Latest Posts:

Mostrando las entradas con la etiqueta atmosfera. Mostrar todas las entradas
Mostrando las entradas con la etiqueta atmosfera. Mostrar todas las entradas

28 de enero de 2020

Nuestro sistema solar tuvo tres planetas habitables

Un hecho fascinante es que nuestro sistema solar quizás tuvo en sus orígenes no uno, sino tres mundos habitables al mismo tiempo. Claro está, hablamos de Venus, la Tierra y Marte, que, no solo estaban en la zona habitable del Sol, sino que probablemente tenían agua líquida en su superficie y que, por tanto, satisfacían el laxo criterio de habitabilidad de los astrónomos (recordemos que el que un planeta sea «habitable» no implica necesariamente que esté «habitado»). Hoy en día, de los tres solamente queda uno que siga siendo habitable, nuestro planeta. La incógnita es cuándo dejaron de ser habitables Venus y Marte y, por supuesto, si estuvieron alguna vez habitados.
¿Tuvieron Venus y Marte océanos durante el comienzo del sistema solar? (NASA).
La habitabilidad del sistema solar interior depende de dos factores: el comportamiento del Sol y el tamaño y composición de los propios planetas. Desde que el sistema solar se formó hace unos 4600 millones de años, el Sol ha visto aumentar su luminosidad en un 30%. Este hecho ha provocado que el límite interior de la zona habitable se haya ido desplazando progresivamente hacia el exterior, lo que ha dejado fuera a Venus y ha colocado a la Tierra cerca del borde interno. De hecho, el Sol seguirá aumentando su luminosidad y, en unos mil millones de años, la Tierra quedará fuera de la zona habitable y los océanos se evaporarán para siempre. Curiosamente, aunque el Sol primitivo era menos luminoso, sabemos que Marte fue habitable durante cientos de millones de años, como mínimo. Es lo que se conoce como la «paradoja del Sol joven», y que también es un problema a la hora de explicar las condiciones de la Tierra primitiva.

Zona habitable de las estrellas en función de su temperatura superficial. En la actualidad solo la Tierra y Marte están dentro de la zona habitable (Chester Harman/NASA).
Si Venus dejó de ser habitable principalmente por culpa del comportamiento del Sol, en cambio Marte ya no lo es por sus particularidades como planeta. Marte siempre fue el menor de los tres planetas potencialmente habitables del sistema solar debido a la acción gravitatoria de Júpiter, cuyas migraciones hacia el interior del sistema provocaron que el planeta rojo tuviese una masa menor de la que le correspondía. Con un tamaño más pequeño, el calor interno y, por tanto, su actividad interna siempre fue menor que la de la Tierra o Venus. Esto provocó que los volcanes marcianos no fuesen capaces de aportar suficientes volátiles para compensar la pérdida de la atmósfera provocada por una menor gravedad. El menor tamaño también fue el causante de que Marte no retuviese una dinamo interna que crease una magnetosfera potente para proteger la atmósfera del viento solar. Precisamente, aunque el Sol primigenio era más débil, la emisión de partículas de viento solar y la actividad en rayos X y en el ultravioleta era mayor que la actual, lo que aceleró el proceso de pérdida atmosférica de Marte.
Interacción entre el viento solar y Marte. Sin una magnetosfera potente, Marte ha perdido y sigue perdiendo su atmósfera por culpa del viento solar (NASA).
Hasta hace unos años existía un acalorado debate sobre si la mayor parte de la atmósfera marciana se había perdido al espacio o, si por el contrario, quedó almacenada en el suelo forma de depósitos de carbonatos, hielo de agua y hielo de dióxido de carbono. Ahora, gracias sobre todo a la misión MAVEN de la NASA, tenemos la total seguridad de que Marte perdió la mayor parte de su atmósfera por acción del viento solar. En la actualidad, la atmósfera de Marte es tremendamente tenue, de tan solo 6 milibares de presión y está formada exclusivamente por dióxido de carbono. Si se sublimasen los depósitos de hielo de dióxido de carbono que se hallan en los polos marcianos solo lograríamos aumentar la presión hasta los 50 milibares (malas noticias para los futuros ingenieros planetarios que quieran terraformar el planeta). 

Lea el artículo completo en: Eureka
 

6 de enero de 2020

¿Quiéres conocer el lenguaje de las nubes?

¿Sabías que las nubes de agua, de momento, solo existen en el planeta Tierra?

Otros planetas también presentan nubes, pero son nubes diferentes: Venus, por ejemplo, está cubierto de densas nubes de dióxido de carbono que ocultan su superficie; y Júpiter, Saturno, Urano y Neptuno tienen nubes compuestas por hidrógeno y helio.

Formadas por diminutas partículas de agua líquida y hielo, las nubes de la Tierra se generan cuando el vapor que emana de ríos y mares se enfría y se condensa al llegar a las capas más altas y frías de la atmósfera. A partir de ahí, su forma y su historia toma caminos muy diferentes:

El químico inglés Luke Howard (1772–1864), a comienzos del siglo XIX, fue el primero en clasificar las nubes. Considerado el padre de la meteorología, dividió las nubes en cuatro grandes categorías (cirriformes, estratiformes, nimbiformes y cumuliformes) y arrancó una carrera científica para aprender a leerlas, usando su variada y sugerente apariencia para predecir qué cambios meteorológicos.

Cirriformes: rizos de cabello que tapizan el cielo

Con forma de cabellos rizados, pero compuestos por cristales de hielo, los cirros son las nubes más representativas de esta categoría. Pueden tapizar el cielo entre los 5 y los 15 kilómetros de altura. Son nubes altas, claras, tenues y delicadas que frecuentemente anuncian un cambio meteorólogico a peor, en general precipitaciones y bajadas de temperatura en las 24 horas siguientes a su aparición.


 

Cuando la luz interacciona con los cristales de hielo que forman los cirros, pueden producirse fenómenos ópticos tan insólitos como el parhelio, la aparición simultánea de imágenes del Sol reflejadas en las nubes, y el halo, cerco de color pálido alrededor de los discos del Sol o de la Luna.

