Latest Posts:

Mostrando las entradas con la etiqueta geologia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta geologia. Mostrar todas las entradas

11 de febrero de 2020

Perú: Establecen metas al 2030 para evitar degradación de la tierra y del suelo

En su primera sesión del año, la Conaldes acordó establecer metas al 2030 para evitar la degradación de la tierra y del suelo, anunció el Ministerio del Ambiente (Minam). Asimismo, dio a conocer los acuerdos obtenidos en la más reciente cumbre de la Convención de las Naciones Unidas de Lucha contra la Desertificación, realizada en la India.


El grupo también presentó el marco conceptual para abordar las medidas y metas nacionales para alcanzar la neutralidad en la degradación de las tierras, así como los principales avances y próximos pasos para su implementación.

La directora general de Cambio Climático y Desertificación, Laura Secada, resaltó la importancia del trabajo multisectorial. “Estas acciones han sido identificadas y definidas a partir de los aportes y sugerencias recibidas de los sectores y gobiernos regionales involucrados, además de la Presidencia del Consejo de Ministros”, aseveró.

Uno de los ejemplos de metas nacionales para alcanzar la neutralidad en la degradación de las tierras es la ejecución por parte de los gobiernos regionales y locales de procesos de gestión del riesgo para prevenir incendios forestales; así como la generación de procesos productivos resilientes.

Por su parte, Cristina Rodríguez, directora de Adaptación al Cambio Climático y Desertificación, manifestó la importancia de la reciente aprobación del Reglamento de la Ley Marco sobre Cambio Climático. “Esta normativa sin duda es también un instrumento que contribuirá en el cumplimiento de nuestras acciones”, concluyó.

Esta comisión está integrada por representantes del Minam; Ministerio de Relaciones Exteriores; Ministerio de Economía y Finanzas; Ministerio de Agricultura y Riego; Autoridad Nacional del Agua; Servicio Nacional de Meteorología e Hidrología; Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica; Instituto Geofísico del Perú; Agencia Peruana de Cooperación Internacional; Fondo Nacional del Ambiente; y la Red Internacional de Organizaciones No Gubernamentales sobre Desertificación (RIOD-PERÚ).

Asimismo, también pueden participar representantes de la Asamblea Nacional de Gobiernos Regionales; Asociación de Municipalidades del Perú; Consejo Nacional de Decanos de los Colegios Profesionales del Perú; y, según estime Conaldes, se podrá invitar a participar a otros organismos públicos, organismos de la sociedad civil y organismos internacionales que apoyen el mejor cumplimiento de su finalidad y funciones.

Con información de SPDA Actualidad Ambiental

4 de junio de 2019

¿Qué pasaría si el núcleo de la Tierra se enfriara?


El núcleo
 
Además del nombre de una película de ciencia ficción lanzada en 2003, el núcleo es la parte más interna de la Tierra. Según estudios sismológicos, se encuentra justo en el centro del planeta y tiene un radio de aproximadamente 3.500 km (representa el 60% de la masa de la Tierra). Consiste principalmente en una aleación de níquel-hierro conocida como NiFe ("Ni" para níquel y "Fe" para hierro). El núcleo también es bastante denso, lo que implica que contine una gran cantidad de otros elementos pesados una cantidad muy pequeña de metales más ligeros, junto con rastros de silicio. La gravedad del núcleo es casi tres veces más fuerte que la gravedad en la superficie del planeta.

También se debe tener en cuenta que, aunque es lo suficientemente caliente por sí solo, su temperatura se ve acentuada por el calor generado por la fricción gravitacional, causado por el movimiento de materiales pesados cerca de la región donde se separan el núcleo y el manto.

¿Qué pasaría si el núcleo se enfría?

Aunque parezca un planteamiento curioso, no querremos que ocurra. El núcleo de nuestro planeta realiza una serie de funciones que son esenciales para mantener la vida en la Tierra. Todas esas funciones vitales serían interrumpidas si el núcleo se enfriara. Si el núcleo se enfriara tendríamos un planeta básicamente muerto. Esto resume bastante bien las consecuencias finales, ¿verdad? pero veamos los efectos específicos que serían causados por un enfriamiento del núcleo de la Tierra.

El enfriamiento del núcleo no solo provocaría una ausencia de energía geotérmica, sino que la oscuridad también caería sobre la Tierra, ya que las empresas de energía de todo el mundo utilizan el calor de la corteza terrestre para calentar el agua, que produce vapor, el vapor acciona las turbinas que generan electricidad a través de un proceso complejo... En otras palabras, un núcleo frío significa una Tierra más oscura.

Aparte de eso, el planeta también sería atacado por una gran cantidad de radiación peligrosa del Sol, ya que el núcleo ayuda a formar la capa protectora atmosférica y magnética alrededor de la superficie del planeta. El hierro en constante cambio en el núcleo forma este poderoso escudo alrededor de la Tierra que nos protege de la dañina radiación cósmica y solar.

En ausencia de ese escudo, habría un ataque brutal de rayos de radiación que pueden causar cáncer y sobrecalentar el planeta. También hay vientos solares que soplan sobre nuestro planeta todo el tiempo, pero son desviados en gran medida por estas fuerzas invisibles; Algunas de estas "ráfagas" de viento solar serían lo suficientemente fuertes como para secar océanos y ríos completos, pero nuestro núcleo caliente ayuda a prevenir que eso pase.

La Tierra acabaría convirtiéndose en un nuevo Marte. 
  

 

22 de marzo de 2019

Tres científicos de Áncash hacen historia en la Antártida

Especialistas en inventario de glaciares y lagunas realizan estudios para determinar cuánto hielo se pierde cada año en este territorio.


