Latest Posts:

Mostrando las entradas con la etiqueta neuronas. Mostrar todas las entradas
Mostrando las entradas con la etiqueta neuronas. Mostrar todas las entradas

12 de marzo de 2020

Por qué hay que prohibir que nos manipulen el cerebro antes de que sea posible

El científico Rafael Yuste, impulsor de la mayor iniciativa para conocer el cerebro, reclama a los Gobiernos la creación de nuevas leyes frente a los riesgos de la neurotecnología.


“Tenemos una responsabilidad histórica. Estamos en un momento en que podemos decidir qué tipo de humanidad queremos”. Son palabras mayúsculas, tanto como el reto que se plantea Rafael Yuste. A este neurocientífico español, catedrático de la Universidad de Columbia (EE UU), le susurran en la conciencia los fantasmas de otros grandes científicos de la historia que abrieron la caja de Pandora. Él, que ha impulsado la iniciativa Brain, la mayor apuesta por descubrir los secretos del cerebro, no elude su responsabilidad: “Lo llevo como un deber”. Yuste sabe bien lo que su campo, la neurotecnología, ya es capaz de ver y hacer en nuestras mentes. Y teme que se nos vaya de las manos si no se regula. Por eso reclama a los Gobiernos de todo el mundo que creen y protejan unos derechos de nuevo cuño: los neuroderechos. Chile quiere ser el primer país que los recoja en su carta magna y ya se está negociando para que este espíritu se incluya en la estrategia del Gobierno español para la inteligencia artificial.

El año pasado, Yuste consiguió manipular el comportamiento de unos ratones. Y lo hizo interviniendo en los pequeños cerebros de estos roedores, amaestrados para sorber zumo cuando ven unas rayas verticales en una pantalla. Yuste y su equipo habían apuntado las neuronas concretas que se disparaban en ese momento y las estimularon directamente cuando en la pantalla no se veían las barras. Pero los ratones sorbieron zumo como si las hubieran visto. “Aquí en Columbia un colega mío ha desarrollado una prótesis visual inalámbrica para invidentes con un millón de electrodos, que permite conectar a una persona a la red. Pero también se puede usar para crear soldados con supercapacidades”, advierte Yuste. Ese aparato, financiado por Darpa (la agencia de investigación del Ejército de EE UU), podría estimular hasta 100.000 neuronas, aportando destrezas sobrehumanas.

Cuando Yuste comenzó hace dos años a trabajar en la iniciativa de los neuroderechos era casi un planteamiento abstracto, de ciencia ficción. "Pero ha aumentado la urgencia de la situación, hay problemas bastante serios que se nos vienen de frente; las compañías tecnológicas se están metiendo en esto de cabeza porque piensan, de manera acertada, que el nuevo iPhone va a ser una interfaz cerebro-computadora no invasiva", advierte Yuste. El hombre que impulsó un proyecto en EE UU de 6.000 millones de dólares para investigar el cerebro enumera con preocupación los movimientos de los últimos meses. Facebook ha invertido mil millones de dólares en una compañía que comunica el cerebro con los ordenadores. Y Microsoft otros mil millones en la iniciativa de inteligencia artificial de Elon Musk, que invierte 100 millones en Neuralink, una compañía que implantará finísimos hilos en el cerebro de sus usuarios para aumentar sus competencias. Y a Yuste le consta que Google está haciendo esfuerzos parecidos que no son públicos. Ha llegado la era del neurocapitalismo.

“Estas grandes tecnológicas se están poniendo nerviosas para no quedarse atrás con el nuevo iPhone cerebral. Tenemos que acudir directamente a la sociedad y a quienes hacen las leyes para evitar abusos", afirma. La tecnología impulsada por Musk pretende ayudar a pacientes con parálisis o extremidades amputadas a controlar su expresión y movimiento o a ver y oír solo con el cerebro. Pero no oculta que el objetivo final es el de conectarnos directamente con las máquinas para mejorarnos con inteligencia artificial. La iniciativa de Facebook es similar: una empresa con el historial de respeto por la privacidad como la de Zuckerberg, accediendo a los pensamientos de sus usuarios.



9 de diciembre de 2019

10 cosas que cambian tu cerebro (09/10): hacer malabarismo

Adquirir la habilidad de mantener tres pelotas dando vueltas en el aire no solo es sumamente divertido. 


De acuerdo con una investigación de la Universidad de Oxford (Reino Unido), produce cambios en la materia blanca del cerebro a cualquier edad. La materia blanca es la maraña de fibras nerviosas que conducen señales eléctricas entre neuronas y conectan unas células nerviosas con otros, mientras en la materia gris se procesa la información. 

Trabajando con 24 voluntarios Heidi Johansens-Berg y sus colegas comprobaron que, después de seis semanas practicando con las bolas de malabares durante 30 minutos diarios, había cambios visibles en su cableado cerebral en zonas relacionadas, sobre todo, con la visón periférica, una capacidad que resulta muy útil en la vida cotidiana.

7 de diciembre de 2019

10 cosas que cambian tu cerebro (06/10): el dolor crónico

Por muy bien que afronte un enfermo con dolor crónico el sufrimiento físico permanente, a la larga su cerebro se resiente. 


Las alteraciones más importantes se producen en las conexiones neuronales de una zona de la corteza frontal vinculada a la gestión de las emociones. «Si sientes dolor veinticuatro horas al día, siete días a la semana, hay áreas de tu cerebro que se mantienen constantemente activas», explica Dante Chialvo, fisiólogo de la Universidad Northwestern (EE UU) coautor de una investigación que publicaba The Journal of Neuroscience

Y cuando las neuronas están a tiempo completo en ‘modo on’ se trastornan o incluso mueren porque no pueden resistir la falta descanso. El resultado es que el cerebro cambia y se daña para siempre, y aparecen trastornos del sueño y dificultades serias a la hora de tomar decisiones.

6 de diciembre de 2019

10 cosas que cambian tu cerebro (05/10): Practicar deporte

Que el deporte pone tus músculos en forma salta a la vista. 