Estratiformes: cama de nubes

Son nubes amplias y de contornos difusos que se desarrollan de forma horizontal, por lo que se extienden como si fueran una cama o capa. Dentro de esta categoría están, en función de su altura, los estratos, los altostratos, los cirrostratos y los nimbostratos. Estas últimas, a diferencia de las anteriores, también tienen desarrollo vertical e impiden totalmente el paso de la luz solar, por lo que son nubes muy oscuras. Los nimboestratos siempre producen precipitaciones que suelen ser continuas y no muy intensas.



Hasta bien entrado el siglo XX, la formación de las nubes se entendía como una fase avanzada de la niebla y se consideraba a la nube como una niebla a mayor altura. El astrónomo francés Camille Flammarion (1842–1925), en su tratado La Atmósfera, afirma que «aún cuando no hay diferencia esencial entre las nieblas y las nubes (… ). La primera es inmóvil, la segunda móvil». En la actualidad, se considera a la niebla un tipo nuboso de base sobre el suelo, o cercana a él, con poco desarrollo vertical y forma parte de las nubes del género estratiforme.

Nimbiformes: los yunques de la tormenta

Del latín nimbos, que significa tormenta, este tipo de nubes es el que genera la mayoría de precipitaciones. En esta categoría están los cumulonimbos, la nube más grande y poderosa que se puede contemplar y que hasta los aviones deben evitar. La “reina de las nubes” tiene fuertes corrientes en su interior con vientos impredecibles, que desplazan violentamente el aire de arriba a abajo y de abajo a arriba. Estas nubes suelen generar lluvias intensas y tormentas eléctricas, asociadas a granizo, mangas de agua y tornados. El agua que contiene un cumulonimbo medio podría llenar 7 piscinas olímpicas.


 

Con una base situada sobre los 1.000 metros de altura, la cima de los cumulonimbos puede alcanzar los 20 kilómetros. Su desarrollo vertical solo se interrumpe cuando llega a la tropopausa, el límite superior de la troposfera, la capa más interna de la atmósfera que va desde el suelo hasta la estratosfera. Los cumulonimbos totalmente desarrollados tienen forma de yunque.

Cumuliformes: montañas de algodón

Son nubes aisladas con forma de montaña o cúpula de algodón, que tienen un contorno bien definido y muestran una gran variedad de tamaños y espesores. Los cúmulos, las nubes más características de esta categoría, aparecen sobre todo en épocas calurosas del año y pueden ocupar un espacio que va entre los 500 y los 6.000 metros de altura. Con un importante desarrollo vertical, pueden generarse aisladamente o asociadas a otras en hileras o en grupos. Según los factores atmosféricos que las rodeen, como la humedad, los cúmulos pueden dar lugar a cumulonimbos.


 

Poco después de la II Guerra Mundial comenzó a teorizarse sobre la idea de lo que hoy se conoce como “siembra de nubes”. Este proceso consiste en utilizar yoduro de plata, hielo seco o dióxido de carbono congelado para condensar de forma artificial el vapor. Estas sustancias se asocian con las moléculas de agua y favorecen su precipitación. Lo habitual es rociarlas sobre nubes cumuliformes desde avionetas o cohetes. En febrero de 2018, por primera vez, un grupo de investigadores de la Universidad de Wyoming (EE.UU) logró sembrar nubes para generar nieve y monitorizar todo el proceso, desde la formación de los cristales de hielo en la atmósfera hasta su precipitación.

Estratocúmuliformes: globos en capas

Además de las cuatro categorías originales de Luke Howard, el actual sistema internacional de clasificación de nubes reconoce una quinta división, las estratocúmuliformes. Son nubes globulares que pueden desarrollarse en capas. En esta categoría están, de menor a mayor altura, los estratocúmulos, los altocúmulos y los cirrocúmulos. Un estratocúmulo es una nube baja grande de formas redondeadas, mientras que los altocúmulos y los cirrocúmulos son como estratocúmulus pequeños distribuidos en grupos y alineados.


A partir de altocúmulos se pueden formar algunas de las nubes más raras y extravagantes. Las lenticulares, por ejemplo, tienen forma de platillo volante y se suelen formar en zonas montañosas. Las mammatus, asociadas a tornados, presentan aspecto de bolsas que cuelgan, como la ubre de una vaca, de la parte inferior de la nube.

Bajas, medias y altas

En 1956, la Organización Meteorológica Mundial publicó el Atlas Internacional de las Nubes, en el que definieron las 10 formas básicas que acabamos de revisar, a partir de la clasificación de Howard y en función de la altura que alcanzan en el cielo. Así, las nubes bajas, que se encuentran por debajo de los 2.000 metros, son los estratos y los estratocúmulos.



Las nubes medias son las que se generan entre los 2.000 y los 7.000 metros, aquí se encuentra los altoestratos, los altocúmulos y los nimbostratos.

Las nubes altas, que se forman por encima de los 6.000 metros, son los cirros, los cirrocúmulus y los cirrostratos. Los dos últimos tipos son los cúmulos y los cumulonimbos, con su imponente desarrollo vertical que las sitúa desde nubes bajas a altas.

Muchas formas y tamaños para un espectáculo de pase diario que flota, prodigioso, sobre nuestras cabezas.

Cortesía de: Open Mind

26 de noviembre de 2019

2019: los gases de efecto invernadero marcan un máximo histórico

La Organización Meteorológica Mundial (OMM) advierte de que la concentración de dióxido de carbono (CO2) es la más alta desde hace tres millones de años.


La humanidad suma otra página para la crónica del desastre: la concentración en la atmósfera de los principales gases de efecto invernadero —dióxido de carbono (CO2), metano (CH4) y óxido nitroso (N2O)— marcó un nuevo récord durante 2018. La Organización Meteorológica Mundial (OMM) ha recordado este lunes (25 de noviembre de 2019) que en el caso del CO2, el principal de estos gases responsables del calentamiento global, hay que retroceder al menos tres millones de años para encontrar una concentración tan grande en la atmósfera. Y en aquel momento —en el que ni siquiera existía el ser humano—, la temperatura era entre dos y tres grados más cálida que ahora y el nivel del mar entre 10 y 20 metros mayor, ha advertido la organización. La OMM, un ente dependiente de la Naciones Unidas, ha presentado este lunes su boletín anual de concentración de gases de efecto invernadero, el decimoquinto que realiza.

