de cuerpo blando y menos de 20 centímetros de longitud, que vivió hace unos 300 millones de años, durante el periodo Carbonífero, en aguas costeras poco profundas.

Habían reconstruido con mucha precisión qué aspecto tenía, pero no sabían qué era. Basándose en algunas de sus características, pensaban que podía tratarse de una especie invertebrada, pero un nuevo y detallado estudio publicado esta semana en la revista Nature contradice esa teoría y resuelve el misterio del monstruo Tully, denominado así por su extraño aspecto y en homenaje a su descubridor, Francis Tully, un coleccionista de fósiles.

El artículo completo en:

El Mundo Ciencia

6 de abril de 2016

Cuál es el animal que tiene más crías (por si acaso no es el conejo)


Entre los mamíferos, los conejos son famosos por su capacidad para reproducirse siendo considerados desde la antigüedad como símbolos de fertilidad.

Esa reputación se la ganaron por un par de adaptaciones: ya son sexualmente activos a los tres o cuatro meses y las hembras pueden volver a quedar preñadas apenas dan a luz.

Eso significa que, durante el período de celo, pueden tener múltiples camadas de hasta siete crías.

Pero esa temporada de celo es realmente clave. En Europa los conejos solo se reproducen en primavera y verano, lo que limita el número de crías.

Sin embargo, en partes de Australia y Nueva Zelanda, países donde los conejos europeos fueron introducidos, se pueden reproducir durante todo el año, llegando a tener hasta siete camadas.
Como no es de extrañar, en esos países los conejos son considerados como pestes.
De hecho, el estatus de plaga está muchas veces ligado a los hábitos de reproducción y puede ser un punto de partida útil para identificar a los animales más fecundos del mundo.
Por ejemplo, Australia también sufre una inmensa cantidad de plagas de ratones.

Al tener comida abundante y las condiciones ambientales adecuadas, las hembras pueden tener una camada promedio de seis crías cada mes y esos descendientes, a su vez, pueden comenzar a reproducirse al mes siguiente de nacer.
Y su densidad puede alcanzar los 2.700 ratones por hectárea en los graneros.

Decoloración del coral

Si esos números no son suficientemente extremos para ti, entonces piensa en el "mayor espectáculo sexual del planeta".

Cada primavera la Gran Barrera de Coral hace que las mareas se vuelvan rosadas en un desove masivo.

En vez de aparearse físicamente, los corales sincronizan la liberación de su esperma y huevos para aumentar las posibilidades de fecundación a lo largo de la extensión completa de un coral.

"Creo que nadie ha intentado realmente contar cuántos huevos produce un solo individuo", dice la Dra. Mary Hagedorn del Instituto de Biología de la Conservación Smithsonian (SCBI, por sus siglas en inglés).

"La mayoría de las personas lo describen como un gigantesco número de huevos producidos durante un desove y eso podría significar muchos millones producido por un solo coral".

Puede que millones de huevos suenen como mucho, pero el tiempo está en contra de los corales.

El artículo completo en:

BBC Ciencia

30 de marzo de 2014

Registran, por primera vez en video, el acto de percibir

Investigadores japoneses registran la actividad neuronal en el cerebro de un pez zebra, justo en el instante en que este percibe a su presa. 


Hace apenas unos años hubiese resultado un tanto surrealista la idea de estar videograbando el instante preciso en el que se consuma la percepción. El cerebro, ese enigmático e hipersofisticado órgano que rige buena parte de nuestra existencia –y tal vez incluso de nuestra realidad– ha mantenido innumerables secretos a salvo de la ciencia, erigiéndose como el mayor de los misterios inmersos en nuestra propia biología.

Recientemente un grupo de investigadores del Instituto Nacional de Genética en Japón, lograron documentar el momento en el que un pez zebra percibe la espontánea presencia de una presa. Lo anterior representa la primera vez que el acto de percibir es registrado desde la propia fuente, es decir, desde un plano neuronal. El “descubrimiento” fue reportado en la publicación científica Current Biology.