Orgullo para Áncash. Tres ingenieros ambientales egresados de la Universidad Nacional Santiago Antúnez de Mayolo (Unasam) de Huaraz forman parte del equipo del Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña (Inaigem) que desarrolla estudios científicos nada menos que en la Antártida.

Los destacados ancashinos trabajan desde hace varias semanas en la base Machu Picchu de la isla Rey Jorge, en la Antártida.
 
Ellos son: la huaracina Luzmila Dávila, subdirectora de Glaciares del Inaigem, especialista en glaciología y responsable del inventario nacional de glaciares; Alexzander Santiago, quien es del distrito de Huari y se especializa en geomática, teledetección y manejo de drones.


Completa el equipo Mayra Mejía, natural de la provincia de Huaylas, la misma que trabaja también en el inventario de glaciares y lagunas. Esta científica tiene mucha experiencia en la restauración de ecosistemas de montaña. Los tres son dirigidos por Gissela Orjeda, presidenta ejecutiva del Inaigem.

Los especialistas llegaron hasta la cumbre del glaciar Znosko para instalar equipos "Kestrel" que miden la humedad, temperatura, dirección y velocidad del viento. También han obtenido muestras de nieve en dos puntos distintos para analizar la presencia de carbono negro.


A través de un dron multirotor que permite vuelos en horizontal y en vertical como un helicóptero recogieron información valiosa para determinar cuánto de agua en forma de hielo y nieve acumula y pierde el glaciar cada año.

"Hacer esto no es fácil. No solo requiere buen estado físico sino mucha previsión y experiencia. Tenemos que cargar muchos kilos durante la ascensión al glaciar", señala Gissela Orjeda. 
 
 

11 de diciembre de 2018

Cuando la Tierra se volvió líquida: cómo fue el colosal impacto que acabó con los dinosaurios

Es difícil imaginar cómo miles de millones de toneladas de roca pueden de pronto salpicar como un líquido, pero es exactamente lo que ocurrió cuando un asteroide impactó la Tierra hace 66 millones de años.

Así lo aseguran científicos en Estados Unidos que lograron reconstruir en forma detallada cada paso del evento colosal que acabó con los dinosaurios.

Muestras obtenidas del cráter del impacto permitieron concluir que las rocas sufrieron un proceso de "fluidización".

En otras palabras, el material pulverizado comenzó a comportarse como una sustancia similar al agua.

Cráter de 200 kilómetros

Modelos informáticos permitieron determinar qué sucedería si un objeto de piedra de 12 km de ancho proveniente del espacio impactara la superficie de la Tierra.

Inicialmente se crearía en forma casi instantánea un espacio cóncavo de unos 30 km de profundidad y 100 km de ancho.

La inestabilidad del terreno causaría posteriormente el colapso hacia adentro de los márgenes del cráter. Y ese colapso generaría a su vez una reacción de rebote desde el fondo del cráter hasta alturas superiores al Himalaya.

Esos movimientos gigantescos en determinado momento se estabilizarían, y lo que permanecería sería un cráter de unos 200 km de ancho y 1 km de profundidad.
Ése cráter es precisamente el que se encuentra ahora enterrado bajo sedimentos en el Golfo de México, cerca del puerto de Chicxulub.

Como en la Luna

El modelo se llama "modelo de colapso dinámico de formación de un cráter" y el impacto que describe sólo es posible si las rocas, por un período breve, pierden su solidez y fluyen sin fricción.

El nuevo estudio presenta pruebas de ese proceso de fluidización, que se basan en material por la perforación de rocas en un anillo de colinas en el centro de la depresión de Chicxulub.

"Lo que encontramos al examinar el tubo de material de roca es que ésta se había fragmentado", dijo a la BBC Ulrich Riller, investigador de la Universidad de Hamburgo, en Alemania.

El artículo completo en: BBC Mundo


2 de diciembre de 2018

Los primeros peces se originaron en aguas marinas cerca de la costa

El lugar de origen de los primeros vertebrados ha sido siempre un tema debatido en paleontología. Las hipótesis apuntaban hasta ahora a las zonas de arrecifes, de agua dulce o incluso del océano abierto, basadas en el análisis de escasos y pequeños fragmentos fósiles. Un nuevo estudio señala que la cuna de los primeros vertebrados fueron en realidad las aguas costeras intermareales y poco profundas.

Recreación de un Bothriolepis, un placodermo acorazado que vivió principalmente en la costa.

Los primeros vertebrados en la Tierra fueron peces, y los científicos creen que aparecieron por primera vez hace unos 480 millones de años. Pero los registros fósiles son irregulares y solo se han podido identificar pequeños fragmentos. Unos 60 millones de años más tarde, hace 420 millones de años, el registro fósil muestra algo completamente diferente: una gran variedad de especies de peces en masa.

¿Pero dónde estaban realmente los peces? ¿Dónde se originaron? Un equipo de científicos, liderados por Lauren Sallan de la Universidad de Pennsylvania en EE UU, ha tratado de responder a estas cuestiones en un estudio publicado en la revista Science.

Hasta ahora la comunidad científica presumía que los primeros peces se desarrollaron en arrecifes de coral, dada la gran biodiversidad de peces que existe en la actualidad en esos ecosistemas, pero la búsqueda durante décadas en estos lugares no ha dado resultados.

El grupo de científicos analizó los fósiles de vertebrados desde el Paleozoico medio (entre hace 480 y 360 millones de años), así como los marcadores ambientales que indican sus antiguos hábitats. Con esta información los investigadores crearon una base de datos con 2.728 registros tempranos para peces con mandíbulas y sin mandíbulas. “Es un nuevo conjunto de datos realmente grande”, dice Sallan.

Los resultados indican que todos los grupos principales de vertebrados tempranos, incluidos los peces con y sin mandíbula, se originaron y diversificaron en entornos intermareales y submareales cerca de la costa, a lo largo de un período de 100 millones de años.

