Latest Posts:

Mostrando las entradas con la etiqueta energia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta energia. Mostrar todas las entradas

13 de agosto de 2022

Crean un parche que convierte el sudor en electricidad ilimitada

El dispositivo podría suministrar energía constante a una amplia variedad de aparatos electrónicos alimentándose de la transpiración humana.


Investigadores de la Universidad de Massachusetts Amherst han diseñado un biofilm que recolecta la energía de la evaporación, concretamente de sudor, y la convierta en electricidad.

Este biofilm —un parche que se adhiere a la piel—, que se anunció en Nature Communications, tiene el potencial de revolucionar el mundo de la electrónica portátil, alimentando todo, desde sensores médicos personales hasta dispositivos electrónicos.

“Esta es una tecnología muy emocionante”, dice Xiaomeng Liu, estudiante graduado en Ingeniería Eléctrica e Informática en la Facultad de Ingeniería de UMass Amherst y autor principal del artículo. “Es energía verde real y, a diferencia de otras fuentes llamadas de ‘energía verde’, su producción es totalmente verde”.

¿Cómo funciona?

Este biofilm, una lámina delgada de células bacterianas del grosor de una hoja de papel, es producido naturalmente por una versión modificada de la bacteria Geobacter sulfurreducens.

Se sabe que G. sulfurreducens produce electricidad y se ha utilizado anteriormente en “baterías microbianas” para alimentar dispositivos eléctricos. Pero tales baterías requieren que dicha bacteria se cuide adecuadamente y se alimente con una dieta constante.

Por el contrario, esta nueva biofilm, que puede proporcionar tanta energía como una batería de tamaño similar, funciona continuamente porque la bacteria G. Sulfurreducens está muerta y, debido a eso, no necesita ser alimentada.

“Es mucho más eficiente”, dice en un comunicado Derek Lovley, profesor distinguido de Microbiología en UMass Amherst y uno de los autores principales del artículo. “Hemos simplificado el proceso de generación de electricidad al reducir radicalmente la cantidad de procesamiento necesario. Cultivamos de manera sostenible las células en una biopelícula y luego usamos esa aglomeración de células. Esto reduce las entradas de energía, simplifica todo y amplía las aplicaciones potenciales”.

Una matriz de bioparches alimenta una pequeña pantalla LCD.

El secreto detrás de esta nueva biopelícula es que genera energía a partir de la humedad de la piel. Aunque todos los días leemos historias sobre la energía solar, al menos el 50% de ella que llega a la Tierra se destina a la evaporación del agua.

“Esta es una enorme fuente de energía sin explotar”, dice Jun Yao, profesor de Ingeniería Eléctrica e Informática en UMass, y el otro autor principal del manuscrito. Dado que la superficie de nuestra piel está constantemente humedecida con sudor, la biopelícula puede “enchufarse” y convertir la energía atrapada en la evaporación en energía suficiente para alimentar pequeños dispositivos.

“El factor limitante de la electrónica portátil —dice Yao—, siempre ha sido la fuente de alimentación. Las baterías se agotan y deben cambiarse o cargarse. También son voluminosos, pesados e incómodos”. Pero un biofilm transparente, pequeño, delgado y flexible que produce un suministro continuo y constante de electricidad y que se puede usar, como una tirita, como un parche aplicado directamente sobre la piel, resuelve todos estos problemas.

Lo que hace que todo esto funcione es que G. sulfurreducens crece en colonias que parecen esteras delgadas, y cada uno de los microbios individuales se conecta con sus vecinos a través de una serie de nanocables naturales. Luego, el equipo recolecta estos tapetes y usa un láser para grabar pequeños circuitos en las películas. Una vez que se graban las películas, se intercalan entre los electrodos y finalmente se sellan en un polímero suave, pegajoso y transpirable que se puede aplicar directamente sobre la piel. Cuando esta pequeña batería se “enchufa” aplicándola a su cuerpo, puede alimentar dispositivos pequeños.

“Nuestro próximo paso es aumentar el tamaño de nuestros parches para alimentar dispositivos electrónicos más sofisticados que se pueden llevar en la piel”, refiere Yao; y Liu señala que uno de los objetivos es alimentar sistemas electrónicos completos, en lugar de dispositivos individuales.

Fuente:

La República (Perú)

2 de febrero de 2020

Cómo funcionaba "Nautilus", la nave que Verne ideó hace 150 años

Tiene más de 150 años, pero el "Nautilus" de Julio Verne muy probablemente sigue siendo el submarino más famoso del mundo.


El sumergible apareció por primera vez en "Veinte mil leguas de viaje submarino", la novela que Verne empezó a publicar por entregas en marzo de 1869.

Pero tomó su nombre del que muchos consideran el primer submarino de hélice del mundo, el Nautilus diseñado en 1800 por el ingeniero estadounidense Robert Fulton por encargo de Napoleón Bonaparte. 

"En la época en la que Verne escribió su novela, la palabra Nautilus prácticamente se utilizaba como sinónimo de submarino", destaca Marie-Hélène Huet, una profesora del MIT experta en Verne.

Descrito por el propio Verne como "una maravilla, llena de maravillas", el Nautilus también era una máquina muy adelantada a su tiempo.


¿Cómo se supone que funcionaba?

En "Veinte mil leguas…", y por boca del capitán Nemo, el propio Verne ofrece abundantes detalles sobre la nave y sobre la tecnología que la propulsa.

"Como ve, es un cilindro muy alargado, de extremos cónicos. Tiene, pues, la forma de un cigarro, la misma que ha sido ya adoptada en Londres en varias construcciones del mismo género", le explica al profesor Pierre Aronnax, el narrador de la novela.
"La longitud de este cilindro, de extremo a extremo, es de 70 metros, y su bao, en su mayor anchura, es de ocho metros", agrega, para luego explicar que "el Nautilus se compone de dos cascos, uno interno y otro externo".