En un artículo titulado “Todos estamos alucinando todo el tiempo“, enfatizábamos en que la realidad, ese consenso masivo y psicocultural, en buena medida se produce a partir de nuestra percepción –la cual si bien es esencialmente individual, lo cierto es que se sintoniza colectivamente para convenir en referentes generales–:

“Quizá aquello que concebimos como realidad no es más que un espejismo de monumental sofisticación, una especie de paraíso de la simulación en donde nada es ‘en realidad’ lo que aparenta ser. Aquí partimos de la premisa que cualquier componente de esa abstracción no existe como tal, sino que llega a nosotros mediado a través de nuestra percepción —la cual en este contexto aparecería como un filtro traductor que nos permite interactuar con cualquier cosa que asumimos como algo externo (a pesar de que a fin de cuentas somos solo un todo) y que, como suele ocurrir cada vez que utilizamos un mediador, la versión original experimenta un  cierto grado de distorsión.”


Más allá de especular sobre la naturaleza perceptiva, o por el contrario definitiva, de la realidad, lo que parece indiscutible es que la percepción juega un rol fundamental en nuestra existencia y en la de todo aquel ser que accede a esta facultad –incluido, obviamente, el pez zebra–. En este sentido resulta épico el poder observar la actividad neuronal que acompaña el nacimiento de este acto (el percibir). 

A lo largo de los escasos seis segundos que dura el video, presenciamos una especie de rítmica electro-danza que, supongo, corresponde al diálogo que sostienen las neuronas justo en ese instante cuando el cerebro registra un “algo” sucediendo.

Pero aún más interesante será, sin menospreciar al pez zebra, tener acceso a este mismo fenómeno dentro del cerebro humano pues en ese caso, cuando se registre el influjo de data, el acto estará acompañado de miles de procesos complementarios que seguramente enriquecerán, visualmente, la ya de por si apasionante coreografía de luz que hoy hemos podido observar –por ejemplo el contraste de esa información recibida sobre un marco de referencias culturales que terminarán por asignar un valor específico a eso que se percibe”–. O que decir sobre la posibilidad de documentar un pensamiento, o una secuencia de ellos, ese arquetípico instante durante el cual, al menos una porción significativa de lo que llamamos realidad, se estaría gestando.

En todo caso resulta siempre estimulante avanzar un trecho en ese recorrido que nos separa de la hermética intimidad del cerebro. Y este acercamiento visual, que incluso resulta una experiencia estética (y que por su semejanza con un relámpago nos recuerda la correspondencia mico-macro). Así que, aludiendo a la figura del ouroborus, disfrutemos por ahora el percibir un acto de percepción. 

Fuente:

Pijama Surf

26 de marzo de 2014

¿Por qué huele mal el pescado poco fresco?

  • El mal olor lo produce una molécula muy abundante en los peces de agua salada
  • Se puede eliminar añadiendo alimentos ácidos, como limón, vinagre o tomate
pescado 

¿Por qué huele mal el pescado poco fresco?

El olor a pescado podrido es uno de los más característicos y fáciles de identificar en las cocinas y mercados. Es profundo y agudo. Se debe a una molécula muy concreta que producen en especial abundancia los peces de agua salada. Por eso los peces de agua dulce no liberan con tanta intensidad el repugnante aroma.

El agua de los mares y océanos tienen aproximadamente un 3,5% de sal. Los animales que viven en este entorno tienen mecanismos para filtrar la sal y mantener dentro de sus células el nivel de sales minerales disueltas en un 1%, que es el óptimo. Casi todos los animales marinos equilibran la salinidad del agua llenando sus células de aminoácidos y aminas. Algunas de estas sustancias son las que dan a la carne de pescado ese sabor tan suave y delicioso. “El aminoácido glicocola es dulce, el ácido glutamínico en forma de glutamato monosódico es sabroso y umami”, explica el reconocido Harold McGee, químico estadounidense especialista en alimentos.

Hay otras moléculas que también limitan la presencia de sales en el interior de las células de los peces de agua salada, pero que dan un sabor duro y poco agradable, como la urea propia de los tiburones y las rayas, que es ligeramente amarga. Otras no dan sabor, como el óxido de trimetilamina (TMAO) propio de la mayoría de los pescados y que abunda en los de agua salada. Se encuentra en todas las especies de peces de agua de mar en cantidades que pueden alcanzar el 5% del tejido muscular. Esta sustancia es la que más contribuye al olor a pescado pasado.

