Mostrando las entradas con la etiqueta fisica. Mostrar todas las entradas
Mostrando las entradas con la etiqueta fisica. Mostrar todas las entradas
28 de enero de 2020
¿A qué velocidad viaja la electricidad por el cable?
Como ya sabrás, la luz viaja muy rápido, aproximadamente a 299.792.458 metros por segundo, pero claro, ésta velocidad sólo se alcanza a través del vacío o lo que es lo mismo, el espacio, y nuestro planeta está completamente formado por materia, incluido el aire, por lo que nunca llega a darse este caso.
Pero ¿te has preguntado alguna vez a cuánta velocidad viaja la electricidad dentro de un cable como los que nos suministran la corriente a diario? Te adelantamos que la respuesta, comparada con la velocidad de la luz es casi ridícula y seguro que te va a dejar anonadado.
Para responder a esta pregunta debemos ampliar nuestra lupa y viajar al nivel subatómico. El término Átomo es una palabra que pertenece al griego antiguo y quiere decir «indivisible», aunque gracias a los descubrimientos hechos a lo largo de los siglos XIX y XX sabemos que no es así, pues el átomo se divide en distintas unidades como son los neutrones, sin carga eléctrica; los protones, con carga positiva y los electrones, con carga negativa. Estos últimos son lo que nos interesan en esta cuestión y sí que son indivisibles, al menos para la ciencia actual, y tienen un tamaño tan pequeño que es imposible de determinar.
La energía que se produce durante el desplazamiento de los electrones a través del cable es la que genera la electricidad pero sorprendentemente la velocidad que adquieren dichos electrones en un cable de cobre como los que recorren nuestra casa es menor a 1 milímetro por segundo. Para establecer una comparativa, es menor que la velocidad a la que se desplaza un caracol.
Esto es sorprendente principalmente porque cuando pulsamos cualquiera de los interruptores la luz se enciende automáticamente y los cables que recorren nuestras casas suelen ser considerablemente largos.
Pues bien, para entender el porqué de ese encendido automático debemos visualizar un pequeño tubo completamente relleno de canicas del mismo tamaño que su diámetro, ya que los electrones se sitúan en el cable de una manera parecida y en un tamaño casi infinitamente grande.
Si introdujéramos una canica más por un extremo del tubo podríamos observar que, por muy largo que éste sea, la canica que se encuentre en el otro extremo va a salir. Y es que así es el comportamiento de los electrones dentro del cable: uno sólo no recorre todo el cable, si no que al aparecer uno nuevo todos los demás se desplazan liberando el último, por lo que la velocidad de la corriente en su conjunto es similar a la velocidad de la luz.
Fuente: PLC Madrid
14 de enero de 2020
Lisa Randell: vivimos en "la época más inteligente y en la más estúpida"
Una entrevista con una de las mujeres más relevantes en el campo de la física, quien fue la primera en ocupar la cátedra de Física Teórica de las universidades de Harvard y Princeton. Para la física, el hecho de que la física avance, pero aun así existan personas que no creen en las vacunas o se declaran terraplanistas, tiene que ver con una incapacidad de la ciencia para explicar sus conceptos al común de la gente.
El diario El Espectador, de Colombia, le realizó la siguiente entrevista:
La física pasa por un buen momento. En los últimos años ha habido grandes descubrimientos, como el bosón de Higgs y las ondas gravitacionales. ¿Se siente afortunada de vivir en esta época?
Resulta gracioso, porque a pesar de todos estos descubrimientos siempre estamos interesados en lo que vendrá, en lo siguiente. El bosón de Higgs fue predicho hace 50 años. Nos interesa conocer qué hay más allá del modelo estándar de partículas. Esto no significa que los experimentos actuales no sean buenos, pero parece que necesitaremos energías mucho más altas para conocer aún más. No sabemos qué aprenderemos de los futuros experimentos. Pasarán muchos años hasta que se construya un colisionador de partículas de altas energías, si es que llega a existir. Por otro lado, las ondas gravitacionales pasan por un momento emocionante. Estamos justo al principio, es apasionante.
¿Qué significaría un colisionador de altas energías como el que quiere construir China?
