Latest Posts:

Mostrando las entradas con la etiqueta seres vivos. Mostrar todas las entradas
Mostrando las entradas con la etiqueta seres vivos. Mostrar todas las entradas

16 de diciembre de 2015

Cuando regenerábamos las patas como las salamandras

Los primeros tetrápodos terrestres (anfibios, reptiles, pájaros y mamíferos) tenían la capacidad de volver a desarrollar sus miembros perdidos.




Fósil del anfibio 'Sclerocephalus', de la cuenca Saar-Nahe en Alemania.


La evolución no es una historia de progreso constante: a veces va a peor. Poco después de conquistar la tierra firme, nuestros ancestros, los primeros tetrápodos terrestres, poseían la valiosa capacidad de regenerar los miembros perdidos en un accidente, como las patas y la cola. En alguna época posterior casi todos perdimos ese arte, y hoy solo lo conservan las salamandras. Si eso es progreso, que venga Dios y lo vea.

Nadia Fröbisch y sus colegas del Instituto Leibniz para la Evolución y la Biodiversidad, en Berlín, han hallado evidencias sólidas de regeneración de los miembros en unos anfibios fósiles excepcionalmente bien preservados del carbonífero tardío (hace 290 millones de años). Eso es poco después de que los tetrápodos evolucionaran a partir de los peces de aletas carnosas, en mitad del devónico (hace 390 millones de años), y 80 millones de años antes de que aparecieran las primeras salamandras. Presentan sus resultados en Nature.

¿Cómo se puede demostrar la regeneración en un fósil? La capacidad de regeneración de las salamandras está indisolublemente ligada a un tipo peculiar de desarrollo de las patas (llamado preaxial), en que los dos primeros dedos crecen antes que los demás. Esto conduce, en las salamandras actuales, a una morfología especial en los miembros. Y esa es la morfología que Fröbisch y sus colegas han observado en los fósiles.

Hasta ahora se pensaba que tanto ese tipo especial de desarrollo como la capacidad de regeneración eran innovaciones recientes de las salamandras. Los nuevos fósiles demuestran que no es así: la regeneración era una capacidad antigua que se ha perdido en todos los tetrápodos menos en las salamandras. Las pruebas son indirectas, pero consideradas convincentes por los expertos que han revisado el trabajo.



Reconstrucción del proceso de regeneración de una pata en los fósiles del carbonífero. / NATURE

Los tetrápodos (animales con cuatro patas) son la superclase a la que pertenecemos los anfibios, los reptiles, los pájaros y los mamíferos, y todos evolucionamos a partir de los peces de aletas carnosas (o lobuladas), similares a los actuales celacantos. Nuestras piernas y brazos proceden de esas aletas, que aparecen apareadas en la misma posición del cuerpo. Los primeros tetrápodos, de hecho, fueron enteramente acuáticos, y los actuales anfibios recuerdan aquella antigua forma de vida con unas formas inmaduras todavía acuáticas y similares a peces: los renacuajos. No hace falta añadir que algunos tetrápodos, como los cetáceos, han regresado al agua de la que salieron millones de años antes.

El artículo completo:

El País

13 de octubre de 2015

Hongos: 25 asombrosas especies del reino fungi

El reino fungi es un fascinante universo de organismos. Recordemos que la naturaleza es dividida, para su estudio y por sus características, en reinos. Uno de ellos es este denominado fungi o reino de hongos y se diferencia del reino animal y del reino vegetal; sin embargo, actualmente se sabe que los hongos son más cercanos al primero aunque durante mucho tiempo se consideró como uno el vegetal y el fungi debido a su semejanza, fundamentalmente en la ausencia de locomoción y una morfología y ecología similares. Esta diferenciación se debe, entre otras cosas, a que tienen paredes celulares compuestas por quitina, a diferencia de las plantas, que contienen celulosa.
Ahora bien, la clasificación de los reinos no es una sola; así, mientras para el esquema de los cinco reinos de Wittaker y Margulis, los hongos pertenecen en parte al reino protista (los hongos ameboides y los hongos con zoosporas) y al reino Fungi (el resto). En el esquema de ocho reinos de Cavalier-Smith pertenecen en parte al reino Protozoa (los hongos ameboides), al reino Chromista (los Pseudofungi) y al reino Fungi todos los demás. Con los avances de la biología molecular se construye una taxonomía molecular basada en secuencias de ácido desoxirribonucleico (ADN).
Se han descrito unas 100 000 especies de hongos aunque se considera que sólo el 5% se ha catalogado. Se estima una diversidad total de 1.5 millones de especies. Y es que el reino fungi está disperso en un amplio rango de hábitats y condiciones extremas de temperatura, salinidad y muchos otras. La micología es la disciplina encargada de estudiar los hongos.
Una clasificación sencilla de los hongos podría ser la siguiente:
  • Ornamentales
  • Alimenticios
  • Hongos enteógenos (hongos alucinógenos)
  • Medicinales
  • Contaminantes
  • Venenosos
Así pues, conozcamos algunos ejemplares de las especias más bonitas, alucinantes (en el sentido literal y retórico de la palabra), de exquisitas y caprichosas formas. Da click en el nombre para conocer la ficha técnica de la especie.
Amanita-muscaria
Amethyst-deceiver
"Aseroe rubra105". Licensed under CC BY-SA 3.0 via Wikimedia Commons - https://commons.wikimedia.org/wiki/File:Aseroe_rubra105.JPG#/media/File:Aseroe_rubra105.JPG
"Aseroe rubra105". Licensed under CC BY-SA 3.0 via Wikimedia Commons - https://commons.wikimedia.org/wiki/File:Aseroe_rubra105.JPG#/media/File:Aseroe_rubra105.JPG
Chorioactis
Clathrus-ruber
"- Coprinus comatus -" by User:Nino Barbieri - Own work (own photo). Licensed under CC BY 2.5 via Wikimedia Commons - https://commons.wikimedia.org/wiki/File:-_Coprinus_comatus_-.jpg#/media/File:-_Coprinus_comatus_-.jpg
"- Coprinus comatus -" by User:Nino Barbieri - Own work (own photo). Licensed under CC BY 2.5 via Wikimedia Commons - https://commons.wikimedia.org/wiki/File:-Coprinus_comatus-.jpg#/media/File:-Coprinus_comatus-.jpg
Crepidotus
cup-fungi
Cup-fungi
Cyathus-striatus
Favolaschia-calocera
Geastrum-minimum
Hairy-mycena
hongo-1