Pero en la época del motor de vapor es sobre todo el mecanismo de propulsión de esta nave de 1.500 toneladas lo que intriga a Aronnax.

Una intriga que solo crece cuando Nemo le dice que la electricidad es lo que impulsa el submarino.

"Capitán, la extremada rapidez de movimientos que usted posee no concuerda con el poder de la electricidad. Hasta ahora la potencia dinámica de la electricidad se ha mostrado muy restringida y no ha podido producir más que muy pequeñas fuerzas", argumenta Aronnax.

"Señor profesor, mi electricidad no es la de todo el mundo, y eso es todo cuanto puedo decirle", responde Nemo.

Baterías de sodio-mercurio

Más adelante, sin embargo, el misterioso marino devela el misterio, explicando que todo lo que necesita para producir electricidad, el Nautilus lo obtiene del mar.

"De esa notable cantidad de cloruro sódico contenida por el agua marina extraigo yo el sodio necesario para componer mis elementos", dice luego de destacar la elevada presencia de ese elemento en el hábitat natural del submarino.

Y ese sodio, "mezclado con el mercurio, forma una amalgama que sustituye al zinc en los elementos Bunsen", agrega, revelando así que su fuente de electricidad son baterías de sodio-mercurio.

"El mercurio no se gasta nunca. Sólo se consume el sodio, y el mar me lo suministra abundantemente", explica su razonamiento Nemo.

"Debo decirle, además, que las pilas de sodio deben ser consideradas como las más enérgicas y que su fuerza electromotriz es doble que la de las pilas de zinc", continúa.


Más detalles en: El Comercio (Perú)



17 de diciembre de 2019

Baterias de litio: Hasta el Nobel…¡y más allá!

Los padres de las baterías de iones de litio recibieron este año el Nobel de Química por su contribución a la electrónica de consumo, sentando las bases de la sociedad inalámbrica alimentando prácticamente cualquier dispositivo móvil y vehículo eléctrico. Hoy día, nuevas combinaciones y materiales alternativos alumbran una generación de baterías más ecológica, más rápida y de mayor capacidad de almacenamiento. 
 
Bajo el desierto de sal más grande del mundo, el Salar de Uyuni, en Bolivia, se encuentra la  mayor reserva de litio mundial. Crédito: Wikimedia Commons.

John B. Goodenough, M. Stanley Whittingham y Akira Yoshino han recibido el Premio Nobel de Química 2019 por sus contribuciones al desarrollo de una tecnología de almacenamiento energético fundamental para la revolución de la electrónica móvil: las baterías de iones de litio (Li-ion). Diferentes líneas de investigación buscan la combinación perfecta de materiales para optimizar la capacidad de almacenamiento de estas baterías, una cuestión fundamental para la consolidación de los transportes eléctricos. Entre las líneas de investigación más recientes están la utilización de iones de oxígeno o la incorporación de silicio, un componente que ya utilizan algunos modelos de coches Tesla y que podría aumentar hasta un 30% la capacidad de almacenamiento de este tipo de baterías.

Alternativas químicas para multiplicar la capacidad

Otra propuesta para una química alternativa son las denominadas baterías de fluoruro, que tienen una densidad energética hasta diez veces mayor que las baterías de iones de litio actuales, según el Christopher Brooks, científico jefe del Instituto de Investigación Honda y coautor de una reciente investigación desarrollada en colaboración con Caltech y la NASA. Otras combinaciones —como el litio-azufre o el litio-aire— se exploran actualmente para crear baterías de alta capacidad.

Uno de los condicionantes de las baterías de iones de litio es que hoy por hoy necesitan una carga entera (y lenta) para obtener una reacción electroquímica completa. Según la revista Nature, un grupo de investigadores del Laboratorio Argonne del Departamento de Energía de Estados Unidos ha desarrollado una tecnología que reduciría el tiempo de carga de las baterías mediante la exposición del cátodo a un haz de luz concentrada, como por ejemplo la luz blanca de una lámpara de xenón.

Lea el artículo completo en: Canal innovación

 
 

14 de agosto de 2019

Mujeres y ciencia 02/08: Émilie du Châtelet (1706-1749), la primera en publicar un paper


La marquesa de Châtelet, nacida Gabrielle Émilie Le Tonnelier de Breteuil, estaba predestinada a una vida cortesana por la posición de su padre, jefe de protocolo del Rey Sol, Luis XIV de Francia. Dentro de ese destino entraba el matrimonio de conveniencia con un militar, que le consiguió el título de marquesa. Pero desde pequeña ya había mostrado sus cartas: cuentan que a sus tres años un criado le hizo una muñeca vistiendo un gran compás de madera. Émilie aceptó el regalo, pero desnudó el compás y comenzó a trazar círculos con él.

Du Châtelet cumplió con su rol como esposa dando a luz a tres hijos, pero a partir de entonces se entregó a la ciencia en cuerpo y alma. En cuerpo, porque en ese empeño tuvo un peso relevante su relación amorosa con Voltaire, quien se instaló en su casa con el consentimiento de su marido, que solía estar siempre en campaña. Los dos amantes cultivaron juntos su pasión por el conocimiento, e incluso compitieron un premio de la Academia de París con sendos ensayos sobre la naturaleza del fuego. El trabajo de Du Châtelet fue el primero de una mujer publicado por la Academia francesa.