Tendremos mucha suerte si se llega a construir. Hay propuestas de China y del CERN, que ha planteado la construcción de un futuro acelerador circular (FCC). Esto no significa que el actual LHC caduque, ya que pasarán muchos años antes de que el CERN lleve a cabo ese proyecto. El próximo paso no serán las altas energías, sino la etapa de alta luminosidad del LHC. Esto permitirá hacer muy buena física, pero no creo que haya nada que reemplace a las altas energías.
A pesar del conocimiento actual del universo, siguen existiendo terraplanistas. ¿Cómo se lo explica?
Sí, resulta gracioso. Además, estamos lidiando con la actual situación política en Estados Unidos… De algún modo, vivimos en la época más inteligente y en la más estúpida. No sé a qué se debe, si están asustados o no confían en la ciencia. Una de las cuestiones que me planteo al escribir libros de divulgación es por qué hay gente tan reticente a ciertas ideas. Claro que la mayoría de los que leen mis libros no son terraplanistas, pero mi intención es hacer que mis ideas se comprendan bien. Si no te dedicas a la ciencia, no tienes porque tener ciertos conocimientos. Debe haber algo más que explique por qué la gente desconfía de la ciencia, no sé qué es. Es algo que debemos abordar.
Otra de las cuestiones que la humanidad debería abordar es el cambio climático. ¿Le preocupa el futuro de la Tierra?
No me preocupa la Tierra, me preocupa la vida en la Tierra [ríe]. Nuestro planeta sobrevivirá. Creo que estamos provocando cambios muy rápidos, más de lo que podemos controlar. Es muy difícil mantener el estilo de vida actual, aunque encontremos otras fuentes de energía. Hay mucha gente que no ve naturaleza en su día a día. Yo me crié en Queens y no salía al campo, es algo que no hacía y que ahora me hace muy feliz. Creo que estamos desconectados de la naturaleza. No pensamos en las consecuencias masivas de todo esto. Hay especies que quizás ya no tengan donde ir. Si destruimos sus hábitats no van a sobrevivir.
La entrevista completa en: El Espectador (Colombia)
El diario El Espectador, de Colombia, le realizó la siguiente entrevista:
La física pasa por un buen momento. En los últimos años ha habido grandes descubrimientos, como el bosón de Higgs y las ondas gravitacionales. ¿Se siente afortunada de vivir en esta época?
Resulta gracioso, porque a pesar de todos estos descubrimientos siempre estamos interesados en lo que vendrá, en lo siguiente. El bosón de Higgs fue predicho hace 50 años. Nos interesa conocer qué hay más allá del modelo estándar de partículas. Esto no significa que los experimentos actuales no sean buenos, pero parece que necesitaremos energías mucho más altas para conocer aún más. No sabemos qué aprenderemos de los futuros experimentos. Pasarán muchos años hasta que se construya un colisionador de partículas de altas energías, si es que llega a existir. Por otro lado, las ondas gravitacionales pasan por un momento emocionante. Estamos justo al principio, es apasionante.
¿Qué significaría un colisionador de altas energías como el que quiere construir China?
Tendremos mucha suerte si se llega a construir. Hay propuestas de China y del CERN, que ha planteado la construcción de un futuro acelerador circular (FCC). Esto no significa que el actual LHC caduque, ya que pasarán muchos años antes de que el CERN lleve a cabo ese proyecto. El próximo paso no serán las altas energías, sino la etapa de alta luminosidad del LHC. Esto permitirá hacer muy buena física, pero no creo que haya nada que reemplace a las altas energías.
A pesar del conocimiento actual del universo, siguen existiendo terraplanistas. ¿Cómo se lo explica?
Sí, resulta gracioso. Además, estamos lidiando con la actual situación política en Estados Unidos… De algún modo, vivimos en la época más inteligente y en la más estúpida. No sé a qué se debe, si están asustados o no confían en la ciencia. Una de las cuestiones que me planteo al escribir libros de divulgación es por qué hay gente tan reticente a ciertas ideas. Claro que la mayoría de los que leen mis libros no son terraplanistas, pero mi intención es hacer que mis ideas se comprendan bien. Si no te dedicas a la ciencia, no tienes porque tener ciertos conocimientos. Debe haber algo más que explique por qué la gente desconfía de la ciencia, no sé qué es. Es algo que debemos abordar.
Otra de las cuestiones que la humanidad debería abordar es el cambio climático. ¿Le preocupa el futuro de la Tierra?