El artículo completo en : Agencia SINC


29 de noviembre de 2018

Conozca la Pompeya peruana: Estagagache

Ciudadela inca de Moquegua fue destruida por erupción del volcán Huaynaputina en 1600, revela Ingemmet.

La erupción del volcán Huaynaputina en febrero de 1600, una de las cinco más violentas que se ha registrado en el planeta en la era cristiana, destruyó la ciudadela inca de Estagagache, ubicada en la región de Moquegua; similar a lo que sucedió con el volcán Vesubio, que en el año 79 sepultó Pompeya, en la antigua Roma.

Así lo reveló hoy a la Agencia Andina el Instituto Geológico, Minero y Metalúrgico (Ingemmet), que lidera el Proyecto Huayruro-El gran desastre de los Andes generado por la erupción del volcán Huaynaputina: comunidades olvidadas desde 1600 d. C. y los grandes retos del futuro, orientado a estudiar el impacto de la erupción en los pueblos e infraestructura aledaños, así como en el clima.
“La erupción del volcán Vesubio, que destruyó Pompeya, fue mucho menor a la del Huaynaputina. La primera tuvo un índice de explosividad volcánica 4 y la del volcán moqueguano, alrededor de 6, en una escala que va de 0 a 8”, explicó Jersy Mariño, especialista de la Dirección de Geología Ambiental y Riesgo Geológico del Ingemmet.

Salvando las diferencias, pues Pompeya era una de las ciudades más importantes de la antigua Roma y en el caso peruano se habla de pequeños pueblos, la erupción del Huaynaputina provocó destrucción y una noche sinfín.


“[En el caso peruano] hablamos de pueblos más pequeños; sin embargo, publicaciones refieren que murieron más de 1,500 personas y no solo afectó toda la zona del sur del Perú, sino también La Paz, en Bolivia, y Arica, en Chile”, expresó.

Se sabe que esta erupción tuvo “uno de los mayores impactos en el clima global”, al provocar el descenso de cerca de 1.3 grados Celsius, sobre todo en el hemisferio norte, pero poco se conoce de la afectación directa en los pueblos aledaños al volcán, remarcó Mariño. 

27 de noviembre de 2018

Así se ve el paisaje de Marte desde la sonda que envió la NASA

Insight envió la segunda imagen desde su llegada al planeta rojo, en la que se ve el desierto marciano. Esta es la foto:


"Aquí hay una belleza tranquila. Estoy ansioso de explorar mi nuevo hogar", dice el tuit publicado por la cuenta oficial de la sonda InSight de la NASA, en la que se ve la primera imagen que tomó el equipo mientras recorría el suelo marciano.

Se trata, en realidad, de la segunda imagen que envió la misión, ya que minutos después de su llegada al planeta rojo transmitió una foto tomada desde el aire antes de amartizar. Fue la forma de confirmar que había llegado bien y que sus equipos funcionaban correctamente.

En esta segunda foto, tomada con la cámara que lleva la sonda en su brazo robótico, se logra ver con nitidez el desértico paisaje del planeta rojo. 

Junto con estas dos imágenes, InSight envió señales a la Tierra indicando que sus paneles solares están abiertos y recogiendo luz solar en la superficie marciana. El despliegue de la matriz solar garantiza que la nave pueda recargar sus baterías cada día, informó la NASA en su sitio oficial. 

Para este martes, está previsto que la sonda realice "operaciones de superficie" y comience con "la fase de implementación del instrumento".

Los paneles solares gemelos de InSight tienen 2,2 metros de ancho. Marte tiene una luz solar más débil que la Tierra porque está mucho más lejos del Sol. "Pero el módulo de aterrizaje no necesita mucho para operar: los paneles proporcionan de 600 a 700 vatios en un día claro, suficiente para alimentar una licuadora doméstica y mucho para mantener a sus instrumentos dirigiendo la ciencia en el Planeta Rojo", indicó la agencia espacial estadounidense. Puede operar incluso si los paneles son cubiertos por el polvo de la superficie marciana.

¿Qué hará la sonda en el planeta rojo?


En los próximos días, el equipo de la misión desarmará el brazo robótico de InSight y usará la cámara adjunta para tomar fotos del suelo para que los ingenieros puedan decidir dónde colocar los instrumentos científicos de la nave espacial. La NASA estimó que Pasarán de dos a tres meses antes de que esos instrumentos se implementen por completo y envíen datos.

Tras siete años de trabajo y siete meses de viaje por el espacio, la sonda estadounidense InSight "amartizó" el lunes por la tarde.

Cada etapa exitosa de esta milimétrica y arriesgada operación despierta la algarabía en el centro de control del Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California.

La primera foto que tomó la sonda InSight anunciando su llegada a Marte

Fuente: El Clarín (Argentina)

28 de octubre de 2018

Volumen de agua en nevado Huascarán se redujo a casi su tercera parte

El Ingemmet informó que en los últimos 200 años glaciares del Huascarán han reducido también su área de extensión. Asimismo, en el mismo periodo la temperatura ambiente del nevado se incrementó.


Un grupo de investigadores del Instituto Geológico, Minero y Metalúrgico (Ingemmet), mediante estudios de geomorfología, lograron reconstruir glaciares del pasado y estimar su variación física a lo largo del tiempo. Asimismo, precisaron que los glaciares del nevado Huascarán redujeron su volumen de agua a casi su tercera parte en los últimos dos siglos.

El ingeniero Ronald Concha Niño de Guzmán, de la Dirección de Geología Ambiental y Riesgo Geológico, explicó que este hecho está relacionado con la Pequeña Edad de Hielo (PEH), periodo en que los glaciares de todo el mundo avanzaron por última vez, entre los años 1.500 y 1.900, aproximadamente.