  El artículo completo en: HiperTextual

5 de septiembre de 2015

La ley de la selva siempre sigue las mismas reglas matemáticas

Los grandes ecosistemas del planeta repiten el mismo patrón que relaciona la biomasa de depredadores y presas.

Las matemáticas son una abstracción humana, pero gobiernan la vida salvaje del planeta. Ya sea en la sabana o en las profundidades del mar, los ecosistemas muestran siempre los mismos patrones matemáticos que relacionan la biomasa de depredadores con el de presas. Un monumental estudio con miles de especies demuestra cómo el aumento de comida disponible (presas) no lleva aparejado un aumento igual del número de depredadores. Y el patrón se reproduce casi de manera universal.

En la Tierra hay una gran variedad de ecosistemas marinos, terrestres, lacustres, de montaña, selváticos o desérticos. Unos están integrados por unas pocas especies, como en las cumbres alpinas o las fumarolas de las simas atlánticas. Otros son exuberantes, como la Amazonia brasileña o la reserva del Ngorongoro, en Tanzania. A pesar de tanta diversidad, todos pueden representarse en forma de pirámide, con una base, generalmente biomasa vegetal, y sucesivas capas que se alimentan de la precedente, como los herbívoros de aquella base y los grandes depredadores felinos de estos últimos.

La lógica y buena parte de las investigaciones en ecología dicen que a más biomasa en la base, más cantidad de energía en forma de comida para los de arriba: si hay más pasto en la sabana, habrá más gacelas y ñus, y si hay más gacelas y ñus, habrá más leones. Es decir, el tamaño de la pirámide puede aumentar, pero no cambia su forma. Sin embargo, no es así. La relación no es lineal, sigue en realidad una ley de potencia que es sublineal: a más gacelas y ñus, habrá 0,74 (o 3/4) más de leones. Y se ha comprobado en todos los ecosistemas donde ambos conviven. Desde el secarral del desierto del Kalahari hasta el rico cráter del Ngorongoro, pasando por el delta del Okavango o la reserva Kruger, siempre se repite esa ley de potencia.

"Una ley de potencia es una función matemática simple", dice el investigador de la Universidad McGill (Canadá) y principal autor del estudio, Ian Hatton. En ecología, se asumía que el exponente de esa ley de potencia era 1, lo que significa que cuando se dobla las presas [en número o densidad], también se dobla el de los depredadores. "Sin embargo, hemos comprobado un exponente cercano a los 3/4, lo que es menos que 1", añade el científico canadiense. Esto supone que si aumentan las gacelas, también lo harán los leones pero no en la misma proporción.

Lo que han descubierto Hatton y sus colegas es que esta ratio no es solo cosa de los leones. En el caso de las hienas y sus presas es de 0,74. En el de los tigres del sudeste asiático, también del 0,74. De los lobos de norteamericana, del 0,72... y así hasta una treintena de grandes depredadores y los centenares de especies de las que se alimentan. Tal y como muestran en un artículo publicado en Science, allí donde aumenta la biomasa de presas, la ratio depredador-presas disminuye.

El fenómeno, además, no es exclusivo de los grandes depredadores. Los investigadores repasaron más de 1.000 estudios sobre poblaciones ecológicas, densidad de especies, número de ejemplares, relaciones entre depredadores y presas... En total obtuvieron datos de 2.260 ecosistemas y unas 1.500 áreas geográficas. Hay estudios sobre grandes mamíferos, invertebrados, zooplancton que depreda el fitoplancton, invertebrados y plantas... En la práctica totalidad, a excepción de algunas comunidades de peces y protistas, la relación entre depredadores y presas siempre sigue esa ley de potencia elevado a 3/4.

"Estamos impresionados. Se trata de un patrón asombroso", dice en una nota el investigador de la Universidad de Guelph, Kevin McCanny, coautor del artículo. Sea el ecosistema que sea el observado, la cantidad relativa de biomasa de presas y depredadores puede ser predicha "por una simple función matemática", comenta.

Pero aquí no acaba la relación de la naturaleza con las matemáticas.
El artículo completo en:

El País 

¿¡Qué pasaría si se extinguieran todas las cucarachas?

Como ya hemos mencionado es muy común haber escuchado personas que desean fervientemente que las cucarachas se extingan de todo el planeta (hasta yo me incluyo). Esta reacción normalmente viene como consecuencia de un desagradable e inesperado encuentro con alguno de estos indeseables insectos o al comprobar que algún alimento está siendo consumido por ellos, hecho suficiente como para perder el deseo ante alimento.