Menos conocido es su interesante efecto sobre el cerebro. Basta con subirse a una bicicleta estática y pedalear durante 30 minutos tres veces por semana, a lo largo de tres meses consecutivos, para que el volumen del hipocampo aumente entre un 12 y un 16%, mejorando la memoria, tal y como se podía leer en un estudio en Archives of General Psychiatry

Otro experimento reciente revelaba que si nos someten a una prueba de vocabulario tras 3 minutos de esprint aprendemos palabras un 20% más rápido que si dedicamos ese tiempo a descansar o a realizar una larga prueba aeróbica de baja intensidad. Entre otras cosas se debe a que tras ejercitarnos aumentan los niveles de Factor Neurotrófico Derivado del Cerebro (BDNF), una molécula esencial para la supervivencia de las neuronas y para el aprendizaje.

19 de noviembre de 2019

10 cosas que cambian tu cerebro (02/10): Leer novelas


“Uno no es lo que es por lo que escribe, sino por lo que ha leído”, sentenciaba Jorge Luis Borges. Y la neurociencia ha demostrado que, al menos a nivel cerebral, el escritor argentino estaba en lo cierto.  

Ciertas estructuras cerebrales se transforman cuando leemos. Las conexiones de las neuronas del lóbulo temporal izquierdo, vinculado al lenguaje, y las del surco central del cerebro, relacionado con las sensaciones físicas motoras, aumentan tras la lectura de una novela de ficción como “Pompeya”, de Robert Harris, según un estudio del que se hacía eco la revista especializada Brain Connectivity. Y otro trabajo dado a conocer en Psychological Science sugería que devorar las obras de Frank Kafka y de otros autores surrealistas crea nuevos patrones cerebrales que nos hacen más inteligentes.
 
Importa el género que leas 
 
No es lo mismo leer una novela de aventuras que un texto sobre derecho penal para el cerebro. “Las novelas activan regiones que no solo interpretan los símbolos, también estimulan la imaginación o la acción motora. Es a lo que llamamos “meterse en un libro”, explica el neurólogo. 

"En la lectura hay dos aspectos importantes: uno referido a la complejidad sintáctica -que descodifica el lenguaje- y el otro al pensamiento simbólico o la narrativa que tiene la propia lectura”.

Crea más conexiones cerebrales
 
Leer nos modifica el cerebro de manera favorable. En un estudio del neurocientífico Alexandre Castro-Caldas y su equipo de la Universidad Católica Portuguesa, demostraron que esta actividad tenía repercusiones anatómicas pues las fibras nerviosas que unen ambos hemisferios son más gruesas en los lectores habituales que en los analfabetos.

“Aquellas personas que leen presentarán el mismo número de neuronas, pero mayor número de conexiones más eficientes”, sentencia García Ribas. 

“Esto implica aumentar nuestra reserva cognitiva ante el envejecimiento o enfermedades neurodegenerativas como el Alzheimer. A mayor reserva notaremos después o evitaremos los efectos de estas dolencias, es decir, que se manifestarán más tarde”, concluye.

La lectura los cimientos del aprendizaje
 
Como pedagogo, Giner Tarrida, considera que no solo se debe tener una lectura mecánica, sino también comprensiva que te ayude a entender los mensajes subliminales y la riqueza del texto. “Aparte del acto mecánico e imprescindible en sí, ahora se está incidiendo más en la comprensión holística”, sentencia.

“Una de las mayores riquezas de la lectura es poder imaginar lo que estás leyendo a través de imágenes. Además, es una actividad que conecta con todo el resto de aprendizajes que poseemos”, continúa. 

Y es que la imaginación es tan poderosa que con solo leer un verbo que implique una acción, también se activan regiones encargadas del movimiento, tal y como demuestran muchas resonancias magnéticas funcionales de algunos estudios. “Esto implica que hay una conexión entre las zonas de la interpretación de los símbolos y otras, como la del movimiento, que hasta ahora desconocíamos”, concluye García Ribas.

Leer mejora la memoria 

La lectura retrasa el deterioro que sufre el cerebro con el paso de los años y ejercita nuestra memoria al hacer que el cerebro almacene nueva información constantemente: historias,personajes, lugares, expresiones..  Además, esta información va acompañada de las emociones que nos produce leer la historia, y toda emoción favorece que los recuerdos perduren más tiempo y con mayor claridad en nuestro cerebro. Tal es así,  que una investigación realizada en el Centro Médico de la Universidad Rush en Chicago concluía que las personas que realizaban actividades estimulantes como la lectura, tanto de niños como de adultos, tenían una disminución de la memoria mucho menor que aquellos que no leían nunca.

La lectura reduce el estrés

Leer por placer nos ayuda a reducir el estrés, incluso más que escuchar música o hacer ejercicio. Cuando leemos, habitualmente nos sumergimos en una historia. Durante unos minutos nos olvidamos de nuestra propia vida y pasamos a vivir la de otra persona, la de los protagonistas de nuestro libro. Esto nos permite desconectar, dejar de pensar en nuestros problemas y dejamos de preocuparnos.

¿Puede un adulto aprender a leer?

Definitivamente. Se puede aprender durante toda la vida. Se puede llegar a ser alfabetizado en cualquier momento, sólo que se hace más difícil. El cerebro plástico de un niño hace que el aprendizaje del lenguaje oral y escrito sea más fácil que con el adulto.

¿Hay una edad mínima para aprender a leer?

Los niños en casi todo el mundo aprenden a leer entre los 5 y los 7 años. No existe un acuerdo al respecto. En Gran Bretaña, los niños comienzan a leer y a escribir a los 5 años, en China empiezan a leer a los 3 y a escribir a los 6, y en Finlandia, uno de los países en los que siempre destaca sus sistema educativo, los niños no comienzan a leer y escribir hasta los 7 años.

¿El mecanismo para aprender a leer es igual en todas las personas?

Existe un mismo cerebro para todas las razas pero el cerebro para la lectura es diferente según los diversos sistemas de escritura. El alfabeto chino es diferente al inglés. Incluso dentro de los alfabetos hay diferencias. Por ejemplo, por los regulares que son el alemán, italiano, holandés se hace más fácil y los circuitos cerebrales son ligeramente diferentes a los del francés o el inglés.