Pocos minutos tras la muerte del pez muere estas sustancias son descompuestas por las bacterias y enzimas de su cuerpo. El TMAO se transforma en trimetilamina (TMA), un sustancia volátil de olor apestoso. La urea se convierte en amoniaco, de olor profundo y desagradable. A estas dos sustancias se suman las resultantes de la rápida degradación que sufren las grasas insaturadas típicas del pescado (el aceite) una vez muerto. El mismo aire las ataca y descompone con facilidad y da lugar a sustancias con olor rancio o a queso.

A pesar de lo profundo del olor de la TMA, es fácil de eliminar. Se acumula en la superficie del pescado y se puede retirar lavándolo con agua. Otro truco es añadir alimentos ácidos, como limón, vinagre o tomate, que al reaccionar con las moléculas de TMA limita su volatilidad y evita que lleguen a nuestras fosas nasales.

Carne blanca y suave

Además de la velocidad de descomposición la carne del pescado se diferencia de la de los animales terrestres en el color. Un filete de vaca es color rojo sin embargo, la del pescado suele ser blanca. La respuesta está en las fibras que componen los distintos músculos.

Los músculos de los animales terrestres están diseñados para caminar en suelo firme y en el aire y los de los pescados para moverse flotando en el agua. Para moverse con eficacia en tierra los animales necesitan proporcionar al músculo energía constantemente. Por eso son tienen abundantes fibras de contracción lenta, especializadas en aportar energía a largo plazo. Esta fibras son rojas porque tienen mioglobina cargada de oxígeno por eso la carne de animal terrestre suele ser roja. Los peces no requieren tanta energía constante para desplazarse por el agua porque flotan y se dejan llevar por las corrientes. Ellos necesitan mucha energía en ciertas ocasiones puntuales, para huir por ejemplo del ataque de un depredador o evitar una corriente adversa. Las fibras blancas de contracción rápida son perfectas para aportar mucha energía de golpe para ejecutar movimientos ocasionales muy potentes.

Hay peces, como los atunes o los salmones, que tienen carne rosa. Son fibras blancas modificadas para hacer un trabajo intermedio entre los dos comentados. Estos peces por su modo de vida requieren músculos que aporten energía con más constancia que el resto de los peces. Sus fibras rosas tienen más pigmentos que acumulan oxígeno.

Blanca, rosa o roja, la carne de estos animales, bien conservada y cocinada es una delicia para cualquier paladar.

Fuente:

RTVE Ciencia


16 de enero de 2014

El pez que caza aves en pleno vuelo



El pez tigre, un pez predador africano que salta del agua y caza pájaros en pleno vuelo, fue filmado en acción por primera vez.

Se sabe que algunas especies de peces se alimentan de aves migratorias, pero los expertos dicen que esta es la primera evidencia de uno de ellos cazando un pájaro en pleno vuelo.
El pez tigre es un predador de agua dulce más conocido por sus largos y afilados dientes.

Pez tigre

El pez tigre usualmente se alimenta de otros peces.

La escena de caza fue filmada en Schroda Dam, un lago artificial en la provincia sudafricana de Limpopo.

Investigadores del Grupo de Investigación del Agua de la Universidad del Noroeste, en Sudáfrica, publicaron los detalles de su hallazgo en la revista especializada Journal of Fish Biology.

"El pez tigre africano es una de las especies de agua dulce más asombrosas del mundo", dijo Nico Smit, coautor del estudio.

"Es un pez llamativo con hermosas pintas en su cuerpo, aletas de color rojo brillante y feroces dientes".

El pez, Hydrocynos vittatus, tiene fama de ser un predador voraz y según Smit, sus saltos característicos hacen que sea un favorito para los pescadores de caña.

Es una especie protegida en Sudáfrica, y el equipo de Smit estaba estudiando cómo utiliza diferentes hábitats en el entorno del lago.

Una actividad inusual

Los investigadores usaron etiquetas de identificación por radiofrecuencia para seguir los movimientos de algunos peces, y así observaron que se alimentaban principalmente de otros peces al alba y al atardecer.