No me preocupa la Tierra, me preocupa la vida en la Tierra [ríe]. Nuestro planeta sobrevivirá. Creo que estamos provocando cambios muy rápidos, más de lo que podemos controlar. Es muy difícil mantener el estilo de vida actual, aunque encontremos otras fuentes de energía. Hay mucha gente que no ve naturaleza en su día a día. Yo me crié en Queens y no salía al campo, es algo que no hacía y que ahora me hace muy feliz. Creo que estamos desconectados de la naturaleza. No pensamos en las consecuencias masivas de todo esto. Hay especies que quizás ya no tengan donde ir. Si destruimos sus hábitats no van a sobrevivir.
La entrevista completa en: El Espectador (Colombia)
26 de diciembre de 2019
El museo en el que puedes tocar todo lo que ves
El astrofísico canadiense Mauricio Bitran dirige uno de los dos museos de ciencia más antiguos del mundo. Él efiende que facilitar el acceso a la ciencia desde los 7 años es clave para la democracia.
Donna Strickland era una niña de 10 años cuando visitó el Centro de Ciencia de Ontario y vio por primera vez un láser. La experiencia debió de resultarle impactante, porque aquella niña dedicó su vida a profundizar en esa poderosa tecnología de la luz y acabó recibiendo por ello el Nobel de Física el año pasado. Chris Hadfield también tenía 10 años cuando Neil Armstrong pisó la Luna, y solo tardó unos meses en visitar el mismo museo de Ontario para conocer allí una de las piedras lunares que la misión Apolo 11 había traído de vuelta a la Tierra. Como en el caso de Strickland, el niño se quedó tan impresionado que se hizo ingeniero, piloto de caza y el primer astronauta canadiense que dio un paseo espacial; también se hizo músico, aunque eso seguramente no es imputable al Centro de Ciencia de Ontario.
Mauricio Britain, astrofísico chileno-canadiense, lo logró.
P. ¿La forma de hacer política de algunos líderes puede estar agravando este problema?
Mauricio Bitran dirige un museo cuyo lema es “por favor, toca todo lo que veas”. El Centro de Ciencia de Ontario,
en Canadá, fue fundado en 1969 y es uno de los museos de ciencia
interactivos más antiguos del mundo.
La institución es una especie de Museo del Prado de la ciencia con un
presupuesto anual de unos 25 millones de euros.
Donna Strickland era una niña de 10 años cuando visitó el Centro de Ciencia de Ontario y vio por primera vez un láser. La experiencia debió de resultarle impactante, porque aquella niña dedicó su vida a profundizar en esa poderosa tecnología de la luz y acabó recibiendo por ello el Nobel de Física el año pasado. Chris Hadfield también tenía 10 años cuando Neil Armstrong pisó la Luna, y solo tardó unos meses en visitar el mismo museo de Ontario para conocer allí una de las piedras lunares que la misión Apolo 11 había traído de vuelta a la Tierra. Como en el caso de Strickland, el niño se quedó tan impresionado que se hizo ingeniero, piloto de caza y el primer astronauta canadiense que dio un paseo espacial; también se hizo músico, aunque eso seguramente no es imputable al Centro de Ciencia de Ontario.
Mauricio Britain, astrofísico chileno-canadiense, lo logró.
Pregunta. ¿Los políticos y los científicos viven de espaldas?
Respuesta. Más bien es nuestra tendencia a
analizar y dividir la que ha separado las humanidades de la ciencia, no
es culpa de los políticos. O eliges ciencia y te especializas en eso y
tienes una manera de pensar y de ver el mundo, o te especializas en
políticas públicas, en ciencias políticas, humanidades, y tienes otro
lenguaje, otra manera de ver las cosas. La mayoría de la gente que hace
políticas públicas viene del mundo de las humanidades, no de la ciencia,
pero muchos de los problemas que enfrentamos actualmente están basados
en la ciencia, como la inteligencia artificial o el cambio climático.
Muchos científicos ignoran también cómo se hacen las políticas públicas.
Yo he intentado crear un curso, el único que conozco en Canadá, que
intenta crear un puente entre estas dos culturas. Darles un lenguaje
común para que puedan dialogar.