Estos gases siempre han estado presentes en la atmósfera terrestre e impiden que parte del calor que desprende la Tierra tras ser calentada por el Sol se pierda en el espacio. Gracias a ellos el planeta tiene una temperatura agradable que lo hace habitable para el hombre. Pero el equilibrio que ha existido durante miles de años se ha roto y la OMM tiene claro el responsable: "Hay múltiples indicios de que el aumento de los niveles atmosféricos de CO2 está relacionado con la quema de combustibles fósiles", es decir, con el empleo por parte del ser humano del carbón, el gas natural y el petróleo.

La utilización de esos combustibles fósiles se disparó a partir de la Revolución Industrial y, con ello, las emisiones de gases de efecto invernadero. En el caso del CO2, la concentración alcanzó en 2018 las 407,8 partes por millón (ppm), lo que supone casi un 47% más que el nivel preindustrial (en 1750, cuando la concentración era de 278 ppm). El metano atmosférico alcanzó las 1.869 partes por mil millones (ppb) en 2018, casi un 159% más que el nivel preindustrial. Y en el caso del óxido nitroso su concentración atmosférica fue de 331,1 ppb, un 23% más que en 1750. Estos son los resultados de las más de 100 estaciones de medición repartidas por el planeta que sirven para elaborar el boletín de esta organización.

Más información en: El País (Ciencia)
 

8 de octubre de 2019

¿Por qué el cielo se ve azul? Y cómo John Tyndall lo descubrirlo


A lo largo de la historia, a muchos los científicos les ha motivado la aspiración de comprender cómo funciona la naturaleza. 

En su forma más pura, se trata solo de eso: el deseo de entender, sin tener en cuenta cuán útiles o rentables puedan ser los descubrimientos.

Ese enfoque de la ciencia se llama "investigación impulsada por la curiosidad" o "investigación sin límites".

Uno de los mejores ejemplos de los practicantes de esta forma pura de descubrimiento es el físico irlandés John Tyndall (1820-1893).


Además de ser un erudito, Tyndall también era un romántico


Era un entusiasta montañista y pasaba mucho tiempo en los Alpes. A menudo hacía una pausa al atardecer pues las puestas de Sol alpinas y su magnífica gama de colores lo dejaban extasiado.

Fue por eso que se propuso comprenderlas y, con ello, logró inspirar a generaciones de científicos a realizar investigaciones fundamentales. 

La razón de la belleza

Su ilimitada curiosidad y su interés por la naturaleza lo llevaron a explorar una amplia gama de temas y a hacer muchos descubrimientos clave para la ciencia. 

Fue él, por ejemplo, quien demostró por primera vez que los gases en la atmósfera absorben calor en grados muy diferentes, descubriendo así la base molecular del efecto invernadero.

Para encontrar respuestas a sus diversas preguntas, inventó experimentos para los que construyó varios aparatos, algunos muy sofisticados, que requerían, además, de una profunda comprensión teórica y una tremenda destreza.

Pero cuando quiso saber por qué el cielo se ve azul en el día y rojo al atardecer, los instrumentos que usó fueron sencillos. 

Armó un simple tubo de vidrio para simular el cielo y usó una luz blanca en un extremo para simular la luz del Sol. 

Descubrió que cuando llenaba gradualmente el tubo de humo, el haz de luz parecía ser azul desde un costado pero rojo desde el otro extremo. 

A este tubo de Tyndal, hecho de una aleación de cobre, hierro, vidrio y cera, lo llaman "aparato cielo azul" en la Royal Institution donde está expuesto.

Se dio cuenta de que el color del cielo es el resultado de la luz del Sol dispersándose por las partículas en la atmósfera superior, en lo que ahora se conoce como el 'efecto Tyndall'

Otro de sus aparatos fue aún más simple.

"El cielo en una caja"

Sr trataba de un tanque de vidrio lleno de agua, al que le agregaba unas gotas de leche. 

Lo que hacía la leche era introducir algunas partículas en el líquido.

Una vez lista la sencilla receta, Tyndall encendió una luz blanca al lado de un extremo del tanque.
Inmediatamente vio que el tanque se iluminaba con diferentes colores

A Tyndall le fascinaba el experimento. En su estilo típicamente poético, lo describió como "el cielo en una caja". 

Y es que a un lado del tanque, la solución era azul. Pero a medida que viajaba hacia el otro lado, se iba tornando más amarilla, hasta volverse naranja, como el atardecer. 

Arcoíris

Tyndall sabía que la luz blanca está hecha de todos los colores del arcoíris. Y pensó que la explicación de ese fenómeno que tanto lo cautivaba era que la luz azul tenía una mayor probabilidad de rebotar y dispersar las partículas de leche en el agua.

Ahora sabemos que esto se debe a que la luz azul tiene una longitud de onda más corta que los otros colores de luz visible. Eso significa que la luz azul es la primera en dispersarse por todo el líquido.

Es por eso que la parte más cercana a la fuente de luz se ve azul. Y es por eso que el cielo es azul: porque la luz azul del Sol tiene una mayor probabilidad de dispersarse en la atmósfera.
Pero el tanque también explica los colores del atardecer. 

Lea el artículo completo en:

BBC Mundo
 

6 de mayo de 2019

¡A cazar el CO2!

El calentamiento global necesita que se frenen las emisiones de gases contaminantes y también retirar los que ya están en la atmósfera.



El calentamiento global es el gran reto medioambiental de este siglo. La previsión de aumento de la temperatura se debe a la concentración de gases contaminantes, principalmente metano y dióxido de carbono (CO2). El Acuerdo del clima de París se comprometió a reducir estas emisiones, pero los expertos indican que no es suficiente. “Hay que retirar el CO2 que ya está en la atmósfera”, asevera el profesor de Química ambiental de la Universidad de Barcelona (UB), Xavier Giménez. Su equipo de investigación trabaja en el desarrollo de materiales porosos que capturen este gas. El docente también es autor del libro Matemáticas y cambio climático. Cuidar el planeta con cálculo superior, que pertenece a la colección de EL PAÍS Grandes Ideas de las matemáticas.