Lo cierto es que sería muy deseable que en nuestro hogar jamás entraran las cucarachas que, además de su mal aspecto, son transmisoras de enfermedades, pero realmente la duda de este tema es… ¿qué ocurriría si las cucarachas desaparecieran de la Tierra?

Las cucarachas las encontrarás en muchos lugares

100000-cucarachas-1

Las cucarachas están entre los insectos más numerosos que existen, tanto en especies como en número. Aunque no se sabe a ciencia cierta la cantidad, se estima un número entre 5000 y 10.000 cucarachas y sus representantes se encuentran por todos lados, desde las ciudades y otros sitios donde el hombre las atrae por la alta producción de desperdicios, hasta los bosques tropicales, zonas desérticas, pantanos e incluso zonas costeras.

De todas esas especies, apenas unas pocas son las que interactúan directamente con nosotros con cierta frecuencia, en unos países predominan más unas que otras, estando entre las más extendidas por ejemplo, la llamada Periplaneta americana o cucaracha doméstica.

¿Qué pasaría si dejasen de existir?

Que-pasaria-si-las-cucarachas-desaparecieran-de-la-Tierra-2

Las cucarachas, como el resto de los seres vivos y en particular los insectos, son una fuente de alimentos para criaturas como las aves, los mamíferos insectívoros, los anfibios y otros insectos, etc., incluso, en ciertas culturas, también son alimento para los seres humanos.

Aunque ningún animal basa su alimentación exclusivamente en ellas, por lo que de desaparecer estas no se extinguirían, sí se verían reducidas sus posibilidades de sobrevivir y disminuirían sus poblaciones de manera importante, por lo que otros insectos o plagas podrían multiplicarse al alterarse el equilibrio ecológico de los ecosistemas.

Un ejemplo concreto sería la reducción de las poblaciones de ratones y ratas, ya que una parte importante de su dieta se compone de cucarachas.

Si estos pequeños roedores perdieran esta fuente de alimento y se redujeran sus poblaciones silvestres, provocaría daños enormes en animales como las águilas y otras aves de presa, los felinos, los coyotes, los lobos, y muchos reptiles.

vila-06

Por otro lado, está su contribución inestimable en el ciclo del nitrógeno, algo vital para el funcionamiento del planeta. ¿De qué manera lo llegan a hacen? Pues la mayoría de las cucarachas se alimentan de materia orgánica en descomposición.

Este material retiene en su estructura grandes cantidades de nitrógeno, y al ser consumido constantemente por millones y millones de cucarachas, esta materia pasa por el tracto digestivo del insecto convirtiéndose en heces que al caer en la tierra, liberan más fácilmente los productos nitrogenados que luego son aprovechados por las plantas, garantizando así la salud de los bosques, las praderas y demás ecosistemas y con ello indirectamente a todos los habitantes de los mismos.

Probablemente luego de leer esto y por más de que te vuelvas a encontrar en otra situación envuelta con cucarachas, de igual manera será mejor volver a pensar si de verdad queremos que se extingan

Fuente:

Ben Viral

4 de septiembre de 2015

Los primeros seres complejos de la Tierra se reproducían como las fresas




Recreación de una colonia de 'Fractofusus', seres complejos que vivieron en los lechos marinos hace más 500 millones de años. / C. G. Kenchington


A los primeros seres complejos que habitaron la Tierra no les interesaba el sexo. Un análisis de fósiles de hace más de 500 millones de años sugiere que los organismos pluricelulares más antiguos del registro fósil se reproducían como muchas de las actuales plantas: para las grandes distancias usaban propágulos, como las patatas o los lirios. Para las distancias cortas, proliferaban mediante estolones, como las fresas.

Hasta hace unos 635 millones de años, las bacterias y otros organismos unicelulares reinaban en el planeta. Pero, en un misterio aún por resolver, desde entonces el registro fósil recoge la presencia de una gran cantidad de seres vivos complejos. Los científicos aún discuten si eran animales o algún otro clado del árbol de la vida. No tenían huesos o alguna estructura ósea exterior, pero sí tienen claro que eran organismos multicelulares. Fue el principio de la vida compleja sobre la Tierra. Ahora, un grupo de investigadores británicos cree haber descubierto cómo se reproducían uno de aquellos extraños seres.

Los investigadores han estudiado una serie de fósiles encontrados en tres zonas sedimentarias de lo que hoy es Terranova (Canadá), pero entonces estaba cubierta por el mar. Los registros están datados en torno a 580-541 millones de años atrás, en la parte final de lo que es el periodo Ediacárico. Son los organismos complejos más antiguos descubiertos hasta la fecha. Se trata de poblaciones de dos especies de Fractofusus, pertenecientes al grupo de los rangeomorfos. Por su apariencia fosilizada, recuerdan a algunas plantas y por sus reconstrucciones asemejan a las lapas marinas, pero eran otra cosa. Muchos científicos sostienen que fueron los primeros animales, aunque otros se conforman con llamarles protoanimales y los más prudentes reconocen que no lo saben.

Estos macroorganismos eran lo que los biólogos llaman sésiles, es decir, que no se movían, se quedaban fijados en el lecho marino. Entonces, ¿cómo se reproducían y colonizaban nuevos territorios? Usando un enfoque original, apoyado en mediciones milimétricas por GPS de la posición en que las poblaciones de Fractofusus quedaron grabadas para la historia, los científicos han descubierto dos patrones que no pueden deberse a la casualidad.