Y con el idioma chino habrá más corteza visual en ambos hemisferios porque tiene 5000 caracteres para reconocer. El circuito del cerebro para la lectura refleja los requisitos del sistema de escritura.

Con información:

La Vanguardia

BBC Mundo

RTVE

Hola

15 de marzo de 2019

Las clases de música generan nuevas conexiones cerebrales en niños

Estudiar este arte favorece el neurodesarrollo. Los expertos creen que ayuda también al tratamiento de menores con TEA o TDAH 


La música puede ayudar a tratar los trastornos del espectro autista (TEA) y los trastornos por déficit de atención e hiperactividad (TDAH) en niños, así lo concluye la Sociedad Norteamericana de Radiología (RSNA, por sus siglas en inglés). Una característica más de este arte en esta jornada en la que se celebra el Día de la Música. Según estos expertos, que los pequeños reciban clases de música incrementa y crea nuevas conexiones cerebrales y “puede facilitar los tratamientos en niños con estos trastornos”. “Ya se sabía que la música era muy beneficiosa, pero este estudio ofrece un mejor entendimiento sobre qué está ocurriendo en el cerebro y dónde se producen estos cambios”, asegura Pilar Dies-Suárez, jefa de radiología en el Hospital Infantil de México Federico Gómez, en un comunicado. "Experimentar la música a una edad temprana puede contribuir a un mejor desarrollo del cerebro, a la optimización de la creación y establecimiento de redes neuronales y a la estimulación de las vías existentes del cerebro”, añade la experta.

Estudios anteriores ya hablaban de los beneficios de la música en el desarrollo cerebral. Por ejemplo, uno elaborado por el Instituto de Aprendizaje y Neurología de la Universidad de Washington (Seattle, EE UU) y publicado National Academy of Sciences concluyó que “ciertas melodías mejoran el procesamiento cerebral de pequeños de nueve meses, tanto en lo que se refiere a la música como a nuevos sonidos del habla”. La investigación sugería “que experimentar patrones rítmicos musicales mejora la habilidad de detectar y predecir patrones rítmicos del habla. Esto significa que escuchar música en edades muy tempranas puede tener un efecto global en las habilidades cognitivas de los bebés”, aseguraron los autores. 

El artículo completo en: El País (España)

4 de diciembre de 2018

Somos capaces de crear nuevas neuronas a cualquier edad con un sencillo ejercicio (que está en tus manos)

Ponte las zapatillas de deporte, tu cerebro lo agradecerá.


Somos capaces de crear nuevas neuronas, incluso de adultos. Este hallazgo es relativamente nuevo, porque se pensaba que se nacía con un determinado “banco de neuronas” que iba menguando con el paso del tiempo, pero que no era posible renovar ni ampliar. Sin embargo, los últimos hallazgos en neurociencia desmontan esta creencia. El cerebro es plástico: es posible crear conexiones diferentes e incluso en algunas zonas, como es el hipocampo, se puede conseguir que nazcan nuevas neuronas, según explica el profesor Terry Sejnowski, de The Salk Institute for Biological Studies. Hay margen de maniobra con independencia de la edad.

El hipocampo tiene forma de caballito de mar y es uno de los responsables de nuestra memoria y de nuestra capacidad espacial. Las investigaciones sobre esta zona del cerebro comenzaron con ratas a las que se mostraban varias imágenes que tenían que aprender a diferenciar. Cuando los roedores lo lograban se observó que en su hipocampo se habían generado nuevas neuronas. Pero si el animal dejaba de hacer el ejercicio, las neuronas jóvenes desaparecían. Si retomaba la actividad volvían a aparecer, es decir: la práctica repetida ayuda a que se generen nuevas neuronas en el hipocampo. En el caso de los humanos, si hubiera que decidir qué actividad nos permite realmente mantener joven el cerebro, Sejnowski no lo duda. El deporte es el mejor tratamiento antiedad para la masa gris.

Se sabía que practicar deporte es una manera de cuidar el cuerpo y reducir el estrés gracias a los bailes hormonales que se activan de dopamina, serotonina y noradrenalina. Pero investigaciones más recientes demuestran que el ejercicio físico mejora también la secreción del factor neurotrófico cerebral (que influye positivamente en la memoria y en un estado de ánimo más positivo) y permite que nazcan nuevas neuronas en nuestro hipocampo. A pesar de sus ventajas, no parece que exista demasiada conciencia del vínculo entre aprendizaje y deporte. Pero educar en el deporte a niños y adultos no solo ayuda a mantener la salud corporal, sino también a que el cerebro se mantenga más joven y con capacidad para generar neuronas. Como resume Sejnowski, “el gimnasio y el recreo son las partes más importantes del plan de estudios”.

Los expertos sugieren que es precios practicar ejercicio tres veces por semana con una duración mínima de 30 minutos. Vale por ello la pena buscar un ejercicio amable, un grupo de amigos y ponerse las zapatillas deportivas. El hipocampo lo agradecerá.

Fuente: El País (España) 

7 de octubre de 2018

Qué son los escaramujos, las nuevas neuronas que tienen fascinados a los científicos

Los científicos han descubierto un nuevo tipo de neurona que solo han hallado en humanos.

La han llamado escaramujos, o rosehip en inglés (rosa mosqueta), porque su apariencia se asemeja a la de una rosa sin los pétalos. Y su hallazgo puede servir a los especialistas para conseguir entender mejor los trastornos cerebrales.

Los resultados de este grupo internacional de 34 científicos se han publicado en la revista especializada Nature Neuroscience y abre la puerta a un nuevo rediseño del cerebro humano tal y como lo conocemos ahora, aseguran los investigadores en su estudio.

El hallazgo, que ha sido posible gracias a la colaboración entre la Universidad de Szeged, en Hungría, y el Instituto Allen para la Ciencia Cerebral, con sede en Seattle, Estados Unidos, puede ayudar a explicar por qué muchos tratamientos experimentales para desórdenes cerebrales han funcionado en ratones pero no en personas.

