15 de enero de 2019
¿La luz de las farolas provoca cáncer?
Así planteado la respuesta es no, pero también es verdad que aquí hay mucho que hablar. Es casi seguro que la pregunta viene por una serie de estudios que se han hecho a partir del año 2008 y que vinculan las áreas urbanas con más luz nocturna con un aumento del riesgo de padecer dos tipos de cáncer: mama y próstata. Lo que hicieron los investigadores fue medir la luz reflejada en el cielo que captan los satélites y una vez que identificaron las ciudades más iluminadas, comprobaron si había algún tipo de asociación con un aumento de la incidencia de estos cánceres, mama y próstata, que son los que, en principio, se vincularían con mayor exposición a luz nocturna. Los autores del estudio encontraron que sí había una asociación entre mayor iluminación y un mayor riesgo. El problema de estos estudios, y que es una pega real, es que no detectan qué luz recibe individualmente cada sujeto, sino la que hay reflejada en el cielo y que no tiene que coincidir necesariamente con aquella a la que cada uno se expone en su casa.
También hay que tener en cuenta que el hecho de vincular la luz nocturna con el cáncer es un tanto controvertido, no se puede decir así. Lo que sí se sabe es que la luz nocturna hace que el organismo produzca menos una hormona llamada melatonina. Y sabemos también que esa falta de melatonina altera el sistema circadiano. Debes saber que el sistema circadiano tiene un reloj biológico que está en nuestro cerebro y está preparado evolutivamente para detectar la alternancia entre la luz y la oscuridad, entre el día y la noche. Sabemos igualmente, gracias a los estudios epidemiológicos, que las alteraciones en nuestro sistema circadiano sí se vinculan a una serie de enfermedades como el síndrome metabólico y otras alteraciones cognitivas y afectivas. Se sabe, por ejemplo, que las personas que trabajan en turnos y que tienen alterado su sistema circadiano son más proclives a este tipo de enfermedades.
En el año 2008, la Organización Mundial de la Salud publicó un informe que decía que la disrupción circadiana, que incluye la luz y otros aspectos, es potencialmente carcinogénica para humanos y la incluía en el grupo 2A. El grupo 2A incluye a los factores que no muestran evidencias experimentales en humanos con la aparición de cáncer sino que la relación es asociativa, no causal. Es decir, las dos cosas parecen ir juntas pero no podemos demostrar que una lleve a la otra. En animales de experimentación en cambio las evidencias sí son suficientes para decirlo pero no en el caso humano.
Lea el artículo completo en: El Páis (España)
9 de enero de 2018
Drumi, la lavadora que lava la ropa sin utilizar electricidad
Es cierto que con esta lavadora solo se puede lavar 5 o 6 prendas, pero es una herramienta ideal cuando tienes poca ropa sucia. También es perfecta para llevarla de vacaciones o a un camping; es muy pequeña, liviana y no tienes que enchufarla.
Funciona de la siguiente manera: primero introduces 5 litros de agua, jabón y la ropa sucia. Tras pedalear algunos minutos, liberas el agua enjabonada y vuelves a introducir otros cinco litros de agua para aclarar y, de nuevo, pedaleas. Por último, sacas el agua y vuelves a pedalear otro minuto más, para simular el centrifugado.
22 de octubre de 2015
¿Programados para ser vagos?: Descubre porque te cuesta ir al gimnasio
Si eres de los que se sube a la cinta del gimnasio y pasa horas caminando para quemar calorías, no te gustará saber que tú cerebro trabaja de manera inconsciente contra ti. Un equipo de investigadores liderados por Jessica Selinger ha comprobado mediante una serie de pruebas que nuestro sistema nervioso es capaz de adaptarse en pocos minutos a nuevas circunstancias para consumir la menor cantidad de energía posible. En otras palabras, dice, los humanos estamos cableados para ser vagos.
El trabajo, publicado en la revista Current Biology, partió de un estudio sistematizado de la forma de desplazarse de los voluntarios. Su intención era conocer no solo cómo nos movemos de un punto A hasta un punto B, sino comprobar cómo reacciona y se adapta nuestro cuerpo ante distintos cambios de las condiciones en tiempo real. Para ello, los autores del estudio utilizaron un exoesqueleto robótico que dificultaba el movimiento oponiendo distintos niveles de resistencia. "Creo que nuestro experimento era como arrojar a alguien en un nuevo mundo con todas las reglas nuevas", asegura Selinger. "Todas las estrategias que ellos hubieran desarrollado a escala evolutiva o de desarrollo son ahora obsoletas en este nuevo mundo".