Los 'Fractofusus' no eran ni animales ni plantas, pertenecían a un reino extinguido

Por un lado, los ejemplares más grandes, supuestamente los adultos, presentan una distribución aleatoria pero marcada por la orientación de las corrientes marinas. Sin embargo, a su alrededor, hay Fractofusus de tamaño medio y otros aún pequeños, que podrían ser una especie de crías. Aquí, la distribución espacial sigue un patrón propio de muchas plantas modernas. Tal y como explican en la revista Nature, los científicos creen que estos organismos usaban una estrategia doble de reproducción: algún mecanismo de propágulos (ya fueran esporas, bulbos, tubérculos...)  para las distancias mayores y, como hacen las fresas, estolones para las pequeñas.

"La reproducción por estolones o propágulos tienen patrones espaciales diferentes", dice la investigadoras del departamento de Geología de la Universidad de Cambridge y coautora del estudio, Emily Mitchell. "Hemos comprobado que la gran mayoría de los Fractofusus surgieron de estolones, estaban agrupados en radios muy pequeños y estas agrupaciones no presentaban un patrón de dirección. En cambio, los especímenes más grandes muestran un patrón muy diferente. No forman grupos, están distribuidos aleatoriamente en el lecho marino, pero sujetos a la direccionalidad de la corriente", añade.

Esta combinación, explica Mitchell, "solo puede encajar con que los Fractofusus grandes se formaron de propágulos fuera de la columna de agua mientras que los medianos y más pequeños crearon agrupaciones por una reproducción de tipo estolón". El hecho de que este doble patrón lo hayan comprobado en los tres yacimientos alejados entre sí por decenas de kilómetros, da más fuerza a sus conclusiones.



Usando un receptor propio de GPS, los investigadores pudieron establecer la distribución espacial de las colonias de 'Fractofusus'. / EG Mitchell

El uso de propágulos o estolones son dos de las estrategias más usadas en el reino vegetal, junto a la de las semillas, para la reproducción. Pero en otros reinos, los ejemplos escasean. Sin embargo, usar dos estrategias de reproducción combinadas no es tan excepcional entre los seres vivos actuales. Las esponjas y los corales, por ejemplo, combinan la reproducción asexual por medio de fragmentos o brotes con la sexual por medio de esporas.

Sin embargo, a pesar de esta aparente ventaja adaptativa, los Fractofusus, como todos los rangeomorfos y el resto de la vida del Ediacárico se extinguieron hace unos 540 millones de años. No se sabe el porqué, pero Mitchell da algunas posibles pistas: "Debido a que la gran mayoría de los Fractofusus eran clones de sus padres, el resultado de una reproducción asexual por estolones, su capacidad para adaptarse con agilidad pudo ser menor que la de los animales cámbricos".

Tomado de:

El País Ciencia

7 de agosto de 2015

Conoce el organismo que nunca envejece

Los seres humanos llevamos toda la vida intentando hallar la forma de luchar contra el proceso imparable del envejecimiento. Ahora, un equipo de investigadores de la Universidad de Duke (EEUU) ha encontrado un organismo, de apenas un milímetro de longitud, que es capaz de hacerlo: detener su envejecimiento y duplicar así su esperanza de vida. El descubrimiento ha sido publicado en la revista Plos Genetics.

El organismo en cuestión es Caenorhabditis Elegans, un nematodo como el conocido Anisakis y los científicos han descubierto que ante la falta de alimento, éste puede entrar en un estado que le permite detener su desarrollo. El organismo puede seguir moviéndose aunque sus células estén aparentemente congeladas, obstaculizando así el proceso del envejecimiento.

Este proceso se revierte cuando el organismo vuelve a disponer de alimento, ya que entonces, retoma su desarrollo normal, aunque con el añadido de haber aumentado su esperanza de vida. Este proceso puede llevarle a duplicar su esperanza de vida estipulado en un principio.

Los investigadores esperan encontrar alguna forma, en el futuro, de replicar esta técnica exitosa anti-envejecimiento, pero ante todo, afirman que podría ser una buena herramienta para el tratamiento del cáncer ya que, “uno de los grandes misterios del cáncer es cómo sus células pueden hibernar en el organismo durante años antes de volver a la vida. Creo que los procesos de los nematodos que inducen sus células a estados de hibernación y luego las despiertan podrían ser los mismos que en las metástasis”, afirma David Sherwood, líder del estudio.

Fuente:

Muy Interesante

28 de julio de 2015

¿Cuál es el ser vivo con el olfato más poderoso?

Revelan que el genoma de los elefantes africanos contiene cerca de 2.000 genes receptores olfativos (OR), el mayor número registrado hasta la fecha.


Además de ser el animal terrestre más grande, el elefante africano también puede presumir de poseer el olfato más poderoso de todos los seres vivos.

Esa es la conclusión que se desprende de un estudio publicado en Genome Research por investigadores japoneses.

Para realizar este estudio, los científicos compararon los genes receptores olfativos (encargados de detectar los olores en el medio ambiente) de los elefantes con el de otros 13 mamíferos, entre ellos caballos, conejos, conejillos de indias, vacas y chimpancés.

Tras obtener los resultados, se comprobó que los elefantes (con 1948 receptores olfativos) disponen de un olfato cinco veces más desarrollado que el de los seres humanos (386), más del doble que el de los perros (811), y mucho más que el de los que ostentaban el anterior récord: las ratas (1.207).

"Las funciones de estos genes no se conocen bien, pero probablemente son importantes para las condiciones de vida de los elefantes africanos -asegura el investigador principal, Yoshihito Niimura.