El especialista agregó que desde aquel entonces el clima global experimenta un incremento constante de las temperaturas que trae como consecuencia el retroceso de los glaciares. En los Andes peruanos, la evidencia de la PEH ha sido registrada y conservada en geoformas del relieve en los ambientes glaciares.


En el caso del nevado Huascarán, durante la PEH sus glaciares abarcaban un área de 69 km2 y almacenaban un volumen de agua de 3698.1 mm3 a una temperatura ambiente aproximada de 0,9°C. En la actualidad, el área de extensión se redujo a 40,4 km2 (42% de pérdida), su volumen de agua ahora es de 1361.9 mm3 (63% de pérdida), mientras que la temperatura ambiente se incrementó a 1,89°C.

Estas investigaciones realizadas en los Andes peruanos tienen como objetivo fundamental comprender su impacto frente a los cambios climáticos y su relación con los recursos hídricos y peligros geológicos asociados, indicó el Ingemmet.


10 de octubre de 2018

¿A qué profundidad se encuentra el centro de la Tierra?

Todos alguna vez quisimos cavar un pozo hasta el centro de la Tierra. Creo que yo estaba en tercer grado cuando con unos amigos tratamos de cavar todo lo que pudimos. Nunca les comenté mi objetivo, pero tenía la idea de que íbamos a llegar hasta el centro de la Tierra. En realidad llegamos hasta unos dos metros, pero el fondo del pozo se llenaba de agua.

Por supuesto, cavar hasta el centro de la Tierra era una tarea imposible para nosotros.

Para poder llegar hasta el centro de la Tierra, mis amigos y yo tendríamos que haber cavado a través de 6.378 km de roca, manto y hierro. La mayor parte de este trayecto transcurriría con temperaturas tan elevadas como para derretir la roca, llegando a unos 7 mil Kelvin en el centro.

Aproximadamente los primeros 35 km tendríamos que cavar a través de la corteza exterior de la Tierra. Si suponemos que hubiéramos podido verdaderamente atravesar la roca sólida e impedir que el agua vuelva a cubrir nuestro pozo súper profundo, es posible que pudiéramos progresar en la tarea.

Sin embargo, la temperatura se eleva a medida que descendemos. Una de las minas más profundas del mundo es TauTona, una mina de oro en Sudáfrica, que alcanza unos meros 3,6 km de profundidad. Aun cuando esto es sólo arañar la superficie de la Tierra, la temperatura en el fondo de TauTona ya es de unos 55 °C.

Una vez perforada la corteza, llegamos al manto terrestre. En este punto estaríamos ante unos 3 mil km de roca con una temperatura tan elevada que la roca es líquida. Los volcanes son los puntos de la Tierra donde el magma del manto se abre paso hasta la superficie.

Cómo haríamos para cavar a través del manto, no tengo ni idea. Pero digamos que podríamos.

Entonces nos abriríamos paso hasta el núcleo de la Tierra. Esta región se extiende por otros 3.500 km y se compone casi totalmente de hierro, más un poco de níquel y rastros de otros metales. Y su temperatura es incluso aún más elevada que la del manto superior. Aquí es donde la temperatura llega a los 7 mil Kelvin. Suponiendo que pudiéramos agujerear el hierro y soportar el calor, entonces podríamos llegar al centro de la Tierra.

Llegados a este punto habríamos viajado 6.378 km. Y después otros 6.378 km para llegar a la otra cara de la Tierra y visitar a nuestros amigos de la China.

Fuente: El Sofista

24 de septiembre de 2018

¿Hay realmente más estrellas en el Universo que granos de arena en todas las playas del mundo como dijo Carl Sagan?

Es un problema matemático de proporciones cósmicas, que podría venirte a la mente cada vez que te encuentras en una playa o mirando el cielo de noche.

"El número total de estrellas en el universo es mayor que todos los granos de arena en todas las playas del planeta Tierra".

La afirmación proviene del astrónomo estadounidense y maestro del universo Carl Sagan, quien la formuló en su programa de televisión "Cosmos", un éxito masivo en los años ochenta.

¿Pero es verdad? y ¿Es siquiera posible calcularlo?

Bueno, aquí haremos el intento (¡aunque debes prepararte para leer algunas cifras muy grandes!).

Un número galáctico

El profesor Gerry Gilmore es un astrónomo de la Universidad de Cambridge que ha estado contando las estrellas en la galaxia en la que vivimos los terrícolas: nuestro hogar cósmico, la Vía Láctea.

Dirige un proyecto en el Reino Unido llamado Gaia que incluye una nave espacial europea, actualmente en órbita, que está mapeando el cielo.

Para calcular cuántas estrellas hay realmente en toda nuestra galaxia el equipo de Gaia utilizó sus datos para construir un gran modelo tridimensional de la Vía Láctea.

El artículo completo en: BBC Mundo

17 de septiembre de 2018

Junín: el Huaytapallana perdió más del 68% de superficie glaciar

Último informe del Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña indica que la cordillera del Huaytapallana ha perdido el 68.52% de superficie glaciar y puede desaparecer el 2040.


La superficie glaciar de los nevados de la cordillera del Huaytapallana desaparece en proporción de 0.9 km cuadrados por año y en los últimos 5 ha tenido una acelerada desglaciación.

En el primer informe realizado, entre el periodo 1970-1989, la cobertura glaciar ascendía los 68.08 km cuadrados. Para el informe de 1995-1997, la masa glaciar había disminuido a 37.57 km cuadrados, para el 2003-2014 era de 26.40 Km2. Actualmente la superficie solo abarca 21.42 Km cuadrados, por lo cual se pronostica que los nevados de esta cordillera desaparecerán para el 2040.
 