Las contribuciones de Du Châtelet fueron numerosas, pero sobre todo se la recuerda por su traducción al francés de los Principia Mathematica de Isaac Newton, a los que añadió comentarios como un concepto innovador de la conservación de la energía. De ella escribió Voltaire que fue “un gran hombre cuya única culpa fue ser una mujer”. Y por culpa de esta condición murió, a causa de las complicaciones tras el parto de su cuarto embarazo.

Fuente: Open Mind 

15 de enero de 2019

¿La luz de las farolas provoca cáncer?

Una cosa es que no podamos establecer una relación causal entre la iluminación nocturna y el mayor riesgo de cáncer, pero sí podemos decir con contundencia que no es beneficiosa.


Así planteado la respuesta es no, pero también es verdad que aquí hay mucho que hablar. Es casi seguro que la pregunta viene por una serie de estudios que se han hecho a partir del año 2008 y que vinculan las áreas urbanas con más luz nocturna con un aumento del riesgo de padecer dos tipos de cáncer: mama y próstata. Lo que hicieron los investigadores fue medir la luz reflejada en el cielo que captan los satélites y una vez que identificaron las ciudades más iluminadas, comprobaron si había algún tipo de asociación con un aumento de la incidencia de estos cánceres, mama y próstata, que son los que, en principio, se vincularían con mayor exposición a luz nocturna. Los autores del estudio encontraron que sí había una asociación entre mayor iluminación y un mayor riesgo. El problema de estos estudios, y que es una pega real, es que no detectan qué luz recibe individualmente cada sujeto, sino la que hay reflejada en el cielo y que no tiene que coincidir necesariamente con aquella a la que cada uno se expone en su casa.

También hay que tener en cuenta que el hecho de vincular la luz nocturna con el cáncer es un tanto controvertido, no se puede decir así. Lo que sí se sabe es que la luz nocturna hace que el organismo produzca menos una hormona llamada melatonina. Y sabemos también que esa falta de melatonina altera el sistema circadiano. Debes saber que el sistema circadiano tiene un reloj biológico que está en nuestro cerebro y está preparado evolutivamente para detectar la alternancia entre la luz y la oscuridad, entre el día y la noche. Sabemos igualmente, gracias a los estudios epidemiológicos, que las alteraciones en nuestro sistema circadiano sí se vinculan a una serie de enfermedades como el síndrome metabólico y otras alteraciones cognitivas y afectivas. Se sabe, por ejemplo, que las personas que trabajan en turnos y que tienen alterado su sistema circadiano son más proclives a este tipo de enfermedades.

En el año 2008, la Organización Mundial de la Salud publicó un informe que decía que la disrupción circadiana, que incluye la luz y otros aspectos, es potencialmente carcinogénica para humanos y la incluía en el grupo 2A. El grupo 2A incluye a los factores que no muestran evidencias experimentales en humanos con la aparición de cáncer sino que la relación es asociativa, no causal. Es decir, las dos cosas parecen ir juntas pero no podemos demostrar que una lleve a la otra. En animales de experimentación en cambio las evidencias sí son suficientes para decirlo pero no en el caso humano.

Lea el artículo completo en: El Páis (España)
 

12 de diciembre de 2018

Estudiante peruano gana segundo lugar en concurso de History Channel

Recibirá 40 mil dólares para desarrollar proyecto que genera energía eléctrica a partir de especies bacterianas.

Un estudiante universitario peruano consiguió el segundo puesto en el concurso internacional "Una idea para cambiar la historia", promovido por la cadena televisiva internacional History Channel.

El proyecto de Hernán Asto Cabezas, de la Universidad Alas Peruanas, se denomina "Alinti" y consiste en un dispositivo híbrido de arcilla que genera energía eléctrica a partir de más de cinco especies bacterianas anaerobias y aerobias risosféricas. Para ello, utiliza un conjunto de plantas seleccionadas de raíces tuberosas y ramificadas.

Alinti (dos palabras aimara y quechua que significan planta y sol) logró ubicarse entre los 10 más novedosos junto a México, Brasil, Colombia, Ecuador, Argentina, Panamá, entre otros países. Inicialmente se presentaron más de 7,000 postulantes de todo el mundo y en la última etapa quedaron diez finalistas.

El proyecto peruano logró reunir más de 71 mil votos. Al haber ingresado a la recta final, podrá acceder al financiamiento otorgado por la importante cadena televisiva. En el caso de los peruanos, recibirán 40 mil dólares.

"Estoy muy orgulloso de ser peruano y de ser latinoamericano. Gracias a todas las personas que confiaron en nosotros y en mi idea para cambiar la historia. Gracias a mi familia, a mis maestros, al Perú y a todos los que votaron y creyeron en nosotros. Alinti es un proyecto muy importante que trabajaremos para hacer realidad!", señaló Asto, estudiante de la Escuela Profesional de Ingeniería Civil de la citada universidad.

Tras obtener el segundo lugar en el citado concurso, el proyecto será implementado en las poblaciones rurales del Perú para beneficiar a los más de cuatro millones de peruanos que no cuentan con acceso a energía eléctrica. También tendrá un importante impacto en las localidades rurales de Latinoamérica que carecen de este vital recurso.
 
Sobre el concurso

El concurso “Una idea para cambiar la historia” buscó descubrir a personas con ideas innovadoras que podrían cambiar el curso histórico de la humanidad, motivándolas a que compartan y den a conocer al mundo sus diseños.

A nivel de Latinoamérica, se realizó en Perú, Colombia, Argentina, México y Chile, y las ideas que se presentaron estuvieron centradas en cinco campos de acción: energía renovable, alimentación, comunidad, salud y tecnologías aplicadas.
 
 

4 de diciembre de 2018

El cerebro quema en un día las mismas calorías que correr media hora. Entonces, ¿pensar mucho adelgaza?