La atmósfera contiene un 0,04% de CO2. Parece muy poco, pero Giménez advierte que impera deshacerse de él. “Es muy complicado porque estamos hablando de muy poco y limpiar algo que casi está limpio, cuesta mucho energéticamente hablando”. Su grupo se encuentra analizando qué materiales retienen mejor este gas mediante simulaciones computacionales. La propuesta de uso será la de crear grandes árboles que configuren un bosque artificial. “Si se exponen al viento, al pasar a través del material, se capturaría el CO2”, explica. Este gas puede utilizarse como aditivo para bebidas o componente de combustibles, entre otras opciones.

El desarrollo de este tipo de soluciones se viene investigando desde hace décadas, aunque la captación de dióxido de carbono no compensaría su emisión. La clave, además de dar con un compuesto capaz de absorber el gas, sino que no sean precisas grandes cantidades de energía. Tampoco productos contaminantes, como las aminas, compuestos derivados del tóxico amoniaco, que actualmente se emplean en técnicas que evitan las emisiones de carbono.

Algunas industrias que liberan este gas con su actividad han implementado acciones para retenerlo y devolverlo a su origen. En 1996 se inauguró el proyecto Sleipner CCS (carbon capture and storage), en Noruega, el primero que tenía como objetivo almacenar CO2. La empresa Statoil Hydro comenzó a explotar un yacimiento de gas natural, el cual contiene hasta un 9% de este compuesto. La compañía lo depura y vuelve a inyectarlo bajo el lecho marino de la zona, de donde extrae el gas natural.

A nivel mundial se capturan más de 30 millones de toneladas de CO2 anualmente gracias a instalaciones de este tipo, según datos de la Agencia Internacional de Energía (IEA en sus siglas en inglés). Más del 70% de estas capturas ocurre en Norteamérica. La IEA calcula que los costes de extracción varían desde los 20 dólares por tonelada (unos 17,50 euros) —si la fuente es de alta pureza, como un yacimiento de gasta natural— hasta los 100 dólares por tonelada (87,70 euros). EE UU, frente a la paradoja negacionista del cambio climático de su presidente, Donald Trump, impulsó el pasado abril ventajas fiscales para quienes aplicasen estas técnicas.

 El origen es químico

La comprensión del funcionamiento del cambio climático, así como el desarrollo de soluciones para combatirlo tiene su origen en la química y las matemáticas. “La química participa en toda una serie de casos y procesos absolutamente críticos para poder entender cómo se comporta el clima”, explica el profesor Giménez. “Sin conocer la estructura química de los gases invernadero y su comportamiento no se puede entender el problema”.

Una vez identificados estos fenómenos, la formulación físico-química se produce en lenguaje matemático. “Es lo que permite tener capacidad predictiva”, apunta Giménez. Los modelos no son infalibles y solo se demuestra su eficacia con el tiempo. En los años 70 se describió el desarrollo del deterioro de la capa de ozono. Las siguientes décadas fueron las que confirmaron que los modelos eran correctos. Por este motivo los modelos matemáticos que estiman un aumento de temperatura de entre 1,5 y 2 grados se revisan continuamente. “Se puede discutir si son más acertados o no, pero el cambio climático existe, eso es incuestionable”, zanja. Reconoce que lo que no se puede asegurar es cuánta culpa tiene la acción del ser humano sobre él, pero matiza que este “no puede perturbar el ambiente de tal forma que pueda llegar a causar un problema grave”.

Giménez considera que todos los problemas de este tipo “o se han resuelto o están en vías de hacerlo”. Aunque advierte: “Excepto el calentamiento global. Es el único problema que aún no tiene un horizonte de solución y eso es porque aún no estamos haciendo lo suficiente”.

Tomado de: El País (España)

4 de junio de 2018

Stefano Mancuso: "Las plantas llevan siglos engañándonos"

Este neurobiólogo italiano se ha propuesto que aprendamos a valorar la inteligencia del reino vegetal. En él, defiende, podemos encontrar la respuesta a muchas preguntas (urgentes).

STEFANO MANCUSO (Catanzaro, Italia, 1965) es uno de los divulgadores más revolucionarios e influyentes del reino vegetal. Director del Laboratorio Internacional de Neurobiología Vegetal de la Universidad de Florencia, ejerce de apasionado embajador de las plantas y se ha impuesto una importante misión: cambiar la percepción (equivocada) que tenemos de ellas. Porque son muchos, lamenta, quienes piensan que estos seres vivos son estúpidos e insensibles. Y nada más lejos de la realidad, reivindica. “Simplemente nos resulta muy difícil comprender lo que es una planta porque son demasiado diferentes a los animales”.

En su nuevo libro, El futuro es vegetal (Galaxia Gutenberg), Mancuso aporta múltiples razones para que aprendamos a mirar de otra forma al mundo verde. De hecho, él no duda en calificar a las plantas de inteligentes —aunque carezcan de cerebro— porque sus acciones demuestran que luchan por su supervivencia con planteamientos exquisitos. Practican el engaño. Y nos utilizan. En la Antigüedad, el centeno era considerado una mala hierba que acompañaba al trigo, el cereal predilecto de los agricultores. Así que la mala hierba decidió imitar el aspecto de las semillas de trigo para engañar a los humanos, que empezaron a tener dificultades para diferenciarlas. Como resultado, el centeno, transportado por el hombre, llegó a muchas más zonas desplazando incluso al trigo en los sitios de clima más duro. Y la máxima El enemigo de mi enemigo es mi amigo, dice Mancuso, “funciona con las plantas. Cuando una oruga empieza a comer un tomate, sus hojas producen moléculas que tienen un efecto llamada para los enemigos de la oruga”.

Según Mancuso, en el comportamiento vegetal podemos inspirarnos para encontrar soluciones a los retos que acechan a la humanidad. A su paso por Madrid, imposible ignorar que en España no llueve y la sequía es tan pertinaz que puede convertirse en el problema más grave a corto plazo. Sugiere que hay que tener más presente a las plantas. “Son capaces de dirigir el clima. La circulación atmosférica de las lluvias está controlada por los bosques ecuatoriales, así que poseen uno de los motores. Podemos estabilizar el clima. Podemos reducir las emisiones de dióxido de carbono, y reforestar. Los bosques nos ofrecen la única manera de reducir las emisiones”.