Los resultados muestran que las personas son capaces de adaptar sus movimientos al rendimiento óptimo para consumir menos energía en cuestión de minutos, incluso con ahorros de energía tan pequeños como el 5%. El hallazgo, aseguran, demuestra que los costes energéticos de nuestros movimientos no son solo el resultado de nuestros movimientos, sino que de hecho juegan un papel fundamental a la hora de darles forma continuamente. "Hemos descubierto que la gente cambia rápidamente la manera en la que camina para ahorrar pequeñas cantidades de energía", asegura Max Donelan, coautor del trabajo. "Esto es completamente congruente con la idea de que la mayoría de nosotros prefiere hacer las cosas con el mínimo esfuerzo", insiste. "Presentamos una base fisiológica de esta vaguería demostrando que incluso con un movimiento tan habitual como caminar, el sistema nervioso monitoriza inconscientemente el uso de la energía y optimiza continuamente los patrones de movimiento para que resulten lo menos costosos posible".
"Sentir y optimizar el uso de energía de forma tan rápida y precisa es una característica impresionante del sistema nervioso", apunta Selinger. "¡Tienes que ser muy listo para ser así de vago!". Los científicos quieren explorar ahora con más detalle el coste energético de determinadas maneras de moverse y conocer cómo resuelve el sistema un problema de optimización tan complejo.
Referencia: Humans Can Continuously Optimize Energetic Cost during Walking (Current Biology)
Tomado de:
Vox Populi
17 de abril de 2015
Un automóvil basado en torio necesitaría 8 gramos de combustible para funcionar 100 años
Torio, ¿la energía del futuro?
Diario Ecología
3 de febrero de 2014
Así descubrieron por qué las aves vuelan en formaciones en V
Básicamente, el ave que está detrás utiliza la fuerza del viento que desplaza en su vuelo el ave que está adelante.
Vea cómo lo hacen, explicado de manera científica, en este video de BBC Mundo.
12 de julio de 2013
¿Por qué produce electricidad una placa solar?
La energía fotovoltaica es la energía del futuro. Tenemos energía del Sol para que 50.000 veces la población actual del planeta viva como vivíamos los españoles en 2006.
Las células de una placa solar son de muy diversos materiales y formas, pero básicamente de silicio (poli)cristalino. Este silicio (arena de playa fundida y solidificada lentamente para formar un cristal muy puro) se dopa con muy pequeñas cantidades de galio y arsénico, exactamente como los transistores que a miles de millones están en los ordenadores, teléfonos móviles y otros aparatos.
Antonio Ruiz de Elvira, catedrático de Física de la Universidad de Alcalá de Henares, nos los explica desde Cosmocaixa, el museo de la ciencia de la Obra Social La Caixa.
La introducción de otros metales en la red cristalina del silicio cambia la disposición de los electrones de sus átomos en la red: es como sentar a alguien muy grueso en una fila de sillas. En esta nueva disposición la luz de la frecuencia adecuada proporciona energía, al hacer oscilar al electrón con mayor amplitud hasta que el electrón salta lejos del núcleo de su átomo y llega a la banda de conducción.
Un símil burdo pero ilustrativo es un almendro a orillas de un río: Si agitamos (la luz) con fuerza las almendras, éstas caen al río que se las lleva. El árbol es el átomo, los electrones que se mueven por los cables son el río de corriente eléctrica que enciende las bombillas o mueve los motores de los aparatos de casa.
Fuente:
El Mundo Ciencia
7 de marzo de 2013
Diseñan un algoritmo para ahorrar combustible en los trayectos
Investigadores del INSIA-UPM calculan la velocidad óptima en un recorrido, que permitiría ahorrar hasta un 5,2% de combustible.¿A qué velocidad tenemos que circular en un determinado tramo de carretera para que el consumo de energía del vehículo sea óptimo? Es una pregunta que todo conductor se hace y a la que trata de responder una investigación del Instituto de Investigación del Automóvil (INSIA) de la Universidad Politécnica de Madrid (UPM).