Para el Ingeniero Alberto Villalobos de Senhami Junín, estas cifras pueden resultar engañosas, pues actualmente las entidades no realizan el cálculo del volumen de la masa glaciar. “Puede ser que la superficie no disminuya de forma alarmante, y que desde fotos aéreas luzca normal, sin embargo, no se podrá determinar la exactitud con la que se está perdiendo la masa glaciar hasta que se haga el cálculo del volumen”, sostuvo.

El principal factor que contribuye a la desglaciación es el carbono negro. Por ello el informe recomienda el monitoreo de la presencia de carbono negro en el nevado Huaytapallana al estar cerca de Huancayo donde hay gran presencia de contaminación atmosférica, al igual que por la zona oriental donde se registran incendios forestales.

El nevado Huaytapallana provee de agua a la cuenca del rio Shullcas, importante fuente de agua para la población de Huancayo. El Huaytapallana ahora perteneciente al Área Conservación Natural, donde existen 704 lagunas y 2 nevados importantes: el Murudayo y Lazopata.

Por el momento, los estudiantes de la UNCP, miembros del Instituto Geofisico del Perú y la Universidad de Ohio, realizan estudios en esta parte.

Fuente: La República (Perú)
 

10 de abril de 2018

¿Cuál es el mejor lugar del mundo para marcar el inicio del Antropoceno, la nueva era geológica de la Tierra?

Los productos químicos encapsulados en las capas de coral registran todo tipo de actividad humana. 

Nuestro planeta tiene una historia turbulenta. 

Un evento particularmente tumultuoso ocurrió hace 252 millones de años. La Tierra estalló en una actividad volcánica que se acercó peligrosamente a la destrucción de toda vida compleja.

Los geólogos llamaron a este fenómeno la "madre de todas las extinciones", un evento que reconocen como el final de un gran capítulo de la historia de la Tierra llamado el Pérmico y el comienzo del Triásico.

Pero no fue suficiente con solo nombrarlo. Los científicos querían encontrar el mejor sitio del mundo para ver las rocas que se formaron en ese límite entre las eras geológicas.

Algunos geólogos dicen que nuestro planeta cruzó otro límite geológico hace unos 70 años"
En 2001, después de 20 años de debate, decidieron que un acantilado cerca de Meishan en la provincia china de Zhejiang sería el elegido para recibir el gran honor geológico: el "clavo de oro"(un distintivo otorgado a lugares especialmente singulares).

Este lugar se sumó a una lista que incluye 65 sitios en el mundo que marcan importantes límites geológicos.

Y las autoridades del lugar aprovecharon el galardón para colocar una escalera para observar mejor las rocas que señalan ese límite.

Algunos geólogos creen que nuestro planeta cruzó otro límite geológico hace unos 70 años, ingresando en un nuevo capítulo de la historia de la Tierra que denominaron el Antropoceno(una nueva época marcada por la influencia del hombre sobre los ecosistemas).

Y la pregunta es: ¿dónde debe colocarse el clavo dorado que marca el nacimiento del Antropoceno?

El artículo completo en:

BBC Ciencia

5 de febrero de 2017

Los huaycos: ¿Qué son? ¿Cómo se forman? ¿Qué hacer ante ellos?

Por Patricio Valderrama





Soy geólogo y mi principal campo de investigación son los desastres generados por procesos geológicos como los terremotos, los deslizamientos, avalanchas y los huaycos, por lo que desde el domingo 15 de enero del 2017 no paro de trabajar para conocer el orígen y la dinámica de los huaycos que afectaron Chosica, Chaclacayo y Santa Eulalia. Todos sabemos que estos sectores son afectados por huaycos desde hace décadas, es más, ya es casi costumbre que la Carretera Central (2da vía en importancia en Perú) se vea cerrada por varias horas por la acumulación de lodo y rocas en sus vías.


El nombre correcto para un huayco es flujo de detritos (debris flow, en inglés) y son fenómenos geológicos de velocidad rápida a extremadamente rápida (entre 3 metros por minuto a 5 metros por segundo) que transcurren principalmente confinados a lo largo de un canal o cauce con pendiente pronunciada. Se inician como uno o varios deslizamientos superficiales de detritos (rocas muy pequeñas que junto con el limo forman el barro) en las cabeceras de las quebradas. Al bajar por los cauces de las quebradas, usualmente incorpora bloques de roca de varios tamaños, llegando algunos a ser muy grandes.

Un huayco se puede formar por varios factores, pero el principal factor de formación es la lluvia. Un precipitación moderadamente intensa sobre un terreno que pasó mucho tiempo seco es la combinación perfecta para generar un flujo de detritos. Los otros factores pueden ser, por ejemplo: la rotura de una represa o un canal de irrigación, que aportaría mucha agua a una quebrada en poco tiempo. Una avalancha sobre una laguna puede generar un huayco de rebalse, por ejemplo.

¡El problema de la sierra limeña es que en los cauces de esas quebradas hay casas! Y no solo casas, poblaciones enteras que viven a la merced de estos fenómenos. El caso de Chaclacayo y Chosica es un ejemplo que se discute en congresos internacionales: una comunidad desarrollada al pie de más de una decena de quebradas que producen huaycos al menos cada dos años.

Ok, ya sabemos qué son, cómo se llaman y cómo se forman, pero, qué podemos hacer ante ellos. Aquí la pregunta del millón de intis.

Lo ideal es que las casas y obras principales (como la Carretera Central) no se vean afectadas por estos fenómenos, para eso necesitamos ver al huayco como una mezcla de dos componentes: un componente sólido: las rocas y bloques que destruyen las viviendas al impactarlas; y un componente líquido: el lodo que inunda las casas.