Lea el artículo completo en: BBC Mundo

1 de octubre de 2018

En qué otros lugares de nuestro cuerpo tenemos neuronas (además del cerebro) y para qué sirven

La culpa de que pensemos que las neuronas están solo en nuestro cerebro es de un español. El científico y Premio Nobel de Medicina Santiago Ramón y Cajal que dibujó por primera estas células en nuestra cabeza.

Sus descubrimientos sobre el sistema nervioso central prevalecen a día de hoy y por eso se le considera el padre de la neurociencia moderna.

Pero el sistema nervioso es el más complejo y sofisticado de nuestro organismo y todavía está lleno de misterios para los científicos.


Sabemos que tiene tres funciones básicas: la sensitiva, la integradora y la motora.

La sensorial se da cuenta de los cambios internos y externos gracias a los llamados receptores, los órganos receptivos. Percibe, por ejemplo, los cambios de luz, de presión, el calor, el frío etc. 

La función integradora analiza toda la información de diferentes partes del sistema nervioso, la combina y así puede producir una respuesta adecuada. Por ejemplo, taparse si hace frío o destaparse si hace calor. 

También tiene la capacidad motora que provoca respuestas en los músculos y en las glándulas para que actúen o no, según sea necesario.

Para llevar a cabo estas funciones, el sistema nervioso cuenta con grupos de neuronas especializadas en distintas partes del cuerpo que no se restringen solo a nuestro seso.

Más allá de la cabeza

Este sistema se divide principalmente en dos: el central y el periférico.

El primero lo componen el cerebro, con hasta 86 mil millones de neuronas y la médula espinal, que conecta nuestro cerebro con el resto del cuerpo. Tanto uno como otra son grandes núcleos de neuronas que transmiten información desde y hacia el cerebro.

Pero hay otro gran cúmulo de neuronas en el sistema nervioso periférico, cuyo núcleo central es el ganglio que se encuentra dentro del sistema digestivo. Si no tuviéramos neuronas en esta parte de nuestro cuerpo, algo tan importante como procesar los alimentos que tomamos sería imposible.

Lo asegura el neurocientífico Calvin Chad Smith, del University College de Londres, en conversación con BBC Mundo.

"Las neuronas de nuestro sistema digestivo se encargan de contraer y relajar los músculos que mueven los alimentos a través de los órganos y también controla la secreción que ayuda a dividir la comida para que las células puedan obtener su alimento a través de la sangre".

Lea el artículo completo en: BBC Mundo 

26 de septiembre de 2018

El fascinante estudio que reescribe lo que sabemos sobre cómo el cerebro humano crea los recuerdos

Lo que realmente sucede cuando formamos recuerdos finalmente ha sido descifrado en un descubrimiento que sorprendió incluso a los científicos que lo hicieron.


El equipo de investigadores de Estados Unidos y Japón encontró que el cerebro hace un "duplicado", es decir, dos memorias de un mismo evento.

Una es para el aquí y el ahora, y la otra para el resto de la vida.

Hasta ahora se pensaba que todos los recuerdos comenzaban como una memoria a corto plazo y luego se convertían poco a poco en aquellas memorias a largo plazo.

Pero ahora los expertos consideraron que los resultados fueron no solo sorprendentes, sino también hermosos y convincentes.

"Avance importante"

Dos partes del cerebro están fuertemente involucradas en los recuerdos de nuestras experiencias personales.

El hipocampo es el lugar para recuerdos a corto plazo, mientras que la corteza es el hogar de la memoria a largo plazo.

Esta idea se hizo famosa después del caso de Henry Molaison en la década de 1950.
Su hipocampo quedó dañado durante una cirugía de epilepsia que tuvo y por lo cual ya no era capaz de hacer nuevos recuerdos, pero los que ya tenía antes de la operación todavía estaban allí.

Así que la idea predominante entre la comunidad científica era que los recuerdos se forman en el hipocampo y luego se trasladan a la corteza donde son "almacenados".

El equipo del Centro de Genética de Circuitos Neuronales Riken-IMT (Instituto Tecnológico de Massachusetts, EE.UU.) hicieron un alucinante avance para demostrar que no es así.

Los experimentos tuvieron que ser realizado en ratones, pero se cree que también aplica a los cerebros humanos.

Vieron recuerdos específicos que se forman como un grupo de células cerebrales conectadas en reacción a un shock.

Luego, los investigadores utilizaron luz transmitida al cerebro para controlar la actividad de las neuronas individuales que, literalmente, pueden cambiar los recuerdos a encendido o apagado.

Los resultados, publicados en la revista Science, mostraron que los recuerdos se forman simultáneamente en el hipocampo y en la corteza.

El profesor Susumu Tonegawa, el director del centro de investigación, dijo que "fue sorprendente".

"Esto es contrario a la hipótesis popular que se sostenía desde hace décadas. Es un avance significativo en comparación con los conocimientos previos, es un gran cambio."

"Caso fuerte"

Los investigadores también mostraron que la memoria a largo plazo nunca llegó a su maduración si se bloqueaba la conexión entre el hipocampo y la corteza.

Así que hay un vínculo entre las dos partes del cerebro, con la transferencia pasando del hipocampo a la corteza con el tiempo.

La doctora Amy Milton, que investiga las cuestiones de la memoria en la Universidad de Cambridge, describió el estudio como "hermoso, elegante y muy impresionante".

"Esto es (solo) un estudio, pero creo que tienen un caso fuerte, creo que es convincente y creo que esto nos dirá cómo los recuerdos se almacenan en los seres humanos", le dijo a la BBC.

Por ahora, este descubrimiento es una pieza de la ciencia que explica cómo funciona nuestro cuerpo.

Pero el profesor Tonegawa dice que puede iluminar lo que ocurre en algunas enfermedades de la memoria, incluyendo demencia.


Tomado de: BBC Mundo

24 de junio de 2018

Logran, por primera vez, transferir la memoria de un ser vivo a otro

Científicos lograron que animales no entrenados se comportaran como los sí entrenados al inyectarles una fracción de material genético.