Y, sobre todo, el italiano cree que podemos y debemos cambiar nuestros hábitos. “Ahora usamos el 70% del agua en los cultivos, pero es insostenible. Necesitamos producir alimentos con menos agua”. En vez obtener la comida de cuatro o cinco tipos de plantas, hay miles de ellas que son cultivables y algunas requieren mucha menos agua, e incluso crecen con agua salada. Las plantas nos sugieren la forma de afrontar un futuro en el que no podremos derrochar el agua que hoy tan alegremente tiramos.

Fuente:

El País (Ciencia)



1 de junio de 2018

Nuevo récord en la medición de CO2

El Observatorio de Izaña, en Tenerife, registra de nuevo la máxima concentración de dióxido de carbono en la atmósfera de la Tierra.


Hace por lo menos 800.000 años que no se acumulaba tal cantidad de dióxido de carbono en la atmósfera del planeta Tierra. Aunque la cifra no diga gran cosa, las 413,9 partes por millón (ppm) registradas el 7 de abril en la estación de Izaña, junto al Teide, son una medición récord, otra más, para ese observatorio puntero. Récord de acumulación del mayor responsable del efecto invernadero y por tanto, del calentamiento del planeta. Esos 413,9 ppm también son la advertencia de lo que le estamos haciendo al planeta, alterando de forma irreversible sus ciclos naturales; saturando el aire con gases de efecto invernadero; provocando que ya estemos sufriendo un calentamiento global, con 400 meses seguidos por encima de la media histórica.

Esa medición histórica es una noticia triste, pero alguien tiene que hacerla. “Me fastidia tener que anunciar otro récord, es desagradable tener que dar malas noticias, pero las tengo que dar. La ciudadanía se merece que la informemos de este crecimiento incesante”, lamenta Emilio Cuevas-Agulló, director del Centro de Investigación Atmosférica de Izaña. Cuevas (Santa Cruz de Tenerife, 1961) llegó en el año 1990 a esta estación meteorológica, cuando se medía un máximo de 360 ppm, y entonces ni se imaginaba lo que depararía el futuro: “Aunque conozcas la física que hay detrás, no lo esperas. Y yo creo que no queremos esperarlo porque esto a nosotros nos desagrada”. En aquella época la curva de acumulación de CO2 en la atmósfera iba hacia arriba, pero todavía fluctuaba. 

“Ahora es clarísimo”, dice mientras señala con el dedo la gráfica, “la curva se está acelerando”. “No solo aumenta sino que aumenta cada vez a mayor ritmo, eso es lo que está ocurriendo. A nosotros, a mí personalmente, me agobia un montón ver esta curva. Me produce desazón, tristeza”, asegura.

Durante los últimos 800.000 años y hasta la Revolución Industrial, el CO2 fluctuó entre unos 180 y 280 ppm dependiendo de las épocas gélidas o los períodos cálidos interglaciales. Sin embargo, hoy la tasa de aumento de hoy en día es más de 100 veces más rápida que el aumento que se dio cuando terminó la última glaciación.

Cuevas señala en su ordenador el récord global de dióxido de carbono en la atmósfera.
La nota completa en:

El País (España)

22 de febrero de 2018

El rastro más antiguo de la vida en la Tierra

Confirman que unos restos fosilizados de 3.500 millones de años hallados en Australia son de origen biológico.

Unos restos microscópicos descubiertos en unas rocas de 3.500 millones de años constituyen los fósiles más antiguos conocidos así como la prueba directa de vida en la Tierra más temprana hallada hasta fecha. Así lo ha confirmado un equipo de investigadores de las universidades de Wisconsin–Madison y California, en Los Ángeles (UCLA). En un estudio publicado en la revista Proceedings of the National Academy of Sciences, estos científicos, coordinados por el paleobiólogo James William Schopf, de esta última institución estadounidense, y el profesor de Geociencias John W. Valley, de la primera, describen once especímenes microbianos pertenecientes a cinco taxones diferentes –en estos se agrupan organismos que presentan un cierto parentesco entre sí–.

Según estos expertos, es posible relacionar sus características morfológicas con las huellas químicas características de la vida. Aunque algunos ejemplares son, en esencia, similares a algunos microbios que aún pueden encontrase en la actualidad, otros son bacterias y arqueas –un tipo de microorganismos unicelulares– pertenecientes a especies ya extinguidas. En todo caso, vivieron en una época en la que el oxígeno aún no se encontraba de forma significativa en la atmósfera.

A partir de su análisis, los investigadores pudieron constatar que entre los microorganismos, cada uno de unos 10 micrómetros de ancho –un cabello humano tiene el mismo grosor que ocho de ellos–, se encontraban bacterias fototróficas, que aprovechan la radiación solar para generar energía, arqueas productoras de metano y gammaproteobacterias, que oxidan este gas, un compuesto que según algunos modelos teóricos tuvo una importante presencia en la atmósfera primitiva.

Este tipo de estudios sugiere que la vida podría ser un fenómeno muy común en el universo”, afirma Schopf. “Pero, sobre todo, la presencia de estos microbios en la Tierra hace 3.500 millones de años indica que se habría desarrollado en nuestro planeta mucho antes de esa fecha; si bien nadie sabe cuánto antes. Además, confirma que incluso la vida más primitiva puede evolucionar y dar origen, en este caso, a microorganismos más avanzados”. El propio profesor Valley que ha participado en este ensayo llevó a cabo un estudio en 2001 en el que probó que hace 4.300 millones de años ya existían océanos en nuestro planeta. “No tenemos pruebas de que en esa época hubiera vida en la Tierra, pero eso no quiere decir que no se diera”, concluye Valley.

Lea el artículo completo en:

Muy Interesante

6 de noviembre de 2017

OMM alerta nuevo récord de concentración de CO2 en la atmósfera

Según la organización, este "aumento peligroso de la temperatura" se debe a actividades humanas y al potente fenómeno de "El Niño", que aumenta las temperaturas del océano Pacífico, provocando sequías y fuertes precipitaciones.


La concentración de dióxido de carbono (CO2) en la atmósfera aumentó a una velocidad récord en 2016 y alcanzó el nivel más alto en 800.000 años, advirtió este lunes la Organización Meteorológica Mundial (OMM).

Tras actividades humanas y un potente fenómeno de "El Niño", los niveles de concentración de CO2 pasaron de 400 partes por millón (ppm) en 2015, a 403,3 ppm en 2016, un incremento jamás visto en la atmósfera en un solo un año.