Pez tigre

Esta especie se caracteriza por sus bellos colores y sus dientes afilados.

Para descansar, se retiraban el resto del día hacia áreas profundas y resguardadas.

Pero durante un sondeo de verano, los científicos registraron una acitividad inusual: el pez tigre nadaba cerca de la superficie a media mañana y apresaba golondrinas saltando fuera del agua.

Smit dice que este comportamiento, que pudieron grabar en video, los "sorprendió en extremo".

Algunos indicios de la desaparición de aves en vuelo sobre lagos africanos habían sugerido que este pez era el responsable, pero no había evidencias concluyentes.

Lubinas, anguilas, pirañas y lucios son especies que capturan aves flotando en el agua o muy cerca de la orilla, pero Smit asegura que este es el primer registro de un pez de agua dulce cazando aves en vuelo.

Según el científico, el hallazgo inspirará un cambio en la forma en que se entiende la transferencia de energía en los ecosistemas de agua dulce, e incluso podría influir en la protección de las golondrinas en el país africano.

Fuente:

BBC Ciencia

29 de septiembre de 2013

Tiburones: 10 curiosidades sobre el animal más temible

Existe uno híbrido como una mula y otros que saben «caminar»; algunos devoran a sus hermanos antes de nacer o matan a coletazos. Los últimos descubrimientos sobre escualos los hacen aún más fascinantes.

1.  Pueden matar a coletazos

El tiburón zorro (Alopias pelagicus), un escualo de 3 metros de largo que habita las aguas del Índico y el Pacífico, exhibe una eficaz estrategia de caza que le permite obtener varias piezas de un solo intento. El animal aturde y mata a sus presas con su larga cola, que utiliza como si fuera un látigo, a una velocidad de 24 metros por segundo. Con un golpetazo semejante, sus víctimas -sardinas u otros pequeños peces- mueren o quedan tan atontadas que son incapaces de escapar de las intenciones del depredador. 

Con esta técnica, el tiburón zorro consigue matar hasta siete peces a la vez. Puedes verlo en acción en un vídeo en este enlace. 


Lea el artículo completo en:


22 de abril de 2013

Decodifican ADN de pez fósil viviente


Celacanto en el Museo Nacional de Kenia

Un equipo de científicos internacionales decodificó el ADN de un esquivo pez considerado un fósil viviente, porque tiene un gran parecido a animales que vivieron hace millones de años.

Los investigadores han secuenciado el genoma del celacanto, un primitivo pez africano de hasta dos metros de largo que está cubierto de placas óseas azules y se esconde en cuevas profundas.

Los científicos descubrieron que los genes responsables de su aspecto externo han evolucionado de manera extremadamente lenta, posiblemente debido a que su medio ambiente ha permanecido prácticamente igual en mucho tiempo.

Los investigadores esperan que su estudio del genoma del celacanto proporcionará nuevos conocimientos sobre la evolución de los mamíferos actuales.
Fuente:
BBC Ciencia

9 de abril de 2013

¿Vestiremos ropa de baba en el futuro?

Los mixinos 
Mixino

  • Hay más de 80 especies de mixinos, o pez bruja, pero a pesar del nombre, no es realmente un pez. Se consideran craneados, y tienen una estructura dura que rodea su cerebro.
  • Los mixinos tienen ojos rudimentarios. Algunos pueden percibir la luz, pero nada más.
  • No tienen escamas, lo que le da a su piel una textura suave y correosa. Sus pieles a veces se venden como "cuero de anguila".
  • Se anudan a sí mismos para limpiarse esta baba.
  • Los mixinos comparten un ancestro común con todo el linaje de los vertebrados, incluidos los seres humanos.
  • Los científicos han estado estudiando durante siglos a los mixinos, incluso Darwin tomó notas sobre ellos. Pero hay muchos hechos básicos que todavía no conocemos.
  • Todavía no se sabe mucho sobre cómo se reproducen y cómo se puede calcular la edad de un pez bruja.
  • Los peces con espinazo suelen tener otolitos, que actúan como los anillos de los árboles, y se utilizan para calcular su edad, pero los mixinos no los tienen.