Por el contrario, los seres humanos, junto con sus parientes primates, tienen muchos menos genes olfativos en comparación con el resto de especies examinadas. Posiblemente, esto se deba a la disminución de su dependencia del olfato a medida que mejoró su agudeza visual.

"Comparar los repertorios de los genes OR entre los mamíferos nos permite conocer las similitudes y diferencias en la percepción olfativa, ampliando nuestra comprensión sobre el sentido del olfato en los humanos", concluye Niimura.

Otro dato curioso que se extrae del estudio es que las 13 especies estudiadas sólo tienen tres genes olfativos en común.

Fuente:

QUO

10 de marzo de 2015

¿Cuál es el material biológico más fuerte del mundo?

Un equipo de ingenieros británicos descubrió que los dientes de la lapa están hechos del material biológico más duro del que se tenga conocimiento.
Las lapas tienen unos minúsculos dientes en su lengua que utilizan para raspar la comida de las rocas.
Según los autores del estudio, estos dientes están compuestos de un material que es incluso más fuerte que la tela de araña.
Estos moluscos de concha abierta son muy comunes en los litorales rocosos, siempre pegados a las piedras.


El secreto de su dureza es la delgadez de las fibras minerales que hay en su interior.
La investigación, publicada en la revista Royal Society Journal Interface, afirma que se trata de algo tan duro como algunos de los mejores materiales hechos por el ser humano, como el kevlar o la fibra de carbono.
El descubrimiento podría servir para mejorar algunos materiales artificiales para la industria automotriz y también en el campo de la aviación. También podría resultar útil para arreglos dentales.
"La biología es una gran fuente de inspiración para un ingeniero", señaló Asa Barber, autor principal del estudio, de la Universidad de Portsmouth.
"Estos dientes se componen de fibras muy pequeñas, acomodadas de una manera particular. Deberíamos pensar en hacer nuestras propias estructuras siguiendo los mismos principios de diseño".
Fuente:

12 de febrero de 2015

De como Occidente conoció el nenúfar gigante

En la época victoriana, la exploración de las regiones tropicales en busca de nuevas especies de animales y de plantas vivió una edad dorada. Esta es la historia del descubrimiento del nenúfar más grande del mundo, de cómo se consiguió que floreciera en Europa por primera vez y de cómo inspiró el mayor templo de la ciencia y el progreso que el hombre había visto hasta entonces.
En el mundillo de los chascarrillos biológicos hay una serie de clichés gráficos que, a poco que busquemos, veremos repetidos hasta la saciedad. Uno de los ejemplos favoritos de un amigo mío es el del tiburón-ballena, el pez más grande del mundo, que para mostrarlo a escala a menudo es reproducido en libros o en internet junto a un buzo. Mi amigo suele bromear diciendo que esos buzos se han convertido ya en un apéndice del animal, y que ningún tiburón-ballena está completo sin él. Otro ejemplo de estos clichés es la imagen de un niño pequeño plácidamente (casi mágicamente) posado sobre la inmensa hoja flotante del nenúfar gigante de nombre científico Victoria amazonica. El origen de esta imagen tópica se remonta a mediados del siglo XIX, cuando una parte de la sociedad inglesa, empezando por la reina y acabando en los jardineros, estaba totalmente asombrada por esta planta que sólo un puñado de personas había visto fuera de la selva.

Esta imagen fue tomada en Carolina del Norte en 1892, pero no tenéis más que hacer una búsqueda rápida para comprobar que hay toda una obsesión por subir niños y bebés a las hojas de estos nenúfares gigantes 
Esta imagen fue tomada en Carolina del Norte en 1892, pero no tenéis más que hacer una búsqueda rápida para comprobar que hay toda una obsesión por subir niños y bebés a las hojas de estos nenúfares gigantesFuente: National Geographic. Dominio público.


La verdad es que no es para menos, ya que Victoria amazonica es una planta con muchos motivos para asombrarnos. Sus hojas, que pueden crecer a un ritmo de varios centímetros al día, llegan a alcanzar hasta los dos metros y medio de diámetro, una auténtica isla improvisada en los cauces fluviales sudamericanos, plataforma y refugio de aves acuáticas y parasol de toda la fauna sumergida. Sus espectaculares flores (¡de hasta 40 cm de diámetro!) solo se abren durante dos noches consecutivas y atraen con su agradable fragancia a piña y con el calor producido por sus propios tejidos a los escarabajos que se encargarán de polinizarla. En la primera noche las flores son de color blanco y solo están receptivos los órganos femeninos. Los escarabajos llegan cargados de polen de otras flores y normalmente se quedan encerrados en la flor cuando ésta se cierra al amanecer, pasando el día polinizándola. En su segundo atardecer, la flor de Victoria vuelve a abrirse, esta vez mostrando un color rosado y ya produciendo activamente su propio polen, que será dispersado durante esa segunda noche. Al llegar el último de sus amaneceres, la flor se cierra definitivamente y se hunde de nuevo en el agua, donde madurarán las semillas.
La descripción botánica de esta planta se resistió unas cuantas décadas más de lo esperado. Posiblemente su primer descubridor europeo fue el botánico de origen checoTadeo Haenke, “contratado” por el gobierno español para explorar la flora de las Indias (se unió a la Expedición Malaspina, por ejemplo). En 1801, durante uno de sus viajes por los ríos bolivianos, registró una flor tan rara y hermosa “que le hizo caer de rodillas de la admiración”, sin embargo murió antes de describir oficialmente la especie. Aimé Bonpland, el compañero de Alexander von Humboldt, descubrió también esta planta en 1819, tras instalarse en Argentina, pero parece que tampoco en esta ocasión se formalizó el hallazgo. A la tercera va la vencida: en 1832, Eduard Poeppig la recolectó en el Amazonas y publicó su descripción.