"La última vez que la Tierra conoció una cantidad de CO2 comparable fue hace cinco millones de años: la temperatura era entre 2 y 3 °C más alta y el nivel del mar era 10 o 20 metros más alto que el nivel actual", sostuvo la agencia en su Boletín mundial de Gases de Efecto Invernadero.

El aumento del CO2 y otros gases de efecto invernadero en la atmósfera tienen el potencial de iniciar cambios sin precedentes en los sistemas climáticos, que conlleva a "graves perturbaciones ecológicas y económicas", acota el informe.

Ante esto, el director de la OMM, Petteri Talas, exigió a los Gobiernos cumplir con el Acuerdo de Paris, firmado en 2015, para reducir el calentamiento global.

"Si no reducimos rápidamente las emisiones de gases con efecto invernadero, y principalmente de CO2, nos enfrentaremos a un peligroso aumento de la temperatura en lo que queda de siglo, muy por encima del objetivo fijado en el Acuerdo de París sobre el clima", alertó el finlandés.

“Esto demuestra que no nos estamos moviendo en la dirección correcta, de hecho, estamos haciendo exactamente lo contrario si pensamos en la implementación del Acuerdo de París. Esto demuestra que existe una necesidad urgente de elevar el nivel de ambición en la lucha contra el cambio climático”, afirmó.

De acuerdo a un estudio realizado por la World Resources Institute, en el 2015, en el mundo se emiten 43.286,2 toneladas métricas de dióxido de carbono producido por actividad humana.

En la investigación, China se encuentra en el primer lugar del ranking de 186 países emisores de CO2, y contamina tanto como Estados Unidos, India, Rusia y Japón juntos. 

Fuente:

TeleSur

5 de septiembre de 2017

Magdalena colocó bebedores ecológicos en la Costa Verde para deportistas y mascotas

Se captura la humedad de la atmósfera, se condensa y purifica, teniendo como producto final agua potable. 





La Municipalidad de Magdalena puso en marcha “Agua para tu distrito”, el primer proyecto ecológico que ofrecerá - mediante bebederos- agua potable gratuita a las personas que realizan diversas actividades de recreación en la explanada de la Costa Verde.


Esta iniciativa ecologica tiene cero gastos de mantenimiento, porque utilizará la infraestructura de telecomunicaciones colocada en la zona a través de un sistema de ósmosis inversa. Para ello se captura la humedad de la atmósfera, se condensa y purifica, teniendo como producto final agua potable que se utilizará mediante dos bebederos instalados en puntos estratégicos.

Este proyecto ecológico forma parte del plan de sostenibilidad que viene impulsando la Municipalidad de Magdalena con el objetivo de tener un distrito con calidad ambiental, donde el ahorro y eficiencia energética, fuentes de energías renovables, reciclaje, entre otros, estén presentes.

La comuna de Magdalena precisó que se encuentra en la tendencia de crear tecnología amigable con el medio ambiente y se suma, al igual que otras importantes ciudades del mundo, a la protección del planeta.

Fuente: El Comercio (Perú)

9 de enero de 2016

¿Por qué es curvo el arco iris?

En un día soleado es fácil ver un arco iris en la rociadura de una manguera de jardín: bastará colocarse de forma que el Sol esté a nuestra espalda pero ilumine las gotas de agua. El fenómeno es el mismo que produce en el cielo un arco iris natural, pero el Sol, en lugar de incidir sobre una cortina de agua cercana, lo hace sobre una lluvia lejana, y el arco de bandas de colores se forma a una escala mucho mayor.

Vemos el arco iris porque las innumerables gotas de agua actúan como diminutos prismas y espejos. Cuando un rayo de luz entra en cada gota, se refracta y se descompone en todos los colores del espectro; luego se refleja en la superficie posterior de la gota y llega hasta nuestros ojos. Como la luz de cada color se refracta según un ángulo ligeramente distinto, vemos bandas bien definidas, desde el violeta al rojo, pasando por el verde y el amarillo. La luz nos llega siguiendo los ángulos de refracción desde innumerables gotas esparcidas por el cielo, y vemos el arco iris como una curva continua.

Es cierto que la luz viaja en línea recta, pero al pasar a través del agua se refracta; es decir, cambia de dirección. El arco iris es curvo porque los rayos solares entran en cada gota de lluvia, se reflejan en su superficie interior y luego se dirigen a los ojos del observador en un ángulo de 42 grados con respecto a la dirección del sol. Este ángulo hace que los rayos se dispongan en forma circular, sólo que nada más alcanzamos a ver un semicírculo porque el suelo oculta la mitad inferior.
 Fuente:

Villavicenciocintia

7 de enero de 2015

¿Queda algún lugar sin contaminar en el planeta?



A donde quiera que uno vaya podrá encontrar basura. 
 
Parece que los seres humanos hemos hecho un meticuloso trabajo a la hora de contaminar los ríos, océanos y la atmósfera en la Tierra. Pero, ¿es posible que quede algún lugar sin polución en nuestro planeta?

Entre unos 1,8 millones y 12.000 años atrás nuestros ancestros consiguieron dominar el arte de hacer fuego.

Los antropólogos suelen citar este punto como el momento que nos permitió convertirnos en humanos, dándonos la oportunidad de cocinar, mantenernos calientes y construir herramientas.

Pero el fuego también marcó otro momento clave: el inicio de la contaminación hecha por el hombre.

La contaminación o polución, por definición, es algo que se introduce en el medio ambiente y que lo afecta de forma negativa.

Mientras que la naturaleza muchas veces produce sus propios contaminantes dañinos, como el humo de los volcanes o las cenizas de los incendios forestales, los humanos somos responsables de la mayor parte de la contaminación que hay en nuestro planeta.

Aun así, el mundo es un lugar grande. ¿Habrá algún recóndito escondite libre de los males de la contaminación?

Para responder a esa pregunta lo mejor es dividir la naturaleza en cuatro grandes reinos: el cielo, la tierra, el agua dulce y los océanos.

El art{iculo completo en:

BBC Ciencia

17 de septiembre de 2014

Física: ¿Cuántos neutrinos hay en una caja?