Los expertos de la UPM han diseñado un algoritmo de optimización que obtiene el perfil óptimo de velocidad que debe seguir un vehículo para minimizar el consumo de combustible durante un recorrido conocido.
La estrategia es utilizar las variaciones de pendiente de la carretera para encontrar los valores óptimos de velocidad y marcha que permitan disminuir la energía utilizada por un vehículo. El sistema tiene en cuenta los mapas de eficiencia de las partes que integran el sistema de tracción del vehículo, la posición GPS, el mapa electrónico de la carretera y el tiempo de recorrido fijado por el conductor.
El método utilizado para encontrar la secuencia de marchas y la velocidad óptima es el de Programación Dinámica. Esta técnica considera las posibles transiciones entre estados inmediatos de un sistema y encuentra la secuencia óptima cuando se requiere que el sistema cambie entre dos estados no consecutivos. Con este método el consumo de combustible puede llegar a reducirse hasta en un 5,2%.
Buscan su aplicación en híbridos
Felipe Jiménez, investigador del INSIA y autor principal del trabajo, explica así el funcionamiento del sistema: “Si deseamos que un vehículo convencional cubra un recorrido utilizando el menor consumo de combustible posible para un tiempo determinado, el algoritmo de Programación Dinámica prueba distintas etapas de transición de velocidad y cambios de marcha hasta que encuentra la secuencia óptima que consume la menor cantidad de combustible y cumple con el tiempo establecido. Para ello, se basa en las características del vehículo, por lo que la solución encontrada puede cambiar de un vehículo a otro”.
El trabajo, publicado por la revista Dyna Ingeniería e Industria, es uno de los primeros de este tipo que tiene en cuenta la orografía de la carretera, las limitaciones de velocidad de la misma y el tiempo establecido de viaje. Este aspecto es especialmente útil para las empresas de transporte de pasajeros y de mensajería. Además, al reducirse el consumo se minimizan las emisiones de gases contaminantes haciendo que los vehículos sean más respetuosos con el medio ambiente.
El objetivo de los investigadores es que este proyecto, desarrollado por el Instituto Universitario de Investigación del Automóvil (INSIA) de la Universidad Politécnica de Madrid y cofinanciado por el antiguo Ministerio de Educación y Ciencia, siga dando frutos en el futuro. “En este momento, estamos trabajando en la versión del algoritmo para vehículos híbridos y en la introducción de la información de tráfico como una nueva variable a considerar dentro del algoritmo de optimización”, explica.
Fuente:
Universidad Politécnica de Madrid
23 de febrero de 2013
¿Por qué iluminan los leds gastando tan poco?
Al principio, los veíamos en rótulos, marcadores electrónicos o termómetros de las ciudades. Después, se han ido extendiendo según disminuía su tamaño.
Los led, hoy en día, se han convertido en una alternativa a la iluminación por bombillas incandescentes e incluso lámparas de bajo consumo, como las fluorescentes. La clave: gastan realmente muy poca electricidad.
Nos acercamos a Cosmocaixa, el museo de la ciencia de la Obra Social La Caixa; allí, el catedrático de Física Antonio Ruiz de Elvira explica que la bombilla de Edison ha sido nuestra fuente de luz doméstica durante 130 años. Ahora bien, este tipo de lámpara está basado en obligar a los electrones a saltar de órbita a base de golpes violentos de otros electrones que circulan por los cables.
La idea de los led es estimular directamente a los electrones para que salten de órbita atómica sin esperar a que algún otro electrón los golpee: luz con un 10% de eficiencia energética y larga duración.
Fuente:
El Mundo Ciencia
24 de septiembre de 2012
Suecia no produce suficiente basura y debe importarla
Cada ciudadano sueco produce cerca de media tonelada de basura al año, mientras que cada europeo produce seis.
12 de septiembre de 2012
Las turbinas eólicas pueden proporcionar toda la energía necesaria en el mundo
Investigadores de EEUU calculan que cuatro millones de aerogeneradores cubrirían más de la mitad de las necesidades energéticas planetarias.