P. Usted ha sido asesor del Gobierno de su provincia ¿los políticos hacen caso de sus asesores en este campo?
R. La ciencia es mucho más simple que la
política porque hay menos variables. Es necesaria la educación de los
científicos para que entiendan la política y cómo se hacen políticas
públicas y también al revés, para que los políticos entiendan mejor cómo
funciona la ciencia y saber qué preguntas puede responder. Lo que más
me preocupa —y esto lo hemos visto en un sondeo reciente
que hicimos en el Centro de ciencias de Ontario— es que en general en
la población hay una preocupante desconfianza en la ciencia. La
población piensa que su opinión es tan buena como cualquier otra. La
opinión y los hechos empiezan a tener la misma validez y eso es
gravísimo.
R. No les echaría a ellos la culpa. Más
bien hay una degradación del discurso en la sociedad. Hoy hay menos
profundidad y extensión en el análisis. Incluso ahora algunos
científicos, en lugar de presentar sus resultados con precaución, lo
hacen de una forma sensacionalista para tener más visibilidad. Todo son
estudios rompedores y así la gente no sabe qué pensar. Es un problema
general de nuestras sociedades.
P. ¿Qué soluciones hay?
R. Educar a la población. Hay que infundir el
espíritu crítico a los niños desde pequeños, a los siete u ocho años.
Han hecho falta unos 30 años hasta llegar al punto de descrédito de la
ciencia actual, ha sido un proceso lento pero continuo. La solución
tampoco será a corto plazo. Lo que hacen los museos de ciencia es
producir un incentivo, un interés fuera del contexto de la escuela, por
eso se les llama centros informales. Los chavales están deslumbrados por
jugadores de fútbol, artistas de cine, pero entre los héroes de nuestra
sociedad no están los científicos.
P. ¿Cómo se acercan a los chavales jóvenes?
R. Tenemos tres pilares estratégicos. Uno es la innovación juvenil. Tenemos un premio de innovación
para chavales de 14 a 18 años [dotado con un primer premio de 10.000
euros]. Uno de los ganadores desarrolló un sistema para medir el pulso,
la presión arterial, la saturación de oxígeno en sangre con un
dispositivo inalámbrico que se pone en el dedo. Él escribió el programa
que hace un cribado para determinar a quién hay que atender primero en
una situación de muchos heridos, por ejemplo. Tiene 15 años. Él mismo
imprimió en 3D el dispositivo, validó las mediciones, escribió el software...
Esto sirve para darle un cauce a los intereses científicos de los
jóvenes e incluso ayudar a que sus inventos pasen al sistema de
innovación regional.
11 de diciembre de 2019
El verdadero significado de los colores en la publicidad
Al transmitir emociones, los colores son usados como una poderosa herramienta de comunicación por los publicistas.
A diario utilizamos los colores en nuestras vidas: para vestirnos, maquillarnos, decorar la casa, restaurar algo, en la gastronomía y muchas otras actividades más. Así como es importante para diversas facetas, también lo es para la publicidad.
A diario utilizamos los colores en nuestras vidas: para vestirnos, maquillarnos, decorar la casa, restaurar algo, en la gastronomía y muchas otras actividades más. Así como es importante para diversas facetas, también lo es para la publicidad.
Y
es que el hecho de transmitir sensaciones, son usados como una
herramienta de comunicación para influir en la compra o adquisición de
un determinado producto o servicio.
Debido al rol importante que juegan al momento de definir una compra, te damos a conocer qué significa cada uno de ellos y cómo son utilizados en la publicidad.
4 de diciembre de 2019
Física: ¿Hay partículas indivisibles?
En física de partículas no solemos hablar directamente de indivisibilidad sino que hablamos de partículas fundamentales o elementales.
La respuesta en realidad es muy simple porque nosotros a día de hoy sí que conocemos partículas indivisibles. Pero si filosofamos un poco habría que definir qué significa indivisible. ¿Significa que no se pueden romper o que carecen de estructura interna? En física de partículas no solemos hablar directamente de indivisibilidad sino que hablamos de partículas fundamentales o elementales. Para nosotros son partículas fundamentales aquellas en las que a día de hoy, es decir, con el rango de energías que tenemos en este momento, no se ha observado ninguna estructura interna, o lo que es lo mismo, no están compuestas por otras partículas más pequeñas. Eso son partículas fundamentales y serían, por ejemplo, el electrón y otros leptones o los quarks.