¿Quema lo mismo hacer las cuentas del mes que una ecuación de tercer grado? ¿Y cuánto influye el tamaño del cerebro?


Pensar cansa, y quien lo niegue es que no se ha pasado largas jornadas trabajando delante de un ordenador, ni ha estado estudiando durante horas ni planificando los pormenores de la reforma de su casa. ¿Cómo va a ser igual de agotador pensar sin prácticamente moverse del sitio que machacarse media hora en la elíptica, que una carrera de 30 minutos a una velocidad de 8,5 km/h o que estar casi una hora en la pista de baile dándolo todo? Pues no será igual de cansado, pero se queman las mismas calorías (tomando como referencia un adulto con un cerebro de peso medio, unos 1.400 gramos, y unos 70 kilos).

"El cerebro humano representa, aproximadamente, el 2% del peso corporal, y consume un 20% del oxígeno y de la glucosa del organismo", indica Javier DeFelipe, profesor de investigación del Consejo Superior de Investigaciones Científicas (CSIC). "En estado basal, el cerebro puede consumir unas 350 calorías en 24 horas, esto es, un 20% de lo que solemos gastar al día", añade Ignacio Morón, profesor de la Universidad de Granada e investigador del Centro de Investigación Mente, Cerebro y Comportamiento (CIMCYC), un gasto calórico que es equiparable al de las actividades físicas señaladas anteriormente, según las tablas que maneja la Universidad de Harvard.

Todos los procesos fisiológicos precisan energía, aunque "el cerebro es el órgano que más energía consume", destaca DeFelipe, y además está continuamente funcionando, incluso durante la noche, lo que justifica su gran gasto energético. En el cerebro, "se presume que la materia gris [donde se encuentran los núcleos neuronales] consume más energía que la materia blanca [cuya función principal es la de transmitir la información]", explica Morón, "y esto se debe, entre otros factores, a la gran cantidad de sinapsis y mitocondrias de la materia gris, junto al hecho de que la materia blanca es, por diseño, más eficiente y económica".

Ahora bien, el consumo energético cerebral es variable. "Cuando está en modo normal, como cuando vamos caminando por la calle pensando en nuestra cosas, quizá el consumo sea menor, en el sentido de que ninguna zona del cerebro se activa más que otras", ilustra el científico del CSIC. Pero, si de repente comenzamos a resolver un problema, se activa una región concreta y pasa a gastar más combustible. Es como un coche que está al ralentí y cuando se pone en marcha dispara el consumo de combustible. El gasto energético del cerebro se mide por la cantidad de riego sanguíneo cerebral (oxígeno en sangre) y utilizando resonancia magnética funcional y espectroscopia por resonancia magnética.

El artículo completo en: El País (España)

11 de octubre de 2018

Lambayeque (Perú): universitarios crean prototipo de gorra solar para recargar celular

En la visera cuenta con pequeños paneles para absorber la luz y producir energía.


Estudiantes de la Universidad Nacional Pedro Ruiz Gallo (UNPRG) de Lambayeque presentaron el prototipo de una gorra solar, en cuya visera tiene un panel solar con celdas fotovoltaicas que es capaz de producir energía, a partir de la luz del sol, para recargar un celular.

El Proyecto de Energía Solar Gor-Volste está dirigido a agricultores que en sus terrenos quedan incomunicados por la descarga de la batería de su celular y con esta gorra solar podrán recargar su equipo; también cuenta con focos led de alta eficiencia.

Además, los universitarios están en proceso de fabricación de un prototipo de gorra solar a la que se le colocará dispositivos Bluetooth, para escuchar música y responder llamadas.
El rector de la UNPRG, Jorge Oliva Núñez, manifestó que cuatro jóvenes investigadores de esta casa de estudios crearon ambos prototipos de gorras solares.

“La visera con panel solar tiene un tiempo de vida útil de entre 20 a 25 años, si es conservada adecuadamente, sin ser rayada”, comentó.

Posee dos puntos de conexión para el uso de cable y también entrada USB. "La gorra se puede utilizar también bajo sombra y su tiempo de carga es de tres horas y media; si el día está más soleado, carga más rápido. Se trata de un producto todo terreno", destacó.

En la parte posterior, la gorra solar cuenta con una batería de iones de litio, de una reconocida empresa japonesa, que tiene de 12 a 14 años de tiempo de vida. 

9 de octubre de 2018

Cambio climático: 5 cosas que puedes hacer para evitar el calentamiento global

Estos son algunos de los cambios cotidianos que puedes hacer en este momento para ayudar a evitar una "catástrofe" como resultado del calentamiento global.

1. Utilizar el transporte público

Caminar o andar en bicicleta o usar el transporte público, en lugar del carro reducirá las emisiones de carbono.

Y, también, te mantendrá en forma.

"Podemos elegir la forma en que nos movemos en las ciudades y, si no tienes acceso al transporte público, asegúrate de elegir políticos que ofrezcan opciones para eso", afirma Debra Roberts, copresidenta del IPCC.

Si es absolutamente necesario, usa un vehículo eléctrico y elije el tren en lugar del avión para tus viajes.

Da un paso más allá cancelando tus viaje de negocios y utilizando, en cambio, las videoconferencias.

2. Ahorra energía

Pon la ropa húmeda al sol en lugar de utilizar secadoras y trata de ahorrar al máximo electricidad. 

Usa temperaturas más altas para enfriar las habitaciones o más bajas para calentarlas.

Aísla el techo de tu casa para evitar la pérdida de calor durante los inviernos.

Apaga y desenchufa tus aparatos electrodomésticos cuando no estén en uso.

Y la próxima vez que salgas a comprar un equipo, asegúrate de verificar que haga un uso eficiente de la energía. 