Para detener las rocas, la construcción de barreras dinámicas, como las existentes en algunas quebradas de Chosica, es lo ideal, personalmente conozco su eficiencia y la semana pasada pudimos verla en acción, los huaycos que bajaron por la quebrada Carosio (Chosica) pudieron haber sido fatales, pero las barreras detuvieron las rocas y sólo bajó el lodo que no afectó a nadie ni nada. El problema es que estas barreras no están instaladas en todas las quebradas y requieren un mantenimiento estacional, como toda obra de mitigación. 

Como la barrera dinámica detuvo casi la totalidad de los bloques que debieron haber bajado por la quebrada Carossio el 16 de enero del 2017. Foto: P. Valderrama para Altavoz © 

Ver el artículo completo en:

ALtavoz

13 de julio de 2016

¿Cuánto tiempo tardarías en caer de un extremo a otro de la Tierra?


Vamos a obviar un par de realidades físicas y vamos a suponer que pudieras caer de un extremo a otro de la Tierra. Es decir, de un polo a otro. ¿Cuánto te llevaría realizar ese viaje?

El canal de Youtube MinutePhysics ha creado un vídeo fascinante en el que ofrece una magnífica explicación. Valiéndose de diversos cálculos matemáticos, concluye que una persona tardaría unos 38 minutos y 6 segundos en recorrer el mundo de polo a polo.

No te pierdas el vídeo para descubrir la explicación:




Lo encontré en QUO

29 de mayo de 2016

Cuando Perú tenía fronteras con Costa Rica y Panamá

pangea
La Tierra es un planeta geológicamente vivo, no necesito explicaros ahora la teoría de la deriva continental. Tampoco creo que sea necesario explicar de nuevo, que hubo un día (entre finales del Paleozoico y comienzos del Mesozoico) en que todos los continentes estaban unidos entre sí, formando un súper continente al que llamamos Pangea.

Bien, los chicos de Open Culture, unos fanáticos de la geografía, han creado un mapa en el que se muestra donde quedarían las actuales naciones si hubiera que trasladarlas a aquella lejana época, hace unos 300 millones de años. 

Así quedarían lo países en Pangea
 

Si os fijáis en el mapa, de haber existido humanos, o ciudades, por aquel entonces, los países de Perú, Costa Ria y Panamá tenían fronteras comunes, eramos como "primos hermanos". Y a los portugueses viajar a Groenlandia les costaría un paso. Por no hablar de un partido de fútbol entre dos potencias del sur: Argentina y Sudáfrica, ¿para qué usar un avión? Estas y otras curiosidades que os invito a descubrir las podeís hallar en este mapa:

Aquí una versión del mapa en resolución más alta.

Me enteré leyendo Neatorama

Fuente:

Mailkenais Blog

14 de abril de 2016

Resuelto el misterio de las espirales del desierto de Nazca

Los investigadores suponen que podrían estar conectados con las líneas de Nazca, geoglifos gigantes de animales, personas y formas talladas en el desierto.


Durante años, los agujeros en forma de espiral, que salpican el paisaje del desierto peruano de Nazca, tenían confusos a los arqueólogos. Pero ahora, con el uso de imágenes de satélite, un equipo de investigadores italianos afirma haber resuelto finalmente el misterio, informa la cadena BBC.

"Los agujeros son en realidad parte de un sofisticado sistema hidráulico construido para recuperar el agua de los acuíferos subterráneos" explica la líder de la investigación, Rosa Lasaponara del Instituto de Metodologías para el Análisis Ambiental, de Italia. "Lo que es claramente evidente ahora es que el sistema de puquíos debió ser mucho más desarrollado de lo que parece en la actualidad", añadió.

Tras estudiar las imágenes de satélite Lasaponara y su equipo analizaron la colocación de los puquíos conectados con un sistema de túneles subterráneos. De acuerdo con los arqueólogos, cada agujero espiral empujaba el aire hacia abajo en los canales, moviendo de tal manera el agua a través de la red y llevándola a personas que la utilizaban tanto para la agricultura como para la vida doméstica.

El diseño de un sistema de este tipo, por su parte, sugiere que los antiguos habitantes de Nazca que lo construyeron tenían un amplio conocimiento sobre la geología de la zona, señala Lasaponara. La científica ha añadido que estos túneles de riego también podrían estar conectados con las misteriosas líneas de Nazca, geoglifos gigantes de animales, personas y formas talladas en el desierto.



Fuentes:

Actualidad RT

Mail Online

29 de noviembre de 2015

La deriva continental cumple 100 años

Pese a precedentes más antiguos, la hipótesis que Alfred Wegener publicó en 1915 es el origen de la moderna tectónica de placas.



Alfred Wegener en su mesa en Groenlandia, en 1930. La imagen pertenece al Alfred Wegener Institute for Polar and Marine Research.
Cuando Alfred Wegener murió –en 1930, durante la última de sus expediciones a Groenlandia—, la gran idea de su vida había sido descartada, olvidada y vilipendiada. La idea era la deriva continental, y habrían de pasar aún 30 años para que se sacara del cajón, se demostrara correcta y se convirtiera en el fundamento de la gran revolución de la geología, la moderna tectónica de placas, un salto conceptual comparable al átomo de Bohr en la física, o al código genético en la biología. Así son las revoluciones de la ciencia, que no solo devoran a sus hijos, sino también a sus padres.
La moderna tectónica de placas supuso un salto conceptual en la geología comparable al átomo de Bohr en la física, o al código genético en la biología.
La chispa que encendió la hipótesis de la deriva continental es la misma que habrán observado miles de niños al echar un vistazo al mapamundi colgado de la pared del aula: el desconcertante parecido entre las líneas de costa de Sudamérica y África, a los dos lados del Atlántico. Y no fue Wegener el primero en reparar en ello. El filósofo británico Francis Bacon ya mencionó el parecido de las líneas de costa en su Novum Organum de 1620, y también lo hizo el conde de Buffon, un naturalista francés del siglo XVIII, y el alemán Alexander von Humboldt hacia el final de esa misma centuria. Von Humboldt llegó a sugerir que aquellas dos costas habían estado juntas en el pasado.