Esto que te explico es lo que hemos podido observar hasta el momento con el rango de energías de las que disponemos. Por ejemplo, en aceleradores de partículas como el LHC (Large Hadron Collider) donde yo trabajo, usamos órdenes de energía de teraelectronvoltios, es decir un billón de electronvoltios. Un electronvoltio (eV) es una unidad que correspondería a la energía necesaria para mover un electrón dentro de una diferencia de potencial de un voltio. Estaríamos hablando de cantidades de energía que traducido a longitudes de onda son del orden de 10-18 metros. Es decir podemos detectar algo tan pequeño como eso, 10-18 metros, que realmente es tan pequeño que está dentro de la escala subatómica.
Con estas energías tan altas lo que hacemos en el acelerador de partículas es colisionar haces de protones, estos haces de protones son partículas que no son fundamentales porque están constituidas por otras partículas, los quarks que son los que al final colisionan entre sí. Podríamos decir que con nuestro “microscopio electrónico de protones” en el LHC y los rangos de longitud de onda de los que podemos disponer en este momento no nos permiten observar una estructura interna de lo que para nosotros son las partículas elementales o indivisibles. Eso es lo que estudiamos, a lo que llamamos el modelo estándar de física de partículas que explica las partículas fundamentales y sus interacciones.
Hasta el momento sí hay una serie de partículas indivisibles que son estos electrones y quarks que están divididos en tres familias y que curiosamente no tenemos ni idea de por qué son tres. Además hay mucha variedad de masas pero solo la primera familia de estas partículas, los electrones, los quarks up y los quarks down son los que forman la materia ordinaria, es decir la materia de la que está hecho todo lo que conocemos. El resto de partículas indivisibles que hemos detectado, como los muones y otro tipo de quarks, tienen que ser creados en el laboratorio o a raíz de rayos cósmicos que atraviesan la atmósfera y dejan este tipo de muones o de partículas que nos llegan a nosotros.
Esto es lo que conocemos a día de hoy. Pero las personas que investigamos en física de partículas tenemos la puerta abierta a que cuando aumentemos el rango de energías que utilizamos pueda descubrirse que estas que ahora consideramos indivisibles o fundamentales no lo son en realidad sino que estén compuestas por otras que todavía no podemos observar porque no contamos con la energía suficiente. No lo sabemos. Pero igual que en el siglo XIX se pensaba que el átomo era indivisible, nosotros ahora pensamos que el electrón y los quarks lo son también, aunque no podemos estar completamente seguros.
La respuesta en realidad es muy simple porque nosotros a día de hoy sí que conocemos partículas indivisibles. Pero si filosofamos un poco habría que definir qué significa indivisible. ¿Significa que no se pueden romper o que carecen de estructura interna? En física de partículas no solemos hablar directamente de indivisibilidad sino que hablamos de partículas fundamentales o elementales. Para nosotros son partículas fundamentales aquellas en las que a día de hoy, es decir, con el rango de energías que tenemos en este momento, no se ha observado ninguna estructura interna, o lo que es lo mismo, no están compuestas por otras partículas más pequeñas. Eso son partículas fundamentales y serían, por ejemplo, el electrón y otros leptones o los quarks.
Esto que te explico es lo que hemos podido observar hasta el momento con el rango de energías de las que disponemos. Por ejemplo, en aceleradores de partículas como el LHC (Large Hadron Collider) donde yo trabajo, usamos órdenes de energía de teraelectronvoltios, es decir un billón de electronvoltios. Un electronvoltio (eV) es una unidad que correspondería a la energía necesaria para mover un electrón dentro de una diferencia de potencial de un voltio. Estaríamos hablando de cantidades de energía que traducido a longitudes de onda son del orden de 10-18 metros. Es decir podemos detectar algo tan pequeño como eso, 10-18 metros, que realmente es tan pequeño que está dentro de la escala subatómica.
Con estas energías tan altas lo que hacemos en el acelerador de partículas es colisionar haces de protones, estos haces de protones son partículas que no son fundamentales porque están constituidas por otras partículas, los quarks que son los que al final colisionan entre sí. Podríamos decir que con nuestro “microscopio electrónico de protones” en el LHC y los rangos de longitud de onda de los que podemos disponer en este momento no nos permiten observar una estructura interna de lo que para nosotros son las partículas elementales o indivisibles. Eso es lo que estudiamos, a lo que llamamos el modelo estándar de física de partículas que explica las partículas fundamentales y sus interacciones.