Baba de mixino

Los mixinos son unos peces sin mandíbula ni espinas muy primitivos que viven en el fondo del océano y cuya edad se remonta a más de 500 millones de años. 

Los mixinos (Myxini), también conocidos como peces bruja o hiperotretos, se deslizan por las oscuras profundidades del mar, hurgando en busca de alimentos. Las ballenas muertas son uno de sus platos favoritos. 

No son las criaturas más glamurosas del planeta, pero desprenden una sustancia babosa muy especial que podría ser la materia prima de la ropa del futuro.
Ese es su as bajo la manga, o más bien metida dentro de su cuerpo: una sustancia babosa densa y abundante. Como este pez no tiene quijadas, la baba le sirve como una valiosa arma de defensa.

Recientemente, unos investigadores filmaron lo que sucede cuando un tiburón muerde a un mixino: su boca y branquias se cubren rápidamente de esta sustancia. El tiburón tiene que retroceder, o enfrentarse a una asfixia viscosa.


Mixino

Puede ser un pez feo, pero es prometedor.


"Quizá no sean las criaturas más bonitas, pero tengo un gran respeto por ellos", dice Tim Winegard, investigador de la Universidad de Guelph, Canadá, que estudia las fibras que se encuentran en esta materia transparente.

"Han sobrevivido a casi todo", dice. "Son unos ganadores en términos de sobrevivir a los dinosaurios y a muchas extinciones masivas".

Aunque los dinosaurios se extinguieron hace 60 millones de años, se han hallado fósiles de mixino -con evidencia de glándulas productoras de baba- que datan de hace 330 millones de años.

Un pez bruja tiene cerca de 100 de estas glándulas dispuestas a lo largo de un costado de su cuerpo y que exudan una sustancia lechosa, blanquecina, compuesta de moco y fibras.

Cuando se mezcla con agua de mar se expande, creando una enorme cantidad de limo claro, compuesto por fibras muy delgadas pero fuertes y elásticas.

Cuando las fibras son estiradas en el agua y luego se secan, se vuelven sedosas.

La especie más grande de mixinos puede llegar a medir cerca de 1,2 metros, aunque la mayoría mide unos 30 cm de largo.

Kilómetros
Pero a pesar de su pequeño tamaño, un solo pez bruja tiene cientos de kilómetros de hilo de baba en su interior.

Los científicos creen que esta sustancia -o proteínas similares a ésta- podrían servir para fabricar mallas o ropa deportiva transpirable, e incluso chalecos a prueba de balas.

Durante años, los científicos han estado buscando alternativas a las fibras sintéticas como el nylon, la lycra o el spandex, que se fabrican a partir del petróleo, un recurso no renovable. 

La baba del mixino tiene el potencial de proporcionar una alternativa natural y renovable.

Pero en primer lugar, los expertos deben encontrar la manera de aumentar la producción de esta sustancia. Es poco probable que alguna vez haya grandes granjas de estos peces, ya que no parecen responder bien en estas condiciones.

"Sabemos muy poco acerca de la reproducción de los mixinos, y nadie ha conseguido nunca criarlos en cautiverio, por increíble que parezca", dice Douglas Fudge, quien dirige el proyecto de investigación de Guelph.

"En este momento, literalmente, no podría haber tener granjas de mixinos como los que hay de vacas o gallinas, o cualquier otros animales domesticados en cautiverio".

En cambio, los científicos esperan producir artificialmente en el laboratorio unas proteínas como las que poseen los mixinos.

Es un modelo que los científicos ya han intentado con la tela de araña, pero como las proteínas de seda de araña son tan grandes, hace falta recurrir a técnicas muy complejas para reproducirla, tal como como ocurre con la leche de cabras transgénicas.


Baba

La baba se seca y parece un hilo.

Peces y arañas

La baba de los mixinos tiene muchas cualidades similares a la seda de araña, pero tiene una gran ventaja, dice Fudge: las proteínas que la componen son mucho más pequeñas, y por lo tanto más fáciles -en teoría- de replicar.

Nadie ha hecho todavía un carrete de hilo de mixinos, pero los científicos están trabajando en ello.

"Sólo estoy tomando mis pinzas y luego la saco", explica Atsuko Negishi, mientras tira de una capa viscosa.