Recreación sobre cómo, de acuerdo con las modernas reconstrucciones, Pangea (el supercontinente que existió al final de la era Paleozoica y comienzos de la Mesozoica que agrupaba la mayor parte de las tierras emergidas del planeta) se formó hace 300 millones de años y empezó a romperse hace unos 175 millones de años. Dentro de alrededor de 250 millones de años los continentes se volverían a juntar en un nuevo supercontinente, denominado Pangea Proxima.

Pero Wegener fue mucho más allá de esas meras impresiones visuales. No solo era explorador, sino también meteorólogo y geofísico, y ello le permitió reunir un cuerpo de evidencia multidisciplinario y que, en retrospectiva, se puede considerar más bien aplastante. Wegener demostró que no solo la forma de las líneas de costa a los dos lados del Atlántico, sino también las estructuras geológicas del oriente americano y el occidente africano, sus tipos de fósiles y las secuencias de sus estratos, presentaban unas similitudes asombrosas.

Como él mismo señaló en su publicación de 1915 –de la que celebramos el centenario—, si reuniéramos esos dos continentes, todas las estructuras “casarían como las líneas de texto en un periódico roto”, en la eficaz metáfora citada en Science por los geólogos Marco Romano, de la Universidad de Roma, y Richard Cifelli, del Museo Sam Noble de Norman, en Oklahoma. Wegener también conjeturó que los continentes representaban placas enormes de una roca más ligera que flotaban sobre rocas oceánicas más densas, una idea que, aunque no del todo correcta, prefigura la tectónica de placas moderna.
Wegener demostró que no solo la forma de las líneas de costa a los dos lados del Atlántico, sino también las estructuras geológicas del oriente americano y el occidente africano, sus tipos de fósiles y las secuencias de sus estratos, presentaban unas similitudes asombrosas.
Pero, como tal vez habría cabido esperar, una hipótesis tan rompedora con la geología de comienzos del siglo XX, y por muy bien que estuviera fundamentada, solo podía desatar tormentas con gran aparato eléctrico en los estamentos académicos de la época. Aunque la deriva continental suscitó en 1915 algunos apoyos, como el de los geólogos Émile Argand y Alexander du Toit, fueron muchos más los científicos que optaron por quemar al hereje. “La hipótesis de la deriva”, escriben Romano y Cifelli, “era tan iconoclasta que se ganó el vitriolo, el ridículo y el desprecio de los especialistas, cuyos propios trabajos publicados partían de la premisa de una corteza terrestre horizontalmente inmóvil”.

El punto débil de la hipótesis era que Wegener no pudo encontrar un mecanismo convincente para alimentar todos esos movimientos de continentes. Avanzó tímidamente un par de ideas basadas en la rotación de la Tierra y algún otro fenómeno, pero eran tan obviamente incorrectas o insuficientes que solo sirvieron para ponérselo más fácil a sus atacantes del ramo de la geofísica. Pasado el revuelo inicial, la gran idea de Wegener fue olvidada en un cajón humillante de la historia.

El artículo completo en:

El País

30 de septiembre de 2015

Los "Barones del agua”: Wall Street y Mega-Bancos estan comprando el agua del planeta

Una tendencia preocupante en el sector del agua se está acelerando en todo el mundo. Los elitistas multimillonarios y los grandes bancos de Wall Street están comprando agua por todo el mundo a un ritmo sin precedentes.



Grandes conglomerados bancarios como Goldman Sachs, JP Morgan Chase, Citigroup, UBS, Deutsche Bank, Credit Suisse, Macquarie Bank, Barclays Bank, Blackstone Group, Allianz y HSBC, entre otros, están consolidando su control sobre el agua de todo el planeta.