Hasta el momento sí hay una serie de partículas indivisibles que son estos electrones y quarks que están divididos en tres familias y que curiosamente no tenemos ni idea de por qué son tres. Además hay mucha variedad de masas pero solo la primera familia de estas partículas, los electrones, los quarks up y los quarks down son los que forman la materia ordinaria, es decir la materia de la que está hecho todo lo que conocemos. El resto de partículas indivisibles que hemos detectado, como los muones y otro tipo de quarks, tienen que ser creados en el laboratorio o a raíz de rayos cósmicos que atraviesan la atmósfera y dejan este tipo de muones o de partículas que nos llegan a nosotros.
Esto es lo que conocemos a día de hoy. Pero las personas que investigamos en física de partículas tenemos la puerta abierta a que cuando aumentemos el rango de energías que utilizamos pueda descubrirse que estas que ahora consideramos indivisibles o fundamentales no lo son en realidad sino que estén compuestas por otras que todavía no podemos observar porque no contamos con la energía suficiente. No lo sabemos. Pero igual que en el siglo XIX se pensaba que el átomo era indivisible, nosotros ahora pensamos que el electrón y los quarks lo son también, aunque no podemos estar completamente seguros.
Bárbara Álvarez González es doctora
en Física Experimental de Partículas e investigadora en la Universidad
de Oviedo e ICTEA (Instituto de Ciencias y Tecnologías Espaciales de
Asturias).
26 de noviembre de 2019
George Green: el molinero que revolucionó el electromagnetismo
El físico y matemático inglés George Green publicó sus primeros artículos con las suscripciones de sus vecinos mientras trabajaba en el molino familiar.
A principios del siglo XIX, los científicos provenían de familias adineradas o de clase alta, que se podían permitir años de costosa educación para sus hijos. Sin embargo, la vida del matemático y físico George Green, responsable de grandes avances en el electromagnetismo y en la teoría de ecuaciones en derivadas parciales, fue muy diferente.
No se sabe exactamente cuando nació, pero fue bautizado el 14 de julio de 1793 en Nottingham (Inglaterra). En 1801, con ocho años, fue inscrito en la escuela de Robert Goodacre, una reputada institución privada. Pero apenas un año más tarde tuvo que abandonar su formación para trabajar en la panadería familiar; el negocio iba bien y querían expandirlo.
En 1807, su padre compró un terreno en una villa cercana a Nottingham y construyó un molino. En 1817 la familia Green se trasladó a una casa construida en la misma finca y George, con 24 años, se inició en el oficio de molinero. Durante estos años, estudió física y matemáticas de forma autodidacta. Aunque no está del todo claro cómo pudo acercarse a estas disciplinas con solo un año de escolarización, es posible que un vecino de Nottingham, John Toplis, le ayudara. En ese momento era la única persona en la ciudad con la formación suficiente en matemáticas para enseñar a Green (tradujo del francés el primer volumen de la Mécanique Céleste de Laplace en 1814), y además, vivía cerca de la familia antes de que se mudasen.
En 1823 Green se unió a la Biblioteca de Subscripción de Nottingham, lo que le dio acceso a revistas científicas como los Philosophical Transactions of the Royal Society, aunque sólo del ámbito nacional. Entre 1823 y 1828 nacieron sus primeros dos hijos, falleció su madre y trabajaba a tiempo completo, pero el tiempo del que disponía lo empleaba en estudiar en el piso superior del molino.
En 1828 publicó su primer trabajo, An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism. Creyéndose un total aficionado, Green no lo envió a ninguna revista científica, sino que puso un anuncio en un periódico local anunciando su inminente publicación y pidiendo a la gente interesada en recibirlo que pagase una cuota para costear la producción de una tirada. El precio de la subscripción era 7,5 chelines, lo que equivalía aproximadamente al salario de una semana de un obrero. Aun así hubo 51 personas que respondieron al anuncio y recibieron su correspondiente copia, muchas de ellas pertenecientes a la Biblioteca de Subscripción de Nottingham. Aunque la inmensa mayoría no entenderían de que trataba el trabajo, alguna de las copias llegó a Sir Edward Bromhead, quien sí tenía los conocimientos adecuados para apreciarlo. Tras leerlo, se apresuró a escribir a Green ofreciéndole ayuda para futuras publicaciones.