Victoria amazonica en su hábitat natural 
Victoria amazonica en su hábitat naturalFuente: David Stanley.

En una época en la que la exploración botánica hacía furor y en la que cada nueva especie descubierta en los trópicos era examinada en busca de posibles usos económicos, una joya como esta captó inmediatamente el interés de los botánicos europeos y más concretamente del centro neurálgico de la botánica mundial del momento: Los Kew Gardens, en las afueras de Londres. Allí llegaban constantemente, de lugares tan remotos como Australia, India o Tierra del Fuego, plantas aún desconocidas para la ciencia que eran descritas y conservadas en herbarios, plantas cuyas semillas se intentaban cultivar en los jardines ingleses. Por aquel entonces, la botánica era una fuente de innovación con un impacto social como podría ser hoy la nanotecnología, una ciencia que aportó descubrimientos que, como el caucho o la quinina, cambiarían el mundo. La fascinación que produjo algo tan exótico como el nenúfar gigante del Amazonas se ve reflejado en el nombre genérico definitivo que recibió: el de la mismísima reina Victoria; una planta solo digna de la realeza inglesa. Ahí es nada.

Lea el artículo completo en:

26 de diciembre de 2014

‘Curiosity’ detecta una misteriosa fuente de metano en Marte

El robot de exploración capta un aumento repentino de este gas, cuya presencia en la Tierra se debe a los seres vivos.

En su camino por las desoladas tierras de Marte, el robot Curiosityse ha topado con un enigma que por ahora no puede resolver. Hasta ahora no había tenido grandes problemas para demostrar que este planeta fue habitable, que la radiación no supone una barrera infranqueable para futuras misiones humanas o extraer vapor de agua de las arenas del planeta. Ahora, uno de sus instrumentos científicos ha detectado una fuente de metano que aparece y desaparece sin explicación. En la Tierra, el 90% de todo el metano que hay en la atmósfera lo producen seres vivos. Captar este gas en el Planeta Rojo podría apuntar a la presencia de vida en la actualidad, aunque hay otras posibles explicaciones. Por ahora solo hay una cosa clara, algo está haciendo que los niveles de metano se multipliquen hasta por diez y luego vuelvan a bajar de forma brusca, según explican hoy en Science los científicos delCuriosity, entre ellos dos investigadores españoles.
Hasta ahora lo más sorprendente de esta misión era que no hubiese detectado el gas. Observaciones previas hechas desde la Tierra y también con sondas lanzadas por Europa y EE UU habían captado su presencia. Según esas observaciones, el metano en Marte parecía ir y venir, aumentar de forma local en algunos puntos dependiendo de la época del año. Pero esos niveles eran incompatibles con la vida media del metano, que debería permanecer en la atmósfera durante unos 300 años, por lo que la solidez científica de esas pruebas ha sido cuestionada.
El artículo completo en:

1 de diciembre de 2014

Las plantas reconocen a sus vecinas: Si son parientes, trabajan en equipo. Si no lo son, compiten




Si las plantas parientes colaboran entre sí cuando están juntas, se podrían cultivar más cerca la una de la otra para aprovechar mejor el espacio. 

 
Si son parientes, trabajan en equipo, colaboran entre sí. Si no lo son, compiten la una con la otra.

Esto es lo que descubrió un equipo de investigadores argentinos que analizó cómo se comportan las plantas ubicadas en una hilera.

No sólo hallaron que eran capaces de reconocer a sus parientes por la forma de su tallo y sus hojas, sino también descrubrieron que la relación de parentesco las hacía actuar en consecuencia.

"Notamos que cuando acomodamos las plantas en hileras, muy cerca la una de la otra, simulando la situación típica de un cultivo, las plantas que estaban genéticamente relacionadas entre sí, posicionaban sus hojas hacia los espacios libres, fuera de la hilera", le explica a BBC Mundo Jorge Casal, investigador del Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (Conicet) y líder el estudio.

"En cambio, cuando mezclábamos plantas de la misma especie de distintos grupos genéticos, las plantas disponían sus hojas al azar, en cualquier dirección", añade.

Es decir, cuando la planta reconoce que su vecina es pariente, amontona sus hojas para minimizar la interferencia y permitirle aprovechar mejor la luz del sol.

Si no es pariente, distribuye sus hojas en cualquier dirección para aprovechar al máximo la luz disponible.

El estudio, publicado recientemente en la revista especializada New Phytologist, puede traer beneficios para la agricultura, ya que abre nuevas posibilidades en cuanto a cómo maximizar el rendimiento de las cosechas en función del espacio libre para cultivar.

Lea también: Plantas que no ven, plantas que no crecen

El artículo completo en:

BBC Ciencia

3 de mayo de 2014

OpenWorm o la emulación digital de un organismo vivo

La aplicación de este software podría ayudar a mejorar la creación de vacunas, medicinas y combustibles alternativos, además de limpiar desechos químicos. 


openworm

La inteligencia artificial tiene sus límites: la de las máquinas mismas y las de nuestras limitaciones para adecuar software a los complicados procesos de toma de decisión en ambientes de cambio constante. Pero “crear” inteligencia artificial es comparativamente sencillo si se piensa en la extrema complejidad de construir un animal.