Consecuencias para el clima
Algunos autores creen que la energía eólica no proporcionará más del 10% de las energías fósiles actuales
Los 20 años de la Eco Aldea de Itaca (New York)
11 de septiembre de 2012
La eólica podría satisfacer la mitad de la demanda mundial de energía en 2030
Un parque eólico al sur de Australia, sin relación con este estudio. | EL MUNDO
En un estudio publicado en 'Proceedings of the National Academy of Sciences' (PNAS), Mark Jacobson, de la Universidad de Stanford, y Cristina Archer, de la Universidad de Delaware, desarrollan un modelo teórico en tres dimensiones de la atmósfera para calcular la cantidad de energía eólica que podría generarse en 2030 si los gobiernos apostaran por ella. Según sostienen, esta fuente renovable podría llegar a satisfacer buena parte de las demandas mundiales de energía para ese año sin producir un impacto ambiental significativo.
Según sus cálculos, aunque existe un límite en la cantidad de energía que puede generarse a partir del viento, su potencial supera con creces las necesidades de consumo. Y es que, aunque la cantidad de energía que se obtiene aumenta proporcionalmente al número de turbinas instaladas, llega un momento en el que la producción se satura. Aunque se instalen más turbinas, no aumenta la cantidad de energía generada.
"De las principales fuentes energéticas que pueden abastecer el planeta, sólo la eólica y la solar pueden hacerlo por sí mismas. La generación de energía a partir del sol no disminuye la fuente disponible. Sin embargo, algunos [investigadores] habían argumentado que generar energía eólica podría afectar la velocidad del viento, de manera que no se pudiera generar suficiente energía para satisfacer las demandas mundiales. Queríamos probar esta hipótesis", explica Mark Jacobson a ELMUNDO.es a través de un correo electrónico.
Según los autores, aunque es cierto que cada turbina reduce la cantidad de energía disponible para otras, estos efectos negativos sólo resultarían significativos si se instalara un gran número de turbinas, muy superior al necesario.
Cuatro millones de turbinas
Hacia 2030, calculan los autores, los humanos necesitarán alrededor de 11,5 teravatios (Tw) de energía (generada por todas las fuentes de manera combinada). Su modelo teórico en tres dimensiones, bautizado como GATOR-GCMON, calcula la cantidad de turbinas que harían falta para abastecer la mitad de las necesidades de la población, es decir, unos 5,75 teravatios.Para hacer la estimación, exploran varios escenarios con el objetivo de averiguar el potencial de la energía eólica. Según sus cálculos, cuatro millones de turbinas con una altura de 100 metros y una potencia de cinco megavatios generarían 7,5 teravatios de energía, bastante más de la mitad de la demanda mundial.
En la actualidad, sólo hay instaladas algo más de un 1% de estas turbinas. Los autores proponen colocar la mitad de los cuatro millones de unidades en el agua. Los otros dos millones estarían en tierra firme, y ocuparían una extensión equivalente al 1% de la superficie terrestre (la mitad del área ocupada por el estado de Alaska). Los investigadores sugieren instalar los parques eólicos en zonas muy ventosas situadas en distintos lugares del mundo, como el desierto de Gobi, del Sahara o las llanuras de América.
Pero ¿es realista esta estimación teniendo en cuenta que habría que instalar un 99% más de turbinas de las que operan en la actualidad? "No es tan irrealista si la sociedad decide que quiere hacerlo. Durante la II Guerra Mundial se fabricaron en todo el mundo 800.000 aviones en un periodo de 5-6 años, así que fabricar cuatro millones de turbinas 70 años después no entraña dificultades técnicas. En la actualidad se producen entre 70 y 80 millones de coches cada año. Además, lo que necesitaríamos es fabricar esta cantidad de turbinas en 30 años, lo que supondría unas 133.000 cada año", afirma Jacobson.
Impacto ambiental de la energía eólica
Según este investigador, su estudio contradice las conclusiones de otras dos investigaciones anteriores que rebajaban el potencial de la eólica. Según sostenían esos dos 'papers', cada turbina roba energía a otras turbinas, a lo que habría que sumar las consecuencias negativas para el medio ambiente de este tipo de instalaciones, dos factores que contribuirían a que la valoración global de esta fuente renovable no fuera tan positiva."Hemos visto que las 'consecuencias dañinas' que enumeran otros, como temperaturas más altas, no se daban, sobre todo, por la disminución del agua evaporada de la superficie debido a las turbinas. Las turbinas eólicas reducen la velocidad del viento, lo que a su vez disminuye la evaporación de agua. Debido a que el vapor de agua es el mayor responsable del efecto invernadero causado de forma natural, reducir esta evaporación necesariamente disminuye el efecto invernadero y las temperaturas globales. Otros estudios sostenían lo contrario, es decir, que las temperaturas aumentarían", recuerda.