Magnates ricos como T. Boone Pickens, el ex presidente George HW Bush y su familia, Li Ka-shing de Hong Kong, Manuel V. Pangilinan y otros multimillonarios filipinos, así como muchos otros, están comprando miles de hectáreas de tierra con acuíferos, lagos, derechos sobre el agua, servicios sanitarios y acciones en empresas de tecnología e ingeniería del agua de todo el mundo.
Al mismo tiempo que los grandes bancos están comprando agua por todo el mundo, los gobiernos se están moviendo rápidamente para limitar la capacidad de los ciudadanos para ser autosuficientes en el suministro de agua.
Un buen ejemplo de ello fue el caso de Gary Harrington en Oregon, EEUU, en el que el Estado criminalizó la recolección de agua de lluvia en tres estanques situados en su terreno privado, al condenarle con nueve cargos y lo condenó a 30 días de cárcel.
Sin embargo, el multimillonario T. Boone Pickens es propietario de los derechos de agua del acuífero de Ogallala, que le permite drenar aproximadamente 245.000 millones de litros de agua al año, sin que nadie le condene por ello.
T. Boone Pickens
Es un ejemplo del extraño nuevo orden mundial en el que los multimillonarios y los bancos elitistas pueden poseer acuíferos y lagos, pero los ciudadanos comunes ni siquiera pueden recoger agua de lluvia o nieve en sus propios patios y terrenos privados.
Muchos medios de comunicación han tratado el tema, centrándose en empresas individuales y super-inversores que buscan controlar el agua mediante la compra de derechos de agua y los servicios de suministro.
Pero, paradójicamente, la historia oculta es mucho más complicada. La historia real del sector mundial del agua es un enrevesado lío que implica a empresas de inversión de Wall Street, bancos y otras empresas globales de capital privado de élite que trascienden las fronteras nacionales para asociarse entre sí, con bancos y fondos de cobertura, con empresas de tecnología y gigantes de los seguros, con fondos regionales de pensiones del sector público, y con fondos soberanos. Todos ellos se están focalizando en el sector del agua, no solo para comprar derechos de agua y tecnologías de tratamiento de agua, sino también para privatizar los servicios públicos de suministro de agua y las infraestructuras respectivas.
Un documento de análisis de renta variable de JP Morgan de 2012, establece claramente que “Wall Street parece muy consciente de las oportunidades de inversión en infraestructura de abastecimiento de agua, tratamiento de aguas residuales, y tecnologías de gestión de la demanda”.
De hecho, Wall Street se prepara para sacar provecho de la apropiación mundial del agua en las próximas décadas.
Cuando hablamos de “agua”, hacemos referencia a los derechos del agua (es decir, el derecho de aprovechar las aguas subterráneas, los acuíferos y los ríos), la tierra que contiene extensiones de agua (es decir, lagos, lagunas y manantiales naturales en la superficie o en las aguas subterráneas), proyectos de desalinización, de purificación de agua y tecnologías de tratamiento, tecnologías de riego y perforación de pozos, empresas de servicios públicos de saneamiento del agua, mantenimiento y contrucción de la infraestructura de suministro de agua (de tuberías y distribución a todas las escalas de las plantas de tratamiento a nivel residencial, comercial, industrial y usos municipales), servicios de ingeniería del agua (por ejemplo, los que participan en el diseño y construcción de instalaciones relacionadas con el agua), y el sector de agua al por menor (como los que participan en la producción y las ventas de agua embotellada, máquinas expendedoras de agua, servicios de suscripción y entrega de agua embotellada, camiones de suministro de agua y tanques de agua).

El artículo completo en.

12 de octubre de 2014

Se atrasa el origen de la vida compleja

Uno de los grandes retos de la paleontología es saber de qué manera pudo brotar la vida multicelular a partir de los sencillos seres unicelulares, como las bacterias.

El hallazgo de un geobiólogo de la Universidad Virginia Tech, en colaboración con científicos de la Academia China de Ciencias, sugiere que esa revolución tuvo lugar bastante antes de lo que se pensaba.

Se trata de un fósil datado hace 600 millones de años, una época en que la comunidad paleontológica creía que la Tierra solo estaba habitada por criaturas extremadamente simples.

“Fósiles similares habían sido interpretados erróneamente como bacterias, eucariotas unicelulares, algas y formas de transición relacionadas con esponjas, anémonas y animales de simetría bilateral”, ha explicado Shunai Xiao, profesor de Virginia Tech y principal autor del descubrimiento.


Tras desenterrar el nuevo vestigio en la región china de Guizhou, Xiao y sus colaboradores han comprobado que mostraba signos de adhesión entre células, especialización y muerte celular programada, como los animales y plantas actuales. Hasta ahora solo se habían encontrado ejemplos de tal complejidad biológica en la fauna del Cámbrico, periodo que empezó hace 540 millones de años.

Fuente:

Muy

12 de agosto de 2014

Descubren por qué el río Amazonas corre al revés

El Amazonas una vez fluyó en sentido contrario, de este a oeste. La inversión de la dirección del río más grande de la Tierra no es algo trivial y los geólogos han estado estudiando la causa de ello bastante tiempo.






El Amazonas corre hacia arriba a causa de una erosión terrestre. Lo ha demostrado el doctor Victor Sacek, de la Universidad de São Paulo, en un estudio publicado en el portal científico Science Direct. Con los poderosos Andes en el extremo occidental del continente, sería lógico que los ríos de América del Sur fluyeran hacia el este. Sin embargo, el Amazonas -que descarga cinco veces más agua que cualquier otro río en el planeta-, el Orinoco y el Río de la Plata corren de la misma manera. Cualquier río de América del Norte o de Europa parece minúsculo en comparación con estos monstruos, recuerda 'Business Insider'. 


Sin embargo, hasta hace 10 millones de años, la mayor parte de lo que hoy es la cuenca del Amazonas fue drenada por un río que fluía hacia el oeste y desembocaba en un lago gigante que yacía a los pies de los Andes del Norte. Desde allí el agua fluía dirección norte hasta el mar Caribe. Puesto que el istmo de Panamá no se había formado aún, esta agua posteriormente fluía hacia el oeste del Pacífico. 

Explicar por qué sucedía esto era un esfuerzo demasiado fuerte para los geólogos, por lo que todo eran especulaciones sobre los cambios experimentados en el manto de la Tierra, posiblemente resultantes de la desintegración de África y América del Sur. 

Por su parte, Sacek muestra en su estudio que la elevación de los Andes conocida como la placa Sudamericana, que pasa por encima de la placa de Nazca, puede explicar el proceso en períodos de tiempo correspondientes. Sacek incluye en su modelo el hecho de que, a medida que las montañas se elevaban, interceptaban más nubes lluviosas, hecho que provocaba mayor erosión. 

Al principio, la elevación de los Andes originó el surgimiento de un canal hacia el este, que se convirtió en el 'paleolago' en el que 'se vació' el Amazonas en su trayecto hacia el oeste. Con el tiempo, sin embargo, este hundimiento se desaceleró, mientras la erosión se aceleraba hasta convertir este lago en una serie de humedales conocidos como la Formación Pebas. 

Las vastas marismas de Pebas habrían sido un ecosistema que en nada se asemeja a lo que vemos hoy, pero con el tiempo la acumulación de sedimentos hizo emerger la región hasta el punto de que las precipitaciones fueron empujadas hacia el otro lado. 

Fuente:

Actualidad RT
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0