El doctor Stephen Larson es el cofundador y coordinador del proyecto OpenWorm, donde un ambicioso equipo tratará de crear una versión digital de un gusano nematodo, uno de los organismos más básicos que existen, y según Larson (neurólogo de profesión), también uno de los que la biología sabe más: su nombre científico es C. elegans, y cuenta con alrededor de mil células, las cuales han sido mapeadas, “incluyendo un pequeño cerebro de 302 neuronas y su red compuesta de más o menos 5,500 conexiones.”


Algunos patógenos y ADN virtuales con capacidad para reproducirse han sido emulados con éxito en entornos electrónicos, pero el reto de Larson y su equipo será el de conformar un organismo digital que se comporte como uno físico. A decir de Larson, “al final del día la biología debe obedecer las leyes de la física. Nuestro proyecto es simular en lo posible la física −o la biofísica− del C. elegans y compararlo con medidas de gusanos reales.”

La aplicación de este software podría ayudar a mejorar la creación de vacunas, medicinas y combustibles alternativos, además de limpiar desechos químicos, así como para crear entornos de realidad virtual mucho más comprensivos. 

Una campaña de Kickstarter comenzará el 19 de abril para reunir fondos. Lo interesante es que OpenWorm estará disponible siempre como plataforma de acceso abierto para estimular la investigación y la curiosidad del modelo nematodo una vez concluido, lo que naturalmente nos pone un paso más cerca de la proverbial creación de organismos digitales de mayor complejidad.
Después de todo, un esclavo no desea la libertad, sino tener un esclavo propio.
Tomado de:

25 de noviembre de 2013

¿Por qué las voces cambian a medida que envejecemos?

Niños en un coro

Por varios motivos.

Durante la infancia nuestra voz cambia gradualmente con el crecimiento de la laringe y la maduración de las cuerdas vocales.

Luego, en los niños ocurre un cambio dramático en la pubertad porque las hormonas cambiantes afectan el tamaño y la forma de la laringe y la voz se "quiebra".

La mayoría de las voces luego permanecen relativamente estables durante varias décadas hasta que más adelante en nuestra vida la voz se debilita y se vuelve temblorosa porque los músculos comienzan a encogerse y las membranas se afinan.

Las voces de los hombres tienden a subir de tono, mientras que con las de mujeres ocurre lo opuesto.
 
A pesar de estos cambios, nuestra voz puede seguir siendo reconocible por familiares y amigos a lo largo de la vida.

Fuente:

BBC Ciencia

29 de septiembre de 2013

Tiburones: 10 curiosidades sobre el animal más temible

Existe uno híbrido como una mula y otros que saben «caminar»; algunos devoran a sus hermanos antes de nacer o matan a coletazos. Los últimos descubrimientos sobre escualos los hacen aún más fascinantes.

1.  Pueden matar a coletazos

El tiburón zorro (Alopias pelagicus), un escualo de 3 metros de largo que habita las aguas del Índico y el Pacífico, exhibe una eficaz estrategia de caza que le permite obtener varias piezas de un solo intento. El animal aturde y mata a sus presas con su larga cola, que utiliza como si fuera un látigo, a una velocidad de 24 metros por segundo. Con un golpetazo semejante, sus víctimas -sardinas u otros pequeños peces- mueren o quedan tan atontadas que son incapaces de escapar de las intenciones del depredador. 

Con esta técnica, el tiburón zorro consigue matar hasta siete peces a la vez. Puedes verlo en acción en un vídeo en este enlace. 


Lea el artículo completo en:


25 de septiembre de 2013

¿Cómo se mueven las bacterias?


Cuando la gente piensa en bacterias o microorganismos, en general, lo normal es imaginarlos estáticos creciendo como manchas o colonias sobre placas de cultivo, casi como si fuesen plantas microscópicas. En otros casos se piensa en el flagelo, esa alargada estructura a modo de látigo que casi todo el mundo asocia a los espermatozoides, incluso algunas personas nombran los típicos movimientos de los protoozos. Sin embargo la realidad es bastante más compleja y variada.






Hace unos meses realicé un vídeo también para Naukas en el que se apreciaba el movimiento de bacterias vistas a 100x, que aparentemente estaban inmóviles sobre una placa de cultivo. He usado bastante ese vídeo para explicar en distintos eventos de divulgación que los microorganismos no son seres inmóviles, que interactúan con el medio que les rodea, hoy vengo a contar de una forma sencilla algunas de las distintas formas de moverse que poseen los microorganismos.

Si os pregunto cuántas formas de moverse tienen los organismos macroscópicos (los que se ven a simple vista) quizás me respondáis simplificando que tres: volar, nadar y caminar/correr. Sin embargo con las bacterias como decía antes las cosas se complican un poco y podemos hablar de hasta, ¡6 formas distintas de movimiento! Que se produzca uno u otro movimiento no sólo depende de la especie que observemos, también depende de otros factores como la humedad y la concentración de nutrientes en los medios de cultivo.

Swarming

Este es quizás el más conocido de todos ellos, pues es el que mejor se observa en cultivos de agar sólido. Cuando colocamos una pequeña cantidad en alguna zona de la placa las bacterias comienzan a extenderse formando una fina capa que termina cubriendo toda la superficie, lo hace creciendo por oleadas. Para que esto ocurra, toda la colonia debe colaborar como si de un enorme enjambre perfectamente coordinado se tratase.


El fenómeno ocurre en tres fases: diferenciación, migración y consolidación. Las tres fases coinciden con lo que en el vídeo parecen ser “oleadas de avance” Lo primero que vemos es como la colonia bacteriana comienza a hacerse más densa lo que indica que aumenta el número de individuos que se preparan para lanzarse a explorar lo desconocido.