En realidad es una fina capa de proteínas de mixinos. Esta piel se encoge y forma una fibra corta. Ella la hace girar entre sus dedos.

"Es algo así como un pequeño pedazo de cabello", dice.

Otros miembros del equipo están tratando de hacer fibras con bacterias genéticamente modificadas, sin usar al pez en absoluto.

Si logran perfeccionar el hilo, los científicos esperan poder trabajar muy de cerca con la industria textil para crear nuevos productos.

Quizá primero necesiten embellecer la marca.

"¡Es probable que los mixinos asusten a la gente un poco!", dice Tim Winegard entre risas.

"Creo que su nombre podría desanimar a los clientes", dice. Por no hablar de la palabra "baba".

Sin embargo, esta sustancia primitiva proveniente de las profundidades del océano podría ser el material de su próximo guardarropa.


Mixino

Atsuko Negishi investiga esta sustancia viscosa.
Tomado de:

19 de marzo de 2013

El karachi, mauri y suche del Titicaca, en peligro de extinción

Lago. El cambio climático y pesca indiscriminada son las causas

Info peces peligro.

Info peces peligro.

El karachi, mauri y el suche son tres especies en peligro de desaparecer en el lago Titicaca, ubicado en La Paz. Las causas son la pesca indiscriminada en el lugar y los cambios climáticos que elevan las temperaturas del agua, informó la Gobernación. 

“En los últimos cinco años, las especies del lago han sufrido una disminución debido a la sobrepesca, contaminación del lago por parte de las poblaciones aledañas y por la influencia de los cambios climáticos. Actualmente el suche, el mauri y los karachis están en peligro de extinción”, expresó el jefe de la Unidad de Pesca y Acuicultura, Sabas Fernández.

Explicó que gran parte de la población de las comunidades ribereñas del Titicaca se dedica a la pesca, siendo ésta su principal fuente de ingreso, pero dicha actividad deriva muchas veces en la exagerada extracción de especies. 

Un diagnóstico realizado por la Gobernación, sobre la cantidad de pescados extraídos en las cinco provincias circundantes al lago; Ingavi, Los Andes, Omasuyos, Camacho y Manco Kápac, señala que existe un promedio de 18.425 kilogramos de peces sacados por día, equivalente a 114 kg de suche, 175 kg de mauri y 130 kg unidades de karachi.

En cuanto al cambio climático, Fernández explicó que la temperatura habitual del Titicaca oscila entre los 14 y 16ºC; sin embargo, dicho fenómeno climático se eleva a 20 y 22ºC, lo que causa daños a los peces dentro del agua.    

El mauri y el suche tienen su hábitat también en lagunas y ríos del occidente del país, pero los dos tipos de karachi, amarillo y gris, sólo viven en el lago; por ello Fernández resaltó la importancia de asumir acciones para evitar que dichas especies terminen como el boga y el humanto, dos peces extintos desde 1990.
Acciones. “Ahora se debe trabajar en la recuperación de estos peces, una opción es la reproducción artificial para poblar de especies en peligro de extinción al lago Titicaca. En la Gobernación empezamos ese trabajo con el mauri y el karachi”, indicó Fernández.
 
En el marco de un proyecto de la Gobernación, a finales de 2012 se capacitó a 444 pesqueros en temas de repoblamiento de especies nativas y se liberó más de 300 mil alevines, que son las crías recién nacidas de peces. Las acciones continuarán hasta 2015. Por otra parte, la Autoridad del Lago Titicaca (ATL) también realiza la misma acción pero con más especies del lago, ante la amenaza de la extinción.

Plantean veda en el lago por medio de un decreto

La veda en ciertas épocas del año, establecida por un decreto, es lo que plantean la Gobernación y la ATL para frenar la pesca indiscriminada en el Titicaca. “Se trabajó la propuesta de un decreto departamental sobre ordenación y administración pesquera, que actualmente está en proceso de consenso con la Federación Departamental de Pesqueros de La Paz”, informó Fernández.

Agregó que dicha norma plantea la veda, la prohibición de métodos de pesca, acopio y venta de especies de la cuenca del lago Titicaca, de La Paz.