Un equipo de investigadores norteamericanos ha logrado, por primera vez, transferir la memoria de un ser viviente a otro. El trabajo arroja luz sobre una de las cuestiones más intrigantes de la biología: ¿Cómo se almacenan los recuerdos?

En un artículo publicado hace apenas unos días en la revista eNeuro, un equipo dirigido por David Glanzman, de la Universidad de California, explica cómo ha conseguido llevar a cabo este intrigante experimento, para el que se utilizaron caracoles marinos de la especie Aplysia californica.

Lo primero que hicieron los investigadores fue «entrenar» a varios de estos moluscos para que exhibieran un reflejo defensivo cuando sus colas eran estimuladas por una suave corriente eléctrica. Un segundo grupo de caracoles, no entrenados, no mostraba ese reflejo.

Más tarde, y una vez firmemente establecido el reflejo defensivo, los caracoles «entrenados» fueron sacrificados para extirparles los ganglios abdominales. Acto seguido, los científicos extrajeron el ARN de las muestras y las inyectaron en los caracoles no entrenados y que, por tanto, no exhibían la misma reacción ante la corriente eléctrica.

El resultado fue que los caracoles que recibieron el nuevo ARN mostraron los mismos actos reflejos como respuesta a la estimulación eléctrica, y ello a pesar de no haber recibido ningún entrenamiento.

Tras la pista del engrama

Estos resultados son importantes porque proporcionan pistas sobre la naturaleza de lo que se conoce como el «engrama», una palabra que funciona de forma parecida al término «materia oscura», ya que denota algo que se sabe que existe pero de lo que poco o nada se conoce.

Engrama, en efecto, es la palabra que los científicos utilizan para referirse a la estructura cerebral que almacena físicamente la memoria a largo plazo, una especie de «disco duro» capaz de almacenar datos (como los de las computadoras), pero que hasta la fecha nadie ha conseguido localizar de forma concluyente.

La teoría más aceptada por los neurocientíficos es que la memoria a largo plazo está codificada en las sinapsis, las interfaces funcionales a través de las que las neuronas intercambian señales eléctricas o químicas.

El experimento de Glanzman y sus colegas, sin embargo, apunta a una posibilidad muy diferente. La memoria, en realidad, se almacena en el interior de los cuerpos celulares de las propias neuronas. Lo cual plantea la posibilidad de que el ARN tenga un papel importante en la formación de la memoria, una idea ya apuntada en otros estudios y que los nuevos experimentos con caracoles parecen respaldar.

En su artículo, Glanzman y su equipo afirman que sus resultados suscitan muchas nuevas preguntas sobre la forma en que la memoria se almacena y sobre la auténtica naturaleza del engrama. Pero dejan claro que la forma de almacenamiento no tiene que ver con las sinapsis, como se pensaba hasta ahora.

Fuente:

ABC (Ciencia)

13 de septiembre de 2017

Descubren hasta 11 dimensiones en el cerebro

Blue Brain Project descubre un universo de estructuras y espacios multidimensionales dentro de nuestro cerebro.


¿Todo un universo multidimensional dentro de nuestro propio cerebro? Cada vez hay más personas que son capaces de escuchar colores, saborear palabras o ver sonidos. Es lo que conocemos como sinestesia, una condición neurológica no patológica que permite entender el mundo en cuatro dimensiones. Ahora, un nuevo trabajo llevado a cabo por científicos del Blue Brain Project (Suiza) ha descubierto estructuras en el cerebro con hasta once dimensiones. Seguimos desentrañando los secretos arquitectónicos más profundos de nuestro órgano pensante.

Concretamente, utilizando la
topología algebraica de una forma que nunca se ha utilizado antes en neurociencia, los investigadores han descubierto un universo de estructuras y espacios geométricos multidimensionales dentro de las redes del cerebro.

La investigación, publicada en la revista Frontiers in Computational Neuroscience, muestra que estas estructuras surgen cuando un grupo de neuronas forma una unión o grupo: cada neurona se conecta a otra neurona del grupo de una manera muy específica que genera un objeto geométrico muy preciso. Cuantas más neuronas haya en esa cuadrilla neuronal, mayor es la dimensión del objeto geométrico.

"
Encontramos un mundo que nunca habíamos imaginado. Hay decenas de millones de estos objetos incluso en una pequeña partícula del cerebro, Hasta siete dimensiones, y en algunas redes incluso encontramos estructuras de hasta once dimensiones", explica Henry Markram, líder del trabajo.

El artículo completo en: Muy Interesante

4 de junio de 2017

¿Qué le pasa a tu cerebro cuando te equivocas?

¿Por qué hay personas que les fascinan los retos y otras que prefieren evitar cualquier desafío para no equivocarse? Carol Dweck, psicóloga de la Universidad de Stanford, dio la respuesta con una clasificación muy sencilla. Todos podemos tener dos tipos de mentalidades: una orientada al crecimiento y otra fija.





Las personas con “mentalidad de crecimiento” piensan que el éxito depende del esfuerzo, del trabajo o de sudar la camiseta. Sin embargo, las personas con “mentalidad fija” creen que depende de habilidades innatas y tienen urticaria ante cualquier error. “Si no se ha nacido con dichos dones, ¿para qué intentarlo?”, se plantean. Curiosamente, el hecho de decantarnos por una o por otra no depende de cuestiones genéticas, sino de educación, como demostró Dweck con alumnos de once años y después de que hicieran un trabajo difícil. A aquellos a los que les reconoció que su éxito dependía de su esfuerzo, se atrevían después con otro desafío aún más difícil. “Total, si me equivoco, no importa”, pensaban. Sin embargo, a los niños que se les dijo que lo habían conseguido porque eran muy listos o muy inteligentes, cuando el reto iba en aumento, preferían no intentarlo… “¿Para qué probar suerte y equivocarme? Mejor me quedo como estoy y así sigo demostrando que soy inteligente”, era el pensamiento que lo resumía.


Este resultado resulta muy desconcertante. Siempre se ha dicho que es bueno reforzar la autoestima de nuestros hijos con el verbo “ser”, ser muy buen chico, muy listo… Sin embargo, como ha comprobado Dweck, con esta técnica corremos el riesgo de reforzar también la mentalidad fija. Cuando esto ocurre, no se encaja el error y se evita cualquier desafío que nos haga salirnos de nuestra zona de confort, como también ha comprobado la neurociencia.