Pero antes de lanzarse estas bacterias deben prepararse, y para ello sufren drásticas modificaciones de su aspecto.

Lea el artículo completo en:

NAUKAS

18 de septiembre de 2013

¿Por qué los patos hacen "cuac" cuando vuelan?

PatosPara comunicarse con otros patos y gansos.

El típico "cuac" que asociamos con los patos sólo es propio de las hembras ánades reales y otras pocas especies de pato.

Los machos emiten un sonido más discreto y raspado, no hacen "cuac". Los gansos dicen "honk".

Sea como sea, los patos usan estos sonidos para mantener a la familia junta o para llamar a las crías para que se mantengan cerca.

Así es en tierra, agua o aire.

Cuando vuelan, los músculos del pecho se contraen cuando aletean hacia abajo, momento en que exhalan el aire. Por ello, la frecuencia de sus llamados depende de cuán rápido están volando.

Cuando el pato está en tierra y quiere mantener a la familia junta, su llamado es más pausado y el volumen, más bajo.

Fuente:

BBC Ciencia

17 de septiembre de 2013

El pez borrón: El animal más feo del mundo

Ejemplar de pez borrón. | Greenpeace

Ejemplar de pez borrón. | Greenpeace

El pez borrón ('Psychrolutes marcidus'), una especie muy difícil de encontrar que vive en las grandes profundidades del océano, ha sido bautizado como el 'animal más feo del mundo'. El título ha sido otorgado por más de 3.000 votos obtenidos en un concurso online organizado por una organización conservacionista británica llamada Sociedad para la Preservación de los Animales Feos (UAPS, por sus siglas en inglés). El pez borrón, que recuerda al mítico villano Jabba the Hutt de la saga de 'La Guerra de las Galaxias', ganó con 795 votos, lo que supone casi un 30% del total.

La campaña dirigida por el UAPS tenía como objetivo elegir una nueva mascota para esta organización, que fue creada para dar a conocer a los animales en peligro de extinción y estéticamente cuestionados. Según aseguran sus miembros, con 200 especies que se extingen cada día, los animales feos necesitan más ayuda debido a que no tienen precisamente las facilidades de las 'supermodelos'.

"Durante demasiado tiempo los animales bonitos y suaves han ocupado el centro de atención, pero ahora el pez borrón será una voz para los marginados que siempre se olvidan", asegura Simon Watt, presidente de la sociedad, al diario británico 'The Guardian'.

Los otros animales votados entre los seis primeros de 11 nominaciones fueron:

El kakopo, un loro no volador gigante de Nueva Zelanda, que está muy amenazado por sus depredadores debido a su excesivamente curiosa naturaleza.
El axolotl, una salamandra que puede regenerar sus propios miembros.
La rana de agua del Titicaca ('Telmatobius culeus'), llamado así por el lago de América del Sur donde vive.

El mono narigudo, que tiene una nariz bastante grande pero se dice que es atractivo para sus congéneres. Además tiene un vientre muy hinchado debido a su pasión por la fruta poco madura.



Fuente:

El Mundo Ciencia

15 de septiembre de 2013

¿Es cierto que el escorpión se suicida cuando se siente acorralado?



La leyenda dice que cuando uno de estos animales se ve en peligro se pica con su propio aguijón.

Negamos la mayor. Más que contestar a la pregunta, lo que haremos es explicar la falsedad de la premisa que lleva implícita la pregunta. Es decir, que debe quedar claro que los escorpiones no se suicidan, ni cuando se ven acorralados por el fuego ni en ninguna otra circunstancia estresante, como podría ser la falta de oxígeno.

Todo procede de la antigua «leyenda urbana» (o rural) que dice que cuando un escorpión se ve en peligro, como por ejemplo si se le acorrala con fuego, con tal de evitar el sufrimiento se suicida picándose con su propio aguijón. Esto se basa en observaciones reales pero mal interpretadas.

Hay que saber que los escorpiones son animales poiquilotermos, es decir, de temperatura variable. Significa que no pueden regular su temperatura, de manera que dependen del entorno. Es por esto que si se encuentra rodeado de fuego, su cuerpo se calienta y se deshidrata rápidamente, lo que le provoca espasmos frenéticos y contracciones en la «cola». Viendo uno de estos movimientos puede parecer que se pique. En realidad, lo que ocurre es que la elevación de la temperatura provoca la desnaturalización e incluso la coagulación de las proteínas del interior, proceso que se convierte en irreversible por encima de los 60 o 65º C, produciendo convulsiones, que el cuerpo se arquee, y finalmente la muerte. También puede ser que, según cómo sea el fuego, se produzca una columna de aire caliente ascendente que le dificulte la respiración y le asfixie.

Dicho esto, debemos tener en cuenta que el aguijón no puede atravesar el duro caparazón (esqueleto externo) que protege al escorpión. Por si fuera poco, en el caso de una improbable picadura accidental entre los segmentos, cabe aclarar que el escorpión es inmune a su propio veneno.
 
Finalmente, para que un animal «decida» suicidarse, ha de tener una inteligencia y una capacidad de raciocinio que pocas especies poseen. En cambio, hablando en general, uno de los comportamientos más arraigados en el mundo animal es el instinto de supervivencia. De hecho, la propia calificación de «suicidio» es bastante antropocéntrica, de difícil aplicación en animales, y menos en invertebrados.
Albert Masó es biólogo, profesor y fotógrafo de naturaleza. Barcelona.

Tomado de:

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0