La ATL también propone acciones, pero por medio de una norma única para el lago, que consisten principalmente en la veda a la pesca en determinados periodos del año. Además del peligro de extinción de especies, el lago Titicaca sufre otros efectos causados por el cambio climático, como el aumento de sus aguas, sobre parámetros habituales.

La Razón publicó el 23 de febrero que las aguas del lago crecieron en 15 centímetros (cm), según el informe del Servicio Nacional de Hidrografía Naval. Esta última institución prevé que este año se registrarán los niveles más altos de crecimiento de las aguas del lago, presentados en los últimos cuatro años.
 
Fuente:
 

8 de marzo de 2013

¿Y si Homer Simpson hubiese muerto al comer fugu?: la mortal tetradotoxina


Debutó en 1989 y tras 24 temporada, con algunos altibajos, “Los Simpsons” siguen dispensando un sinfín de argumentos que han mantenido la serie en un éxito constante. Sin embargo, no se caracteriza por estrecho el número de ocasiones en las que Homer, su indiscutible epicentro, se ha visto al borde de la muerte debido a las arriesgadas apuestas de los guionistas. En “Un pez, dos peces, pez fugu, pez azul” (”Aviso de muerte” en los países latinoamericanos) fue cuando nuestro antihéroe pudo haber sufrido el más fatal de los destinos al consumir “fugu”, palabra japonesa que designa la carne y el animal del que procede: el pez globo, recipiente del tóxico de origen animal más potente conocido hasta nuestros días. Finalmente Homer sobrevivió una vez más a la muerte pero, ¿qué hubiese ocurrido si hubiese sucumbido al envenenamiento?

El fugu es uno de los platos más celebrados de la cocina japonesa. El pez globo, a partir del cual se prepara el manjar, contiene concentraciones de una potente neurotoxina denominada “tetradotoxina” en sus vísceras (principalmente en las órganos sexuales – o gónadas - y el hígado) que al contrario de lo que puede parecer, no se trata un mecanismo de defensa. Para este fin, el animal infla el estómago, impidiendo ser ingerido. Sin embargo, el tóxico no es más que un “regalo” que este pez, que ya no nos parece tan simpático, deja a sus depredadores. Se trata de un químico 10000 veces más mortífero que el cianuro y de 10 a 100 veces más letal que el veneno de la araña viuda negra, por lo que la preparación de esta carne, desde 1958, está restringida a profesionales formados para tal fin. Pero ¿Y si nuestro experto tiene las manos ocupadas y nos toca un aprendiz incompetente como a Homer?

Nuestro Sistema Nervioso se vale de impulsos eléctricos para transmitir de un lado a otro información relevante para su funcionamiento. Esto es posible gracias el flujo que acontece en las neuronas y en el exterior de éstas, permitiendo que moléculas (iones) eléctricamente cargadas (aniones de ser positivos y cationes en el caso negativo) viajen a través de las membranas neuronales gracias a poros acuosos denominados “canales iónicos”. Que haya actividad eléctrica entre el ambiente del interior celular y el externo se ve afectado por la desigual distribución de cargas eléctricas (negativas y positivas) en ambos lados de la célula nerviosa, a cada lado de la membrana. En neurofisiología esta diferencia es conocida como “potencial de membrana” y representa el voltaje (carga eléctrica) generado a través de la ésta, que limita ambos entornos. Si la comunicación se mantiene inactiva, la célula se encuentra en el “potencial de reposo”, pero si este estado se ve alterado, ocurre el “impulso nervioso” o “potencial de acción” (estado activo de la comunicación) hasta el restablecimiento del estado “inactivo” de reposo. Uno de los aniones que intervienen en este proceso es el sodio (representado como Na+), que viajará a través de los poros acuosos situados para él en la membrana: los ya nombrados canales iónicos. Pero estas vías no están siempre abiertas. 

Algunas de ellas dependen de la misma misma carga eléctrica que produce la actividad, por lo que son denominadas “canales de Na+ dependientes del voltaje”.