También puedes adoptar una fuente de energía renovable para algunas de las necesidades de tu hogar, como los calentadores solares de agua.

3. Trata de consumir menos carne

La producción de carne roja lleva a un número significativamente mayor de emisiones de gases de efecto invernadero que la de pollo, frutas, verduras y cereales.

En la cumbre del clima de París, 119 naciones se comprometieron a reducir las emisiones agrícolas en este sentido, sin embargo, no hubo ninguna indicación de cómo hacerlo.

Tú, en cambio, puedes contribuir a ello.

Come menos carne y trata de consumir más verduras y frutas.

Si esto te parece demasiado, considera tener al menos un día sin carne cada semana.

También vale la pena reducir el consumo de productos lácteos ya que conllevan emisiones de efecto invernadero como resultado de la producción y el transporte.

Opta por comprar más alimentos de temporada de origen local (¡y tira menos basura!).

4. Reducir y reutilizar... incluso el agua

Nos han hablado de los beneficios del reciclaje una y otra vez a lo largo de nuestras vidas.
Pero lo cierto es que el transporte y procesamiento de los materiales para el reciclaje también conlleva la emisión de dióxido de carbono.

Lo mismo ocurre con el agua.

"Una alternativa es la recolección de agua de lluvia", asegura Aromar Revi.

5. Informar y educar a los demás

Entre todos podemos logarlo: reunirnos con nuestros vecinos para compartir alternativas y educarnos mutuamente en cómo establecer una vida comunitaria sostenible es también un paso importante.

Crea "redes compartidas" que puedan ayudar a agrupar recursos, como cortadoras de césped o herramientas de jardín, y lograr así un nivel de vida más ecológico.

"Todos estos cambios, cuando son practicados todos los días por miles de millones de personas, permitirán un desarrollo sostenible casi sin impacto en su bienestar", considera Revi

Por eso, si reduces los desechos que tiras y tratas de reutilizar los materiales que ya usaste, puedes marcar un cambio. 

Tomado de:

BBC Mundo  

28 de septiembre de 2018

Australia da luz verde a la mayor planta termosolar del mundo

El gobierno australiano acaba de aprobar la construcción de la mayor planta termosolar del mundo: un monstruo con una potencia 150 megavatios que será construido en Port Augusta, en Australia Meridional.


Es cierto que, durante los últimos años, la apuesta por las energías renovables está siendo muy potente en Australia. Pero la planta de Port Augusta dista mucho de ser un capricho político: la inversión de 510 millones de dólares está muy por debajo del costo estimado que tendría una nueva central de carbón con una capacidad similar.

La otra energía solar

"La importancia de la generación termosolar reside en su capacidad de proporcionar energía virtualmente a demanda mediante el uso de almacenamiento de energía térmica", explicaba Wasim Saman, de la Universidad de Australia del Sur.

Esto es importante. Las plantas fotovoltaicas convierten la luz solar directamente en energía. El problema es que la energía eléctrica, como el pescado, se conserva mal. Aquí en Xataka seguimos de cerca los avances en baterías, pero la verdad es que nuestra capacidad de almacenar energía con las redes eléctricas actuales es muy limitada.

Ahí es donde las plantas solares térmicas pueden marcar la diferencia. Estas plantas usan espejos para concentrar la luz en un sistema de calefacción. Gracias al calor almacenado en el sistema de sal fundida, se calienta agua para generar energía gracias a turbinas de vapor.

Según las previsiones, Port Augusta podrá seguir generando energía ocho horas después de que el sol haya caído. Se busca, a medio plazo, conseguir completar el ciclo diario de tal forma que la producción energética no se vea alterada por la duración de los días.

¿Es energía todo lo que reluce?

Port Augusta no es una innovación en sentido estricto. Ya hay una planta con una tecnología muy similar funcionando en Nevada con una capacidad de 110 megavatios. Y los resultados han sido muy buenos: "Esta es una forma sustancial más económica de almacenar energía que el uso de baterías", dicen los expertos.

Es rigurosamente cierto que presentan mejoras con respecto a las baterías u otros sistemas de almacenamiento eléctrico. Pero no tienen todo de su lado: solo pueden almacenar calor. Sus sistemas de almacenamiento no se pueden usar para almacenar, por ejemplo, el excedente eólico. 

¿Tiene sentido hacer grandes inversiones en sistemas de acumulación de energía que no podemos aprovechar del todo bien? Más aún cuando las energías renovables ya representan más del 40% de electricidad en el sur de Australia.

Nos encontramos ante una carrera histórica en la que las tecnologías renovables compiten para conseguir llevarse la mayor cantidad posible de inversiones. Esas inversiones serán fundamentales en el desarrollo de la tecnología del futuro. Pero una cosa está clara: las energías renovables están imparables.

Tomado de: Xataka

22 de agosto de 2018

Biobaterías: las pilas que utilizan papel y bacterias para generar energía


Papel + bacterias= energía

Así podría resumirse la fórmula revolucionaria de una nueva tecnología, "barata y renovable", presentada esta semana en la 256ª Reunión y Exposición Nacional de la Sociedad Química de Estados Unidos.

Se trata de baterías hechas de papel y alimentada por microorganismos que, según sus creadores, podrían ser utilizadas para suplir energía en áreas remotas del mundo o en regiones con recursos limitados donde artículos cotidianos como enchufes eléctricos son un lujo.

Entre sus elementos más llamativos también se encuentra que las baterías solo se activan cuando entran en contacto con agua o saliva y que una tecnología, llamada liofilización, permite su almacenamiento duradero sin que pierdan sus propiedades o se degrade.