Jason S. Moser y sus colegas en la Universidad de Michigan State han descubierto qué nos ocurre en nuestro cerebro cuando nos enfrentamos a una equivocación. Dependiendo de si nuestra mentalidad es de aprendizaje o fija, la actividad neuronal ante un error será más activa o menos. En otras palabras, cuando pensamos que podemos aprender, si nos equivocamos, se despierta un intenso baile neuronal para identificar causas, patrones o aprendizajes que nos sirvan para un futuro (color rojo de la imagen). Sin embargo, si nuestra mentalidad es fija, ante una equivocación, echaremos balones fuera, nos justificaremos con mil y un argumentos y nuestra actividad neuronal para encontrar razones para el aprendizaje quedará un tanto dormida (color verde). Y todo ello no depende de la edad. Según Dweck, el 40 por ciento de las personas tienen “mentalidad de crecimiento”; otro 40 por ciento, su “mentalidad es fija” y el resto, dependiendo del momento.

¿Qué podemos hacer? Lo primero de todo, revisar la educación. Comencemos a valorar el esfuerzo y no solo las habilidades innatas. Si queremos que nuestros hijos se enfrenten con seguridad a los desafíos, es mejor que vivan el error de una manera constructiva y no evitándolo a toda costa. Por ello, tengamos cuidado con los reconocimientos que hacemos e incluyamos también el concepto de trabajo y no solo el ser un niño o niña muy lista o inteligente.

Segundo, asumamos que nuestro cerebro es plástico, que somos capaces de crear nuevas conexiones neuronales si comenzamos a proponérnoslo. Por ello, reflexionemos qué tipo de mentalidad tenemos (de manera sincera, que no siempre ocurre). Si solemos buscar excusas ante los desafíos, comencemos a darnos cuenta de que la mayor parte de las personas que encajan los fracasos mejor que nosotros tienen “mentalidad de crecimiento”, que esta no es innata y que se puede desarrollar a cualquier edad. Por tanto, no valen las excusas.

Fuente:

El País (España)

28 de noviembre de 2016

Las clases de música generan nuevas conexiones cerebrales en niños

Estudiar este arte favorece el neurodesarrollo. Los expertos creen que ayuda también al tratamiento de menores con TEA o TDAH.

La música puede ayudar a tratar los trastornos del espectro autista (TEA) y los trastornos por déficit de atención e hiperactividad (TDAH) en niños, así lo concluye la Sociedad Norteamericana de Radiología (RSNA, por sus siglas en inglés). Una característica más de este arte en esta jornada en la que se celebra el Día de la Música. Según estos expertos, que los pequeños reciban clases de música incrementa y crea nuevas conexiones cerebrales y “puede facilitar los tratamientos en niños con estos trastornos”. “Ya se sabía que la música era muy beneficiosa, pero este estudio ofrece un mejor entendimiento sobre qué está ocurriendo en el cerebro y dónde se producen estos cambios”, asegura Pilar Dies-Suárez, jefa de radiología en el Hospital Infantil de México Federico Gómez, en un comunicado. "Experimentar la música a una edad temprana puede contribuir a un mejor desarrollo del cerebro, a la optimización de la creación y establecimiento de redes neuronales y a la estimulación de las vías existentes del cerebro”, añade la experta.
Estudios anteriores ya hablaban de los beneficios de la música en el desarrollo cerebral. Por ejemplo, uno elaborado por el Instituto de Aprendizaje y Neurología de la Universidad de Washington (Seattle, EE UU) y publicado National Academy of Sciences concluyó que “ciertas melodías mejoran el procesamiento cerebral de pequeños de nueve meses, tanto en lo que se refiere a la música como a nuevos sonidos del habla”. La investigación sugería “que experimentar patrones rítmicos musicales mejora la habilidad de detectar y predecir patrones rítmicos del habla. Esto significa que escuchar música en edades muy tempranas puede tener un efecto global en las habilidades cognitivas de los bebés”, aseguraron los autores. 

La importancia de las conexiones cerebrales.

Esta última investigación de la RSNA, publicada pocos días antes de este Día de la Música, consistió en el análisis de 23 niños sanos de entre cinco y seis años, todos libres de trastornos sensoriales, de percepción o neurológicos. Además, ninguno había asistido a clase de música con anterioridad. Los sujetos se sometieron a una evaluación, previa y posterior, con una técnica de resonancia magnética avanzada -una tractografía-, lo que les permitió identificar los cambios microestructurales en la materia blanca del cerebro. Esta última contiene millones de fibras nerviosas -los axones- que trabajan como cables de comunicación entre distintas áreas del cerebro. El resultado pudo medir el movimiento de las moléculas de agua extracelulares a lo largo de estos axones. Desde el punto de vista de salud, todo es normal cuando estas células de agua se mueven de forma uniforme, en cambio, cuando estas lo hacen de forma aleatoria, sugiere que existe algo anormal.
Tras nueve meses de estudio con clases de música, los resultados mostraron un incremento de las conexiones y de la longitud de los axones en determinadas áreas cerebrales, sobre todo “y de manera más notable en las fibras que conectan los lóbulos frontales y que en conjunto constituyen el llamado fórceps menor".
“A lo largo de la vida”, prosigue la experta, “la maduración de las conexiones cerebrales entre las regiones motoras, auditivas y otras zonas permiten el desarrollo de un gran número de habilidades cognitivas, entre ellas, las habilidades musicales”. “Cuando un menor recibe clases de música, su cerebro se prepara para responder a ciertas demandas, estas incluyen habilidades motoras, auditivas, cognitivas, emocionales y sociales”, añade Dies-Suárez. “Creemos que el aumento es debido a la necesidad de crear más conexiones entre ambos hemisferios cerebrales cuando escuchas música”, concluye.
El artículo completo en:

21 de julio de 2015

Aprendizaje. Así funciona el cerebro cuando estamos aprendiendo

Un equipo de investigadores del Instituto Tecnológico de Massachussetts (MIT) ha descubierto de qué forma el cerebro humano es capaz de absorber y de analizar rápidamente nueva información, lo que llamamos aprendizaje. El estudio ha sido publicado en la revista Neuron.