El Sol es una fuente de neutrinos

El Sol, una continua fuente de neutrinos (NASA)

Los neutrinos son, después de los fotones, las partículas más abundantes del Universo. Se crean por ejemplo en reacciones nucleares en el centro de las estrellas como nuestro Sol (neutrinos solares), en reactores nucleares (neutrinos de reactor) y por colisiones de rayos cósmicos en la atmósfera (neutrinos atmosféricos).

Cuando escuchamos hablar de neutrinos hay un ejercicio al que todo físico siempre invita para intentar dimensionar su abundancia. Tomemos por ejemplo los neutrinos solares, el ejercicio es el siguiente: levanta tu pulgar, apúntalo hacia el Sol y cuenta hasta tres. En esos tres segundos cerca de doscientos mil millones de neutrinos solares atravesaron la uña de tu pulgar. Doscientos mil millones es un número enorme, es un 2 seguido de 11 ceros: 200.000.000.000, lo que en notación científica se escribe como 2\times10^{11}. Con este enorme número de neutrinos atravesando cada centímetro cuadrado de nuestro cuerpo (y nuestro planeta) uno podría preguntarse, si pudiéramos verlos ¿cuántos neutrinos habrían en una caja? Esta pregunta puede ser algo ridícula por dos motivos: primero, los neutrinos son partículas fundamentales por lo que no son visibles, y segundo, los neutrinos se mueven muy rápido, casi a la velocidad de la luz, por lo que no es posible atraparlos. Entonces supongamos que los neutrinos fueran visibles y les tomamos una foto, ¿cuántos neutrinos veríamos dentro de la caja? Para responder esta pregunta el presente post tendrá dos partes, la primera consiste en estimar cuántos neutrinos nos llegan desde el Sol y en la segunda veremos cómo calcular los neutrinos en la caja. Para conocer la respuesta se puede ir directo a la segunda parte, la primera es opcional y sólo para quienes deseen aprender cómo se crean neutrinos en el Sol y de dónde los físicos sacamos ese número tan grande mencionado al principio.

Parte 1: ¿Cuántos neutrinos solares llegan a la Tierra?

El artículo completo en:

Conexión Causal

22 de agosto de 2014

¿Se puede vivir en el cielo?

Cloud Lab


El cielo está repleto de misterios científicos que apenas estamos empezando a entender.

Pensamos que habitamos en la superficie del planeta pero en realidad vivimos en el fondo de un vasto océano de aire que es dinámico, frágil y el hogar de unas de las fuerzas más poderosas de la naturaleza.

Pero, ¿cómo puede haber vida en un ambiente tan hostil?

En busca de la respuesta, un equipo de expertos internacionales pasó un mes estudiando los cielos y llevando a cabo pioneros experimentos mientras volaban sobre Estados Unidos en una nave flotante gigante.

Esa plataforma científica única se llama "Cloud Lab", un laboratorio en las nubes.

Explorando la tropósfera

La tropósfera es una capa turbulenta de aire que empieza en la superficie de la Tierra y se alza de 7 a 20 kilómetros sobre el nivel del mar, dependiendo de la latitud, estación y hora del día.

Su nombre viene de la palabra griega tropos, que significa cambio.

Los expertos aún no han determinado cuál es el límite más alto en el que hay vida en la Tierra pero la nueva investigación ha encontrado una gama de animales que viven en la parte superior de la atmósfera del planeta.

El artículo completo en:

BBC Ciencia

31 de julio de 2014

Londres, ¿más contaminada que Pekin?


Las altas presiones de los últimos días han sacado a relucir el "sucio secreto" de Londres, con los niveles de dióxido de nitrógeno (NO2) más altos de todas la capitales europeas, superiores incluso a los de Pekín. El récord se ha registrado en Oxford Street, con 135 microgramos por metro cúbico: cuatro veces más de los 40 microgramos recomendados por la Unión Europea (un límite superado habitualmente por otras siete ciudades británicas).

Las mediciones realizadas recientemente por expertos del Kings College a las puertas de los famosos grandes almacenes Selfridges han disparado las alarmas. El otro punto "negro" de la geografía londinense en Marylebone Road, entre el Museo de Cera de Madame Tussaud y el museo de Sherlock Holmes, donde se han medido niveles de hasta 94 microgramos de NO2 por metro cúbico.

En contraste, Pekín registró el año pasado una concentración de 56 microgramos de NO2 por metro cúbico, según datos del Ministerio de Protección del Medio Ambiente. La contaminación causada por las partículas en suspensión (otro subproducto de los procesos de combustión del tráfico) es sin embargo tres veces mayor en China.

En cualquier caso, los datos de Oxford Street, una calle con circulación restringida y dentro del perímetro del "peaje de congestión" londinense, han creado estupor entre los expertos. La circulación incesante de "black cabs" y de autobuses de dos pisos son la principal causa.

"Los motores diésel son los principales causantes del empeoramiento de la calidad del aire en Londres", sostiene David Carslaw, investigador del Kings College. "Que tengamos noticia, los niveles registrados este año en Oxford Street son los más altos de los que tenemos constancia en la larga historia de la contaminación en Londres".

El "smog" fue parte inconfundible del paisaje en el ciudad del Támeses desde la revolución industrial hasta mediados del siglo XX. En 1952, la nube contaminante conocida como el Gran Smog provocó 4.000 muertes y sirvió para impulsar la primera ley del "aire limpio" de las grandes ciudades europeas.

Se estima que el efecto combinado del N02 y las partículas en suspensión pudieron causar la muerte de 3.389 personas afectadas con enfermedades respiratorias en el 2010, según la agencia estatal Public Health England. En abril pasado, la ciudad decretó la alerta sanitaria por la alta contaminación (nivel 8, de un máximo de 10), suspendió las al aire libre en los colegios como medida preventiva y previno a las personas mayores y con problemas de asma que se quedaran en sus casas.

El artículo completo en:

El Mundo Ciencia

15 de julio de 2014

El calentamiento global aumentará de manera crítica la contaminación en las ciudades

El estancamiento atmosférico, la escasa circulación de las masas de aire, es un fenómeno muy importante para entender el nivel de contaminación que sufre nuestro planeta, pero ha recibido hasta ahora poca atención de la comunidad científica.

Y eso que el hecho de que “no corra el aire” tiene funestas consecuencias, pues favorece que se acumule el polvo, el ozono y el hollín en las capas bajas de la atmósfera.