El equipo de investigadores de la Universidad de Binghamton, en el estado de Nueva York, que trabaja desde hace años en este campo, explicó durante la conferencia que las pilas de papel se puede usar una sola vez y luego desechar y que, actualmente, tienen una vida útil de cuatro meses.

No obstante, anunciaron que continúan trabajando para mejorar la carga electrónica de la batería (actualmente pueden generar la energía necesaria para alimentar un diodo de luz y una calculadora) y en la supervivencia y el rendimiento de las bacterias, lo que permitiría una vida útil más larga del dispositivo.

"El rendimiento energético también necesita mejorarse aproximadamente 1.000 veces para la mayoría de las aplicaciones prácticas", aseguró en un comunicado de prensa Seokheun Choi, el encargado de la investigación.

De acuerdo con el experto, esto podría lograrse apilando y conectando varias baterías de papel a la vez.

Choi anunció, además, que el equipo ya solicitó la patente para la batería y que está buscando socios en la industria para su comercialización.

Pero ¿cómo funcionan estos dispositivos?

El profesor asistente Seokheun Choi lleva trabajando cinco años en baterías de papel y energía generada por bacterias. 

Los poderes del papel

Desde hace años, los investigadores han desarrollado biosensores desechables a partir del papel, que se utilizan generalmente para el diagnóstico de enfermedades o para la detección de contaminantes en el medio ambiente. 

El funcionamiento de estos dispositivos se basa generalmente en reacciones químicas que provocan un cambio de color, lo que permite conocer la presencia o no de ciertos contaminantes o condiciones de salud.

Sin embargo, la sensibilidad "eléctrica" de estos dispositivos es limitada y se agota muy rápido.

"El papel tiene ventajas únicas como material para biosensores: es económico, desechable, flexible y tiene una gran superficie. Sin embargo, los sensores requieren una fuente de alimentación", explicó Choi en la presentación de sus baterías.

Para superar esta barrera, el equipo de la Universidad Binghamton creó una especie de celdas imprimiendo capas delgadas de metales y otros materiales sobre una superficie de papel. 

Luego, colocaron "exoelectrógenos ", que son un tipo especial de bacteria que puede transferir electrones fuera de sus células. 

Lea el artículo completo en: BBC Mundo

5 de agosto de 2018

Un científico ha calculado matemáticamente la fuerza de Thanos en Avengers: Infinity War

Si has visto Avengers: Infinity War sabrás que Thanos es el villano más bestia que ha aparecido en una producción de Marvel en la gran pantalla. Ahora bien, ¿hasta dónde llegaría esa fuerza? Esto es precisamente lo que ha averiguado un científico de la Universidad Northeastern, y es bastante impresionante.


El hombre que se embarcó en el proyecto fue Steven Cranford, profesor de ingeniería de la universidad, quién calculó hasta dónde llegaría la fuerza de Thanos. Para llegar a ese calculo el investigador realizó modelos moleculares reales del cubo ficticio Teseracto. Su trabajo se acaba de publicar (y revisar) en Extreme Mechanics Letters.

Para los profanos, el Teseracto en el mundo de Marvel es una gema en forma de cubo de un poder incomparable que una vez perteneció a Odín, una brillante caja azul que Thanos aplasta como si nada. Cranford, un aficionado a las películas de Marvel y científico de los materiales, vio en la escena una fórmula perfecta para adivinar la fuerza real del personaje.

Cuando Thanos demolió el cubo, Cranford activó un programa de dinámica molecular para descubrir cómo sería una caja tetradimensional. Si descifraba la geometría del cubo, podría calcular su fuerza material. Y si conocía la fuerza del cubo, podría calcular lo poderoso que debía ser Thanos para aplastarlo.

Se da la casualidad de que los teseractos no son solo imaginación del universo de Marvel, también existen en las páginas de libros de texto de geometría. De hecho, su definición es la de una figura formada por ocho cubos tridimensionales ubicados en un espacio donde existe un cuarto eje dimensional (considerando al primero longitud, el segundo altura y el tercero profundidad). Básicamente, en un espacio tetradimensional, el teseracto es un cubo de cuatro dimensiones espaciales.

Dicho de otra forma, es algo así como un cubo más pequeño suspendido perfectamente en el centro de un cubo más grande. Utilizando el software de modelado, Cranford comenzó a construir teseractos moleculares, uniendo átomos de carbono a átomos de carbono.


Si deseas leer el artículo mcompleto puedes hacer click AQUÍ.

Pero si deseas la respuesta a la pregunta inicial aquí la tienes:

Conclusión final

El investigador concluyó que exprimir un cubo Teseracto hasta dejarlo en polvo requería una fuerza equivalente a 42.000 toneladas, o la fuerza de agarre combinada de 750.000 hombres promedio de Estados Unidos.

¿El resultado final? Suponiendo una relación proporcional entre la fuerza de agarre y lo que puede levantar un estadounidense promedio, las matemáticas del científico sugieren que Thanos podría arrojar 54 millones de kilogramos, 4.5 millones de kilogramos más que el peso de el Titanic. Una auténtica barbaridad. 

Suerte que el tipo no está entre nosotros.

Fuente:

Gizmodo

31 de julio de 2018

Enel pone en marcha parque eólico de US$165 millones

Wayra I cuenta con una capacidad instalada de más de 132 MW. Se trata del proyecto más grande de su tipo en el país, lo que convierte a Enel en el principal generador de energías renovables del país.



Enel ha puesto en marcha el parque eólico más grande del país actualmente operación (14 de junio de 2018), Wayra I, convirtiéndose así en el principal generador de energías renovables del Perú, con una capacidad instalada de aproximandamente 1,1 GW. 