Para el experimento, los investigadores realizaron varias pruebas de aprendizaje con monos mientras eran monitoreados mediante electroencefalografía (EEG) con objeto de medir las ondas cerebrales. En las tareas de aprendizaje, los científicos ya habían demostrado que las neuronas en la zona del cuerpo estriado del cerebro, la que controla la formación de los hábitos, eran las que se activaban en primer lugar y luego eran seguidas por una activación más lenta de las neuronas de la corteza prefrontal, el sistema de control ejecutivo del cerebro.

La clave estaba en averiguar si esta activación escalonada era provocada por una comunicación entre ambas regiones cerebrales o se trataba de dos sistemas independientes. Gracias a la medición de ondas cerebrales, los investigadores descubrieron que mientras los monos estaban aprendiendo la tarea, aparecieron nuevos patrones de ondas cerebrales, las llamadas ondas beta, que para sorpresa de los expertos, comenzaron a sincronizarse, lo que demuestra que ambas regiones, el cuerpo estriado y la corteza prefrontal, se están comunicando.

“Hay algún mecanismo desconocido que permite a estos patrones de resonancia formarse, y estos circuitos empiezan a 'sonar' juntos. Ese zumbido entonces puede fomentar posteriores cambios de plasticidad a largo plazo en el cerebro, pero la primera cosa que sucede es que empiezan a sincronizarse”, afirma Earl Miller, líder del estudio.

Según las conclusiones del estudio, nuestros 'circuitos' están en constante actualización para mantener la expansión de nuestro conocimiento, y “ahora estamos viendo la evidencia directa de las interacciones entre estos dos sistemas durante el aprendizaje, que no se había visto antes”, sentencia Miller.

Fuente:

Muy Interesante

18 de mayo de 2015

Siete alternativas para hacer crecer nuevas células en el cerebro (y volvernos más inteligentes)