 

Pero ¿qué relación tiene esto con el animal que aterra a la familia Simpson? La “tetradotoxina” (TTX), cuya estructura fue por Robert Burns Woodward en 1964, recibiendo el Premio Nóbel de Química al año siguiente, bloquea los “canales de Na+ dependientes del voltaje” con una cantidad tan ínfima como 1 micromolar, ¡la millonésima parte de un mol! (peso molecular expresado en gramos). Así las cosas, esta sustancia impide la producción de potenciales de acción e interrumpe la comunicación del Sistema Nervioso, inhibiendo la actividad neuromuscular y paralizando las constantes vitales. Tan solo 0.51 mg son suficientes para provocar la muerte instantánea y la cantidad de tóxico que contiene un único ejemplar de este pez es suficiente para acabar con 30 individuos. Hasta la fecha no se conoce antídoto, por lo que Homer hubiese experimentado parestesia (hormigueo, acorchamiento y entumecimiento) en las extremidades y el rostro, temblor muscular, convulsiones, arritmia (irregularidad en las contracciones del corazón)… Finalmente, la agonía terminaría con parada respiratoria. No obstante, la parálisis de todo el cuerpo la hubiese experimentado en plena conciencia ya que el tóxico no cruza la barrera hematoencefálica, un sofisticado producto evolutivo que aísla al cerebro de muchas sustancias extrañar, siendo permeable a las necesarias para su funcionamiento y a otras como la cafeína, el alcohol, la heroína o el éxtasis. 

Aun con todo esto, la “tetradotoxina” se explora por sus efectos analgésicos y parece que la cocina japonesa ha dado con el procedimiento para sortear su amenaza. Afortunadamente los guionistas de “Los Simpsons” fueron benévolos y no nos hicieron experimentar una escena que a muchos fans nos hubiese traumatizado. ¡Parece que todavía queda mucho Homer por delante!

Tomado de:

17 de febrero de 2013

Los peces europeos se 'vuelven locos' con los ansiolíticos que echamos a los ríos

Un ejemplar de la perca utilizaza para el estudio. | Science

Un ejemplar de la perca utilizada para el estudio. | Science
Los fármacos que acaban en las cañerías, ya sea a través de la orina o porque se desechan por la taza del water, podrían convertirse en un grave e inesperado problema ecológico. De acuerdo con una nueva investigación realizada por científicos de la Universidad de Umea (Suecia), a pesar de ser tratadas en plantas de depuración estas aguas fecales cargadas con todo tipo de fármacos alteran gravemente el comportamiento de la fauna fluvial que habita los cauces europeos.

En concreto, su estudio, recién publicado en la revista 'Science', se centra en los efectos de un conocido ansiolítico llamado Oxazepam sobre una especie de perca europea ('Perca fluviatilis'). Y según los resultados obtenidos por el equipo dirigido por el científico Tomas Brodin, la exposición a los niveles reales de este ansiolítico detectados en los ríos de Suecia -aguas abajo de las plantas de tratamiento de aguas- hace que los peces coman más rápido, se vuelvan más intrépidos y tengan un comportamiento menos social.

Esta droga psiquiátrica se usa ampliamente para tratar la ansiedad en humanos. Pero los residuos de Oxazepam casi siempre terminan en los sistemas acuáticos naturales, incluso después de pasar por las depuradoras, donde se desconocen los efectos de esta sustancia sobre los ecosistemas.

Se vuelven más valientes y atrevidos

Ahora, los investigadores de la Universidad de Umea acaban de demostrar que la exposición de estos peces a niveles incluso menores a los encontrados en los ríos suecos altera de forma notable el comportamiento y la alimentación de estos animales.

"Cuando están en soledad, los peces que fueron expuestos al Ozxazepam se atrevían a abandonar refugios seguros y a entrar en áreas nuevas potencialmente peligrosas", explica Brodin. "Por el contrario, los peces que no fueron expuestos permanecían en su refugio".

Las percas que entraron en contacto con el ansiolítico también devoraban su comida mucho más deprisa que los animales libres de este fármaco. Este hecho, según los investigadores, podría desencadenar problemas ecológicos, como provocar un incremento descontrolado de algas, debido al desequilibrio creado en la cadena alimenticia de los ríos.

"Además, las percas expuestas a la droga perdían el interés por permanecer con el grupo, y algunas incluso se alejaban quedándose a gran distancia de sus congéneres", asegura Brodin.
 Fuente:
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0