Wayra I, que es operada por Enel Green Power Perú (EGPP), la subsidiaria de energías renovables de Enel en Perú, está ubicada en Marcona, región Ica. Cuenta con una capacidad instalada de más de 132 MW,  y es el primer parque eólico del Grupo en el país.

Enel invirtió más de 165 millones de dólares en su construcción, en línea con la inversión contemplada en su plan estratégico.

"Con la entrada en servicio de Wayra I, que sigue la puesta en marcha de la planta solar Rubí, Enel Green Power ya ha completado y conectado a la red aproximadamente el 94% de la capacidad adjudicada en la cuarta subasta pública de energías renovables de Perú, cumpliendo con sus compromisos a tiempo y convirtiéndose un líder del sector en el país”, señaló Antonio Cammisecra, responsable de Enel Green Power (EGP), que es la División Global de Energías Renovables del Grupo Enel

"Este es un primer paso en el desarrollo a gran escala de las renovables en Perú", añadió. 
Se prevé que el nuevo parque eólico, el cual se construyó en aproximadamente un año y que comprende 42 aerogeneradores de más de 3 MW cada uno, producirá alrededor de 600 GWh al año, suficiente para evitar la emisión anual de más de 285.000 toneladas de CO2 a la atmósfera.

La energía generada por la planta eólica es entregada al Sistema Eléctrico Interconectado Nacional (SEIN) a través de la subestación Poroma. El proyecto está respaldado por un contrato de suministro eléctrico a 20 años celebrado con el Ministerio de Energía y Minas del Perú.

Desde enero 2018 hasta la fecha, EGP ha conectado a redes alrededor del mundo seis centrales, entre las cuales Wayra I, alcanzando una capacidad renovable instalada de más de 1.000 MW.
EGPP llevó a cabo diversas iniciativas para apoyar a los negocios locales y a las comunidades, incluyendo el monitoreo ambiental por parte de asociaciones e instituciones.

En el lugar de construcción de Wayra I se aplicó el modelo “Sitios de Construcción Sostenible” de Enel, el cual comprende la medición del impacto social y ambiental del proyecto y las acciones para incorporar el uso racional de los recursos. 

En el sitio de construcción de Wayra I se ha utilizado una planta de nanotecnología y libre de CO2 para el tratamiento de aguas residuales, accionada por un pequeño aerogenerador con un sistema de almacenamiento con baterías.

Esta planta innovadora filtra las aguas residuales a través de una serie de membranas cerámicas con nanotecnología patentada por la compañía BioGill, lo cual permite que las bacterias purifiquen el agua de forma natural.

Esta tecnología permitió a EGPP reutilizar aproximadamente 350 metros cúbicos de agua durante los trabajos de construcción del parque eólico, ahorrando este recurso a la par de minimizar el uso de vehículos a motor para la remoción de lodos evitando la emisión de cerca de 1,64 toneladas de CO2.

14 de febrero de 2018

Star Wars: ¿Podría existir de verdad la 'Fuerza'?

¿Existe algo en el campo de la física cuántica que se asemeje a la Fuerza?

La Fuerza "nos rodea y nos penetra, une a la galaxia", decía Obi-Wan Kenobi a Luke Skywalker en la película original de Star Wars.

 Los físicos actuales saben que en realidad existen cuatro fuerzas fundamentales: las dos fuerzas nucleares, la fuerza electromagnética y la fuerza gravitacional. Todas ellas juegan un papel clave en la unión de la materia, desde el más pequeño de los átomos hasta el más grande de los planetas.

Sin embargo, parece que no son estas fuerzas las que estamos buscando. El viejo Ben Kenobi, Yoda y, finalmente, Luke, podían comunicarse telepáticamente a grandes distancias y mover objetos con sus mentes gracias al poder de la Fuerza. ¿Es esto posible?
¿Qué dicen las leyes de la física sobre esto?

La Física de la Fuerza


Para empezar,
la teoría de la relatividad de Einstein pone límites estrictos a la rapidez con la que podemos comunicarnos: el límite de velocidad máximo es la velocidad de la luz. Entonces, si necesitamos enviar un mensaje a Alderaan para advertir a los ciudadanos de un ataque imperial, siempre habrá una demora. No podríamos advertirles a tiempo para una evacuación porque lleva tiempo que la luz viaje para transmitir el mensaje.

Obi-Wan Kenobi no podría haber sentido una perturbación en la Fuerza apenas unos instantes después de que la Estrella de la Muerte destruyera a Alderaan. ¿O sí? ¿Qué dice la física cuántica sobre la información transferida a grandes distancias?

Lamentablemente no podemos romper el límite de velocidad de Einstein, ni aunque poseyéramos el Halcón Milenario. Sin embargo, a través de un truco de mecánica cuántica, puedes unir dos partículas de una manera especial, separarlas y luego observar los efectos de una sobre la otra a grandes distancias. Es lo que se conoce como enredo cuántico, colocando dos objetos en el mismo estado cuántico entrelazado. Y los experimentos de física modernos con partículas de luz han demostrado que el entrelazamiento es real: las partículas se pueden conectar a grandes distancias.

Como curiosidad, en la época en la que George Lucas escribía el guión original de Star Wars, (finales de 1960, principios de 1970), científicos propusieron que el enredo cuántico era una "fuerza" que nos unía a todos.

Esto llevó a la idea de que todos estamos enlazados de alguna manera, y que realmente hay una conexión entre cada ser vivo en la galaxia. Pero... hay una trampa. Los efectos del enredo cuántico tienden a ser muy pequeños para los objetos cotidianos. A no ser que nos introduzcamos en el campo de la superconductividad.

Estos nuevos fenómenos, como un superconductor que flota sobre un imán en el efecto Meissner, provienen de enredos cuánticos macroscópicos de electrones o de una "fuerza" espeluznante que actúa a grandes distancias. La "Fuerza" del enredo cuántico realmente despierta en estos nuevos "materiales cuánticos".