Tres variables están implicadas en la defectuosa renovación del aire: los vientos débiles, la estabilidad de las ya citadas capas bajas de la atmósfera y la ausencia de precipitaciones.

Pues según un estudio publicado en la revista Nature Climate Change, estos factores de riesgo para nuestra salud se incrementarán en el futuro debido al calentamiento global, sobre todo en las zonas tropicales y subtropicales.

De acuerdo con los investigadores, que han analizado quince modelos climáticos, si la emisión de gases con efecto invernadero no se frena, el 55% de la población mundial sufrirá más estancamiento atmosférico en el año 2099.

El problema afectará sobre todo a amplias zonas de India, México y la Amazonia, que verán incrementarse en 40 días anuales la nociva calma chicha y, con ella, las enfermedades respiratorias y cardiovasculares asociadas a la polución. En 2012, estas dolencias causaron 3,7 millones de muertes prematuras.

Tomado de:

Muy Interesante

4 de julio de 2014

¿Por qué los huracanes con nombre de mujer matan más?

Un mujer cruzando una calle de Brooklyn, después del paso del huracán Irene.

Un mujer cruzando una calle de Brooklyn, después del paso del huracán Irene.

Los huracanes con nombre de mujer matan más. La razón: la gente teme más a Víctor que a Victoria, y toma más medidas de precaución si el peligro es masculino. Y así, históricamente, los huracanes con nombres femeninos han matado a más gente, según un estudio que se acaba de publicar en Proceedings of the National Academy of Science. 

Los investigadores, de la Universidad de Illinois, en Arizona, han analizado seis décadas de huracanes, y las muertes que han producido desde 1950 hasta  2012. De los 47 más letales, los que arrastraban un nombre femenino han producido 45 muertes, casi el doble que los que tienen nombre de varón, que han causado 23.

Las diferencias son aún mayores cuando se han comparado nombres masculinos contundentes, con los nombres más dulces de mujer. El estudio indica que cambiar el nombre de un huracán de Charley a Eloise puede incluso triplicar sus efectos letales.

Sharon Shavitt, una de las autoras del estudio, se mete en el ojo del huracán para buscar una razón.  Según ella, este desbaratado fenómeno de la naturaleza trae consigo  “sexismo implícito”, ya que se toman decisiones por razones de “género”, sin analizar el peligro real que conlleva.

Para hacer el estudio, los científicos han hecho seis tipos de pruebas. Este gráfico muestra una de ellas.

grafico

Los voluntarios calificaron en una escala  de 1 al 11 el nombre del huracán  (1 igual a muy masculino, 11 muy femenino). Y al buscar los efectos mortales de cada uno de ellos, pues dieron con que los que  llevan nombres considerados más femeninos habían provocado más daños  y muertes. (Excluyeron Katrina, porque se salía de todos los valores por su enorme efecto).

Y así, este curioso estudio destaca cómo los roles de género están aún implícitos incluso ante la llegada de un huracán. ¡Lo que nos queda!

Fuente:

Hominidas

23 de mayo de 2014

Lima: la ciudad con el aire más contaminado de toda América Latina

Lima gris. Pese a reducción de nivel de dióxido de azufre en el aire, aún subsiste el PM2,5.
Lima gris. Pese a reducción de nivel de dióxido de azufre en el aire, aún subsiste el PM2,5.
Según informe de la Organización Mundial de la Salud, el sector norte de nuestra capital registra una contaminación 6 veces mayor a lo permitido en el mundo.
 
Piénselo antes de inhalar una bocanada de aire en alguna avenida o parque en la capital. porque Lima es la ciudad más contaminada de Latinoamérica, según un informe de la Organización de la Salud (OMS), presentado ayer. En algunas zonas de la ciudad, se indica, hay niveles de contaminación seis veces mayores a los permitidos según esta organización.

Lima posee un índice general de 38 microgramos de PM 2,5 (partículas de hollín o metales pesados que son hasta 100 veces más pequeños que el grosor de un cabello) por metro cúbico. La OMS estima que lo ideal es mantener hasta 10 microgramos, al año.


Caso contrario ocurre en el estado de Bahía en Brasil, donde se tiene el aire más limpio de la región: 9 microgramos por metro cúbico anual. El informe analizó la calidad del aire en 1,600 ciudades de 91 países. Esto reveló que sólo el 12% de la población mundial que reside en ciudades respira aire limpio.

Para Luis Tagle Pizarro, coordinador ejecutivo del Comité de Gestión de la Iniciativa de Aire Limpio para Lima y Callao, el principal causante de esta situación es el parque automotor con 20 años de antigüedad de promedio. A esto, asegura, se suma la mala calidad de los combustibles.


PELIGRO EN CONO NORTE

Respecto del informe de la OMS, la situación empeora en el cono norte de la capital (Ventanilla, Puente Piedra, San Martín de Porres) donde se llegó a registrar hasta 58 microgramos de PM2,5 por metro cúbico, cifra 6 veces más de lo que permite. 

La situación disminuye, pero aún sigue siendo alta, en Lima Sur (Chorrillos, Villa El Salvador) con 36 microgramos.

Tagle Pizarro explica que estas cifras se deben a que las partículas de PM2,5 producidas en el centro de la ciudad se desplazan por los vientos a estas zonas y quedan atrapadas por los cerros circundantes. "Ese material se queda allí... ¿y a quienes afecta? A la gente que se queda en esos distritos más horas al día: Las amas de casa, los ancianos y los bebes.


Las consecuencias de la exposición al PM2,5 es que al ser tan pequeñas penetran hasta a los alveólos e incluso llegan a la sangre. Así se producen dolencias respiratorias y cardíacas. 

"Hoy, la implementación de sistemas de transporte como El Metropolitano, que usa gas, o el Metro de Lima han reducido de algún modo la generación de contaminación... aunque no del todo", indicó Tagle.


Refirió que también un avance es el cese a las importaciones de autos usados, sin embargo es consciente de que todavía falta mucho por hacer al respecto y este informe de la OMS es la prueba de ello. 

CLAVES

Consecuencias. En marzo, la OMS reveló que más de 7 millones de personas mueren anualmente en el mundo por la contaminación ambiental, ya sea fuera o dentro del hogar. Esto convierte a la polución en el principal riesgo medioambiental para la salud a nivel mundial.

Fuente:

La República
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0