Sin embargo, la energía eólica también suscita críticas entre otros sectores. Por un lado, los conservacionistas alertan del impacto ambiental que puede causar en algunas especies animales, en particular en las aves, mientras que al sector turístico le preocupa la alteración del paisaje como consecuencia de la construcción de parques eólicos. La instalación de las turbinas en lugares ventosos y aislados, como los que proponen los autores, evitaría estos inconvenientes.
"No estamos pidiendo que se coloquen turbinas en todas partes. Pero sí hemos demostrado que no hay barreras para obtener la mitad de la energía que necesita la Humanidad o incluso para satisfacer varias veces toda la demanda mundial. Su potencial está ahí si construimos las turbinas necesarias", asegura.
Fuente:
El Mundo Ciencia
4 de septiembre de 2012
La planta de Mutriku, genera energía con las olas, ha producido en un año 200.000 kWh
Incidentes
Interés social y empresarial
2 de septiembre de 2012
¿Cómo me deshago de las bombillas de bajo consumo?
- Hay que reciclar las lámparas eficientes para evitar que contaminen
- Se recomienda tomar ciertas precauciones a la hora de recoger los residuos
- Organizaciones ecologistas consideran que no existe suficiente información
Pese a teorías que denuncian los riesgos para la salud de estas bombillas por integrar mercurio en su composición, el doctor Miguel Ángel Martínez, especialista en medicina paliativa, considera que no hay razones para la alarma: "El mercurio en sí mismo no es tóxico. El problema es el metil mercurio, el mercurio al combinarse. La posibilidad de que suponga un riesgo para la salud es remota, ya que estas bombillas contienen como máximo 6 mg. de mercurio", aclara a ELMUNDO.es
Aunque la legislación permite que las nuevas bombillas contengan hasta 6 mg. de mercurio, la Organización de consumidores y usuarios (OCU) pretende conseguir que el nivel permitido se reduzca aún más, puesto que los grandes fabricantes (Philips y Osram) han conseguido comercializarlas con sólo 3 mg. Así se evitaría las bombillas con mayores niveles producidas por fabricantes 'más baratos'.
La fabricación es una de las fases más delicadas. Los productores sí utilizan cantidades a niveles industriales, por lo que toman medidas de seguridad especiales, sobre todo, en la gestión de residuos. Si el mercurio se vierte al mar, entrará en la cadena alimenticia de los peces. "Además, el mercurio no se elimina del organismo, por lo que si nosotros consumimos esos peces acabaríamos ingiriendo ese metil mercurio. Esto sí puede suponer un riesgo, especialmente para las mujeres embarazadas y los niños pequeños", añade.
Reciclaje adecuado
Las emisiones de metil mercurio tampoco se eliminan de la atmósfera, según denuncia la ONG Ecologistas en Acción. Para evitar este daño, es preciso depositarlas en el contenedor adecuada a la hora de deshacernos de estas lámparas. Para aclarar dudas se puede recurrir a Ambilamp, sistema integrado de gestión de las lámparas gastadas en nuestro país. En su página web www.ambilamp.es podemos informarnos de los puntos cercanos donde encontrar contenedores para depositar las bombillas de bajo consumo o los fluorescentes una vez gastados.La gestión de residuos afecta además a otros componentes electrónicos recogidos en la Directiva Europea y concretamente a otras lámparas, como fluorescentes, bombillas de descarga o neones, que pueden liberar partículas tóxicas perjudiciales para el entorno.
Leticia Baselga, Coordinadora del Área de Residuos de esta organización, considera que los usuarios no están lo suficientemente informados. "Hace dos años, cuando el Ministerio de Industria repartió bombillas de bajo consumo como parte de una campaña para reducir el consumo de electricidad, no se informaba al usuario para gestionar el reciclaje una vez gastadas las bombillas. Desde Ecologistas en Acción, enviamos varias cartas al Ministerio para que se visibilizara esta necesidad, pero no nos hicieron caso", comenta Baselga.