Por ello, podríamos concluir que hay algo de verdad en la idea detrás de "La Fuerza", desde cierto punto de vista.

El enredo cuántico juega un papel fundamental en la física moderna y es un principio vinculante para la materia y la energía. Sin embargo, el enredo cuántico a gran escala es difícil de lograr, y aún es más difícil de observar en las criaturas vivientes.

Referencia: Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics 6, 462–467 (2010)


5 de septiembre de 2017

El fuego, ¿es líquido, sólido o gaseoso? Y, ¿por qué es caliente?

Sólido, líquido y gaseoso: esos son los estados de la materia, según nos enseñaron en la escuela. Y luego nos enteramos de que había otros más: plasma, condensados Bose-Einstein, materia degenerada, plasma de quarks-gluones...

A pesar de ello, seguimos teniendo un problema con el fuego, pues no parece entrar en ninguna de esas clasificaciones.

Y es exactamente por eso que ha fascinado a los científicos durante siglos.


Uno de los fascinados fue el físico y químico Michael Faraday (1791-1867), quien descubrió la inducción electromagnética, el diamagnetismo y la electrólisis.

Además de eso, fue el creador de las legendarias Conferencias de Navidad de la Royal Institution de Londres, en 1825, una tradición que aún se mantiene. Su idea era presentarle a los jóvenes las maravillas de la ciencia a través de espectáculos.

El propio Faraday fue uno de los conferencistas en esos primeros tiempos. En 1848, en su exposición más famosa, empezó diciendo: "No hay mejor puerta para entrar al estudio de la filosofía natural que considerando el fenómeno físico de una vela".

Esa conferencia, "La historia química de una vela", es una favorita de los químicos desde entonces, entre ellos a la investigadora forense de incendios Niamh Nic Daeid.

"En mi área, particularmente cuando estamos trabajando en un caso y tenemos que explicar cómo funciona el fuego en un tribunal, lo que tenemos que hacer es explicar en términos muy sencillos la combustión: qué es, cómo ocurre, cómo empiezan los incendios, cómo se desarrollan, etc.", dice la experta a la BBC.

"Cuando recién estaba empezando en el área, un amigo me sugirió que leyera las conferencias de Faraday. Son seis sobre este tema, escritas para niños, así que lo explica de una manera muy sencilla". 

¿Cómo explica Niamh Nic Daeid el misterio del fuego, que no parece ajustarse a ninguno de los estados clásicos de la materia?

"El fuego es una reacción química. Es algo que le sucede a gases en la mayoría de las circunstancias. Y es algo que pasa como resultado del calentamiento de la materia -sólida o líquida- para producir vapores, que luego se encienden al mezclarse con el oxígeno".

Entonces, no es un sólido ni un líquido y es casi un gas, pero no lo es. El fuego es algo que le ocurre al gas.

"Para hacer fuego, tienes que tomar un sólido o un líquido, calentarlo para que se rompan vínculos químicos en el combustible (el sólido o el líquido con el que empezaste) y eso hace que se libere gas. Ese producto gaseoso se mezcla con el oxígeno. Luego introduces una fuente de encendido que produce una llama".

Al prender una vela, "estás viendo química". O, en otras palabras, no es un estado de la materia, sino una reacción.

El artículo completo en:

BBC

2 de mayo de 2016

El accidenteque creó una batería que dura toda una vida

Crear una batería que dure toda una vida parecía difícil de lograr, aunque un grupo de investigadores estadounidenses lo consiguió.

Lo que más llama la atención es que todo fue fruto de un accidente.





Científicos de la Universidad de California, en Irvine, Estados Unidos, estaba buscando una forma de sustituir el litio líquido de las baterías por una opción más sólida y segura (las baterías de litio son extremadamente combustibles y muy sensibles a la temperatura) cuando dieron con esta batería 400 veces más eficiente que las actuales.


Empezaron a experimentar con nanocables de oro recubiertos con un gel de electrolitos y descubrieron que eran increíblemente resistentes. La batería podía seguir trabajando de forma efectiva durante más de 200.000 ciclos de carga.

Durante mucho tiempo, los científicos han experimentado con nanocables para baterías.
Esto se debe a que son miles de veces más delgados que el cabello humano, altamente conductores y cuentan con una superficie amplia para el almacenamiento y transferencia de electrones.

El problema estaba en que estos filamentos son extremadamente frágiles y hasta ahora no aguantaban la presión de carga y descarga.
Pero un día la estudiante de doctorado Mya Le Thai decidió colocar en estos delicados hilos una capa de gel.

"Mya estaba jugueteando y lo cubrió todo con una un fina capa de gel antes de empezar el ciclo", explicó Reginald Penner, consejero de departamento de química la Universidad de California en Irvine.

"Descubrió que tan solo usando este gel (de electrolitos) podía someterlos a ciclos (de carga y descarga) cientos de miles de veces sin que perdiera su capacidades".
Y lo hizo durante tres meses.

"Esto es increíble porque estas cosas típicamente mueren dramáticamente tras 5.000 o 6.000 ciclos, 7.000 como mucho", agregó

Penner le contó a la revista Popular Science que cuando empezaron a probar los dispositivos, se dieron cuenta que no iban a morir.

Los expertos piensan que la efectividad de la batería de Irvine se debe a que la sustancia viscosa plastifica el óxido metálico en la batería y le da flexibilidad, lo que evita el agrietamiento.

"El electrodo revestido mantiene su forma mucho mejor, lo que lo hace una opción más fiable", explicó Thai.

El artículo completo en:

BBC Ciencia

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0