Hace algunos años se creía que el cerebro era un sistema relativamente estático —nuestras conexiones neurales podían desligarse y nuestras neuronas destruirse pero no transformarse, regenerarse o formar nuevas conexiones sinápticas. Esta creencia hizo que muchos creciéramos bajo un extraño paradigma en el que se nos decía que debíamos de atesorar nuestras neuronas —porque jamás podríamos recobrarlas— y en este sentido ingerir drogas era un acto severo, contranatural, digno de la más abyecta estupidez. Bajo esta impronta uno incluso podía experimentar una nostalgia por neuronas perdidas, una especie de efecto de miembro fantasma entre los tallos neurales de flores decapitadas.
Evidentemente el daño cerebral es una realidad —pero es una realidad dinámica y reversible. Por suerte para aquellos que exploraron quizás un poco demasiado las dimensiones psiconáuticas, también es una realidad la neuroplasticidad —la capacidad de transformarse estructuralmente que tiene el cerebro adulto—, y la neurogénesis —la capacidad que tiene el cerebro adulto de regenerar células o generar nuevas neuronas. El cerebro se comporta como un sistema abierto (por no decir holístico) que puede ser cincelado lo mismo por estímulos químicos que por estímulos emocionales o meméticos  y nuestras neuronas, particularmente las del hipocampo y la zona subventricular, son como salamandras que transmutan en el fuego electroquímico de la sinapsis.
Investigación científica reciente muestra que la neurogenésis y la neuroplasticidad podrían tener un papel importante en el aprendizaje y la memoria en el cerebro adulto, así como ser un factor vital en la reducción del estrés y en el tratamiento de la depresión. Un estudio incluso sugiere que nuestro estado de ánimo podría ser regulado por la plasticidad  —por el movimiento dinámico de nuestras neuroconexiones—– más que por la química.
Emerge un nuevo paradigma, un nuevo mapa —y el mapa no es el territorio porque el territorio se está moviendo siempre. La neuroplasticidad sugiere que las conexiones individuales en el cerebro están siempre recreándose, según cómo se usan. En inglés se dice “neurons that fire together, wire together”/”neurons that fire apart, wire apart” (las neuronas que disparan al mismo tiempo se conectan entre sí, las que disparan o se encienden por separado conectan aparte). Esto significa que constantemente están emergiendo nuevas relaciones sinápticas, nuevos mapas corticales —colectivos que desempeñan funciones específicas pero que pueden estar separados. La sinfonía cerebral actúa de manera global, continentes aparentemente inconexos llegan a sincronizarse para ejecutar operaciones complejas al unísono.
La capacidad neuroplástica del cerebro puede ejemplificarse en el desarrollo de la capacidad de ecolocación que algunas personas ciegas logran recableando su cerebro. Resonancias magnéticas muestran que estas personas adaptan áreas de procesamiento visual para esta nueva habilidad de ecolocación, en la que intervienen áreas de procesamiento auditivo.
De la neuroplasticidad y de la neurogénesis surge la posibilidad de tomar control de los procesos neurales y, como si nuestro cerebro fuera una etérea plastilina, esculpir estados mentales de diseño. Según Michael Merzenich, uno de los pioneros en el campo de la neuroplasticidad, los ejercicios mentales pueden ser tan útiles como las drogas para tratar padecimientos tan severos como la esquizofrenia (pero, ¿quizás la gimnasia mental podría curar no sólo enfermedades del cerebro sino de todo el organismo?). De este nuevo acercamiento se atisba toda una gama de posibilidades: la dirección de orquestas neurales, el self-hacking, la reingeniería de neuronas y la manipulación de mapas corticiales para el aumento de funciones específicas o, por supuesto, para la sanación de daño cerebral —así que nunca es demasiado tarde para hacer de tus neuronas, especialmente de los astrocitos, vitales en la neurogénesis, nuevas y brillantes constelaciones en tu propio firmamento.
1. Ejercicio físico
Un estudio realizado por el Dr. Kwok Fai So de la Universidad de Hong Kong mostró un correlación entre personas que solían correr frecuentemente y la neurogenésis. “Investigación ha demostrado que el ejercicio puede mejorar el estado de ánimo y la cognición y también se ha demostrado que un déficit en la neurogénesis adulta puede resultar en una depresión”. El estrés, especialmente la depresión, llegan a encoger el hipocampo —una de las zonas en la que ocurre la neurogénesis. Científicos creen que existe una relación entre el ejercicio, y en general aquello que reduce el estrés, con la neurogénesis.
 2. Meditación
Uno de los líderes en el campo de la investigación neurocientífica de la meditación, el Dr. Herbert Benson, de la Universidad de Harvard, ha estudiado lo que llama “la respuesta de relajación”, la cual induce una serie de cambio bioquímicos en el cerebro. Benson sugiere que la meditación renera células cerebrales, reduciendo de esta manera el estrés.
Un estudio realizado por investigadores de la Universidad de Oregon indica que la técnica de meditación conocida com IBMT (entrenamiento integral de mente cuerpo) puede facilitar la neurogenésis.
3. Comida /Antocianinas
Consumir antocianinas, pigmentos hidrosolubles que pueden encontrarse en las zarzamoras, arándanos, frambuesas y hasta en el vino, parece tener propiedades neuroregenerativas. Comer este tipo de moras silvestres es recomendado para prevenir el Alzheimer y podría tener un efecto positivo en la función del hipocampo.
Otros alimentos que se cree podrían fomentar la nuerogénesis son los alimentos ricos en Omega-3 o fitonutrientes como la oroxilina.
4. Reducción de calorías /ayuno
Un estudio publicado en el Journal of Molecular Science muestra que la restricción de calorías produce estados favorables para la neurogénesis: ratas a dieta desarrollaron nuevas neuronas en el hipocampo.
Diferentes tradiciones, particularmente en Oriente, hablan sobre la importancia de celebrar ayunos con cierta regularidad para restaurar las funciones corporales y cognitivas. Es posible que una ciencia del ayuno pueda llevar a la neurogénesis.
5. Tener (mucho) sexo
Como hemos visto la neurogénesis —y en general la salud— está ligada a la reducción del estrés y a promoción de la relajación —la salud es tranquilidad en movimiento. Evidentemente uno de los actos que mayor reduce el estrés —en diversas capas— es el sexo.
Un estudio científico realizado por la doctora Benedetta Leunemuestra que mientras el estrés reduce la neurogénesis adulta y restringe la arquitectura dendrítica en el hipocampo, la copulación tiene el efecto opuesto, promoviendo la generación de nuevas células cerebrales. Explica Leuner:
Ratas adultas fueron expuestas a una hembra sexualmente receptiva una vez (aguda) o una vez diariamente por 14 días (crónica) y se midieron sus niveles de circulación glucorticoide [...]. Los resultados mostraron que experiencias sexuales agudas incrementaron los niveles de circulación corticoide y el número de neuronas en el hipocampo. La experiencia sexual crónica dejó de producir un incremento en los niveles corticoides pero continuó promoviendo la neurogénesis y estimuló el crecimiento de la espinas dendríticas y la arquitectura dendrítica. La experiencia sexual crónica también redujo el comportamiento relacionado con la ansiedad.
6.  Fotoestimulación /casco de luz infrarroja
Uno de los campos de investigación más interesantes pero menos probados es el de la estimulación de ciertas zonas cerebrales a través de la luz o el magnetismo.  Las populares máquinas de luz y sonido —LEDs programados a cierta frecuencia para emular ondas cerebrales y sonidos binaurales— llegan a generar estados similares a la meditación, por lo cual podrían también inducir estados de neurogénesis. El incipiente campo de la medicina biomagnética, basada en los pares magnéticos descubiertos por el Dr. Isaac Goiz, es un novedoso tratamiento para diferentes enfermedades, incluyendo la depresión, y quizás podría estimular las células del cerebro a regenerarse.
Un casco desarrollado por  el Dr. Gordon Dougal, de la empresa Virulite, asegura revertir la demencia senil, regenerando neuronas  a través de la estimulación de luz infrraroja.

7. Ayahuasca/antidepresivos
Se sabe que algunos antidepresivos,  inhibidores selectivos de la recaptación de la serotonina,facilitan la neurogénesis. Sin embargo, producen numerosos efectos secundarios, entre ellos la falta de libido (lo cual resulta un tanto contradictorio). Una alternativa a esto parece ser la ayahuasca, el cada vez más popular brebaje medicinal psicoactivo del Amazonas, utilizado con particular efectividad en el tratamiento de adicciones pero que podría tener aplicaciones incluso en la cura de enfermedades como el cáncer.
A diferencia de los antidepresivos, la ayahuasca, una medicina que algunos llaman un psicointegrador, ofrece una experiencia integral en la que los beneficios químicos son complementados por beneficios emocionales y hasta espirituales que redondean el tratamiento y permiten una asimilación más profunda.
Estudios con personas que han tomado ayahuasca por un periodo sostenido de tiempo muestran una mayor recaptación de serotonina. Según la investigadora Jace Callaway, esto se podría deber a la tetrahidroharmina que contiene la ayahuasca. Luego de dosificarse con esta molécula por seis semanas y  realizarse una tomografía computarizada por emisión de fotones individuales, Callaway descubrió un incremento en su recapatación de serotonina, algo que disminuyó cuando la dejó de utilizar.
Otro estudio, realizado por  Stuckey y Echenhofer en el California institute of Integral Studies, mostró que la ayahusca incrementa la coherencia en la banda de ondas gamma. Según el Dr. Luis Eduardo Luna: “La coherencia es una medida de la similitud del electroencefalograma en dos sitios distintos y puede considerarse una medida de comunicación entre dos regiones del cerebro. Una hipercoherencia distribuida ampliamente parece razonable dado los intensos y sinestéticos fenómenos que suelen ocurrir durante una experiencia de toma de ayahuasca”. Esta misma alta actividad de coherencia gamma ha sido observada en monjes zen en estados profundos de meditación.
Fuente:
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0