Por su parte, Julio Barea, el responsable de la Campaña de Energía y Cambio Climático de Greenpeace España, cree que hay que evitar la alarma: "La emisión de mercurio es mínima y compensa si tenemos en cuenta el descenso que supone para la emisión de toxinas mucho mayor que se daba con la lámpara incandescente". Este activista está de acuerdo en la falta de información respecto al reciclaje: "En la caja debería explicarse qué hacer para reciclar las bombillas de bajo consumo; el volumen de reciclaje se ha incrementado pero sigue sin ser el óptimo".
Barea también augura un futuro brillante para las bombillas de LED "Ahora son muy caras, pero también lo fueron en su origen las de bajo consumo. Además, no contienen mercurio, por lo que su implantación será un paso más en la reducción de emisiones nocivas para el medio ambiente".
Fuente:
El Mundo Ciencia
22 de agosto de 2012
DARPA quiere desarrollar la computación analógica
26 de marzo de 2011
La Hora del Planeta 2011
Conocer Ciencia:
Ciencia sencilla
Ciencia divertida
Ciencia fascinante...
23 de marzo de 2011
Google invierte en combustibles que eliminan el carbono del ambiente
La gran G, por medio de su división de innovación Google Ventures, sacó un maletín lleno de billetes verdes para invertirlos en la compañía CoolPlanetBiofuels, empresa que habría desarrollado un nuevo método para la producción de biocombustible fabricado a partir de biomasa (hierba y madera) y que promete ser un combustible de “carbono negativo” al eliminar este último componente de la atmósfera.
Según CoolPlanetBiofuels su tecnología de combustible denominada como”N100” utiliza un revolucionario proceso “térmico/mecánico” con la finalidad de convertir los cultivos no alimentarios en corrientes de gas. Dichas corrientes son tratadas mediante procesos catalíticos para terminar produciendo un combustible de hidrocarburo que es perfectamente compatible con los actuales vehículos que utilizan combustibles convencionales.
Según Wesley Chan, socio de Goolge Ventures, la compañía en la que invirtieron logró crear una innovadora solución para uno de los mayores problemas del mundo
Esta tecnología es un gran paso ya que estamos desarrollando una fuente de energía sostenible y renovable, junto con ayudar a reducir la cantidad de carbono existente en la atmósfera
Link: Google funds company producing biofuel from grass (Guardian)
Fuente:
Fayer Wayer
18 de marzo de 2011
Renovables vs. nuclear
Por José Espinoza
Quisiera comenzar esta columna, parafraseando a Hayek: cuando alguien escribe un artículo político, su primer deber es decirlo abiertamente. Pues bien, este es un artículo político.
¿Qué quiero decir? Quiero decir que en el debate sobre cuál debe ser la energía o energías que muevan nuestro futuro no hay una respuesta científica y lo que, por el contrario, hay (o debería haber) son objetivos (o fines) y cifras o datos para guiar una decisión sensata por un modelo energético basado más en unas fuentes de energía que en otras; es decir, se trata de una respuesta (y apuesta) política.
Y, como nos recuerdan las recientes tragedias de Japón, es una apuesta también en el sentido de que cualquier decisión se implementará en el complejísimo mundo real en el que vivimos rodeados de variables aleatorias, incertidumbres -conocidas y desconocidas- y de errores humanos.
A continuación trataré de presentar algunas cifras que pueden ayudar a esa toma de decisión, en función de los objetivos que nos fijemos; entre otros, qué coste queremos pagar por la energía, cuánto estamos dispuestos a pagar por la independencia energética o la seguridad y continuidad de ese suministro respecto a terceros países, qué costes medioambientales estamos dispuestos a asumir y qué riesgos para la seguridad de las personas -incluso en eventos imposibles de efectos devastadores cuando se materializan… ¿les suena un tal Taleb y su Black swan? -.
Aquí van algunos materiales, centrados inicialmente en el debate de actualidad, entre nuclear y renovables. Empecemos por el coste de la energía nuclear:
" A un coste mínimo de inversión en países OCDE -sin tener en cuenta posibles medidas de seguridad adicionales a raíz de lo sucedido en Japón– de €3 mill/MW que, dividido en 40-60 años de vida útil y 7.500-8.000 horas de funcionamiento anual (factor de carga: 85%-91%), supone un coste de amortización de €7-10/MWh.
" Adicionalmente es preciso considerar el coste del capital empleado (rentabilidad para los financiadores y accionistas); asumiendo un coste medio ponderado del 7%-9% ello supone €26-36/MWh adicionales.
" A ello hay que añadir los costes variables del combustible nuclear, los costes de operación y mantenimiento (conjuntamente €15-20/MWh), los costes de desmantelamiento de la instalación, de tratamiento y almacenamiento del combustible usado, etc. Hasta este punto los costes directos de producción de la tecnología nuclear ascenderían a aprox. €50-70/MWh.
" Esta cifra resulta inferior al coste de la energía eólica en emplazamientos de bajo/medio recurso (ver abajo), pero hay que añadirle otros costes más difícilmente cuantificables como el coste de la seguridad de suministro (las reservas de uranio, como las de gas y petróleo, son finitas y se concentran en pocos países) o los costes económicos y humanos de posibles accidentes como el de Japón. Pongan Uds. un número si lo tienen para llegar al coste final de la energía nuclear.
A continuación analizaremos el coste de la energía eólica, como la representante de las energías renovables que resulta a día de hoy más barata:
" A un coste mínimo de inversión de €1,2 mill/MW en países OCDE, con 20 años y 2.000-2.400 horas anuales equivalentes de funcionamiento, resulta un coste de amortización de € 25-30/MWh; más € 35-40/MWh de coste de capital empleado (al 7% utilizado habitualmente por los analistas). En emplazamientos con 3.000 horas de funcionamiento, estos costes bajan a €20/MWh y € 28/MWh respectivamente.
" Añadan los costes de operación y mantenimiento (€10-15/MWh), para obtener un coste de la energía eólica de €70-85/MWh (emplazamientos de bajo/medio recurso eólico) o de €55-65/MWh (emplazamientos de alto recurso). Además, habría otros costes indirectos para el sistema (cuantificados p.ej. por el Departamento de Energía de los Estados Unidos en menos de 0,6 $/MWh asumiendo un 20% de producción eólica en ese país, nivel similar al de España actualmente [1]).
Para terminar, unas líneas sobre las otras energías renovables, aún en fase de desarrollo incipiente, y lo que ello puede enseñarnos sobre por dónde puede ir el mundo:
- Si bien es cierto que la energía solar presenta todavía costes muy superiores a los de la energía eólica o nuclear (en torno a €180/MWh para la fotovoltaica y algo más para la termosolar), no lo es menos que su coste ha experimentado una fortísima reducción en los últimos 3 años fundamentalmente debido a:
- la reducción de los costes de los equipos (la inversión por MW en instalaciones fotovoltaicas en suelo ha pasado de € 6-8 millones en 2006-2008 a € 3 millones/MW en 2010, y es previsible que se siga reduciendo a un ritmo similar en los próximos 3-4 años;
- el aumento de la eficiencia con la que las instalaciones transforman la energía del sol en electricidad, que ha crecido desde niveles del 6%-8% a cerca del 15% (y en laboratorio se llega al 30%-40%), lo que supone que con el mismo MW se puede generar una cantidad significativamente superior de energía –aunque sea preciso ajustar, en su caso, por el incremento de coste.
Este proceso industrial de reducción de costes ha sido favorecido por el crecimiento de la industria fotovoltaica, que ha pasado de instalar 300 MW anuales en 2000-2001 a más de 7.200 MW en 2009, con las consiguientes economías de escala, y por la fuerte competencia existente entre los fabricantes de equipos, impulsada fundamentalmente por compañías chinas.
Por cierto, que es significativo cómo en la eólica no se han producido (aún) unas mejoras comparables y el precio del MW se ha incrementado de forma notable desde 2000-2001, pese a que el crecimiento de la industria ha sido similar... ¿adivinan ustedes por qué?
Asuman Uds. que a futuro desaparece esa diferencia y se producen mejoras en el coste de los aerogeneradores y en la cantidad de energía producida por estos por unidad de recurso eólico similares a las conseguidas en el sector fotovoltaico y aplíquenlas al coste de la energía eólica antes calculado… ¿creen ustedes que tiene sentido apostar por las renovables como una fuente de energía básica a futuro?
*José Espinosa es socio director de Green Capital Advisors.
Fuente:
El Confidencial