Durante dos años no contestó, considerando que la carta había sido pura cortesía y que, dada la diferencia de clases sociales, hubiese sido de mala educación responder. Pero convencido por un amigo, finalmente lo hizo, dando comienzo a una importante colaboración. Entre 1830 y 1833 Green escribió otros tres artículos y Bromhead se encargó de que dos fueran publicados por la Cambrige Philosophical Society y el otro por la Edimburg Royal Society.
Bromhead le propuso viajar a la Universidad de Cambridge, conocer a importantes científicos, y comenzar sus estudios allí. Aun con ciertas dudas y tras sortear varias dificultades, Green dejó el molino –que años después se convertiría en un museo de ciencia en su honor- y comenzó a estudiar en la universidad a la edad de 40 años.
Se graduó en 1837, siendo el 4º de su promoción. En 1839 obtuvo un puesto de investigación en la universidad, pero a comienzos de 1840 cayó enfermo y tuvo que volver a Nottingham. Un año más tarde murió, con 49 años de edad. En el corto periodo que formó parte de la comunidad científica, ni Green ni sus compañeros supieron ver la importancia de sus matemáticas.
Pero con el paso del tiempo, su influencia en la ciencia fue creciendo: el concepto de potencial, que había ideado en su artículo de 1828, fue adoptado en la teoría del electromagnetismo (por ejemplo, en las ecuaciones de Maxwell) y en teoría de campos; las técnicas matemáticas que había desarrollado en ese mismo texto llevaron al enunciado del que hoy se conoce como Teorema de Green, y que aprenden en su primer año de carrera todos los estudiantes de física y matemáticas. También llevan su nombre las funciones de Green que ideó para resolver aproximadamente ecuaciones en derivadas parciales y que son una herramienta clave en la moderna teoría cuántica de campos. Sin duda, consiguió alcanzar su mayor sueño: contribuir a la ciencia.
Artículo tomado de: El País (Ciencia)
Una niña, frente al molino de la familia Green, actualmente convertida en museo de ciencia e historia. greensmill.org
A principios del siglo XIX, los científicos provenían de familias adineradas o de clase alta, que se podían permitir años de costosa educación para sus hijos. Sin embargo, la vida del matemático y físico George Green, responsable de grandes avances en el electromagnetismo y en la teoría de ecuaciones en derivadas parciales, fue muy diferente.
No se sabe exactamente cuando nació, pero fue bautizado el 14 de julio de 1793 en Nottingham (Inglaterra). En 1801, con ocho años, fue inscrito en la escuela de Robert Goodacre, una reputada institución privada. Pero apenas un año más tarde tuvo que abandonar su formación para trabajar en la panadería familiar; el negocio iba bien y querían expandirlo.
En 1807, su padre compró un terreno en una villa cercana a Nottingham y construyó un molino. En 1817 la familia Green se trasladó a una casa construida en la misma finca y George, con 24 años, se inició en el oficio de molinero. Durante estos años, estudió física y matemáticas de forma autodidacta. Aunque no está del todo claro cómo pudo acercarse a estas disciplinas con solo un año de escolarización, es posible que un vecino de Nottingham, John Toplis, le ayudara. En ese momento era la única persona en la ciudad con la formación suficiente en matemáticas para enseñar a Green (tradujo del francés el primer volumen de la Mécanique Céleste de Laplace en 1814), y además, vivía cerca de la familia antes de que se mudasen.
En 1823 Green se unió a la Biblioteca de Subscripción de Nottingham, lo que le dio acceso a revistas científicas como los Philosophical Transactions of the Royal Society, aunque sólo del ámbito nacional. Entre 1823 y 1828 nacieron sus primeros dos hijos, falleció su madre y trabajaba a tiempo completo, pero el tiempo del que disponía lo empleaba en estudiar en el piso superior del molino.
En 1828 publicó su primer trabajo, An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism. Creyéndose un total aficionado, Green no lo envió a ninguna revista científica, sino que puso un anuncio en un periódico local anunciando su inminente publicación y pidiendo a la gente interesada en recibirlo que pagase una cuota para costear la producción de una tirada. El precio de la subscripción era 7,5 chelines, lo que equivalía aproximadamente al salario de una semana de un obrero. Aun así hubo 51 personas que respondieron al anuncio y recibieron su correspondiente copia, muchas de ellas pertenecientes a la Biblioteca de Subscripción de Nottingham. Aunque la inmensa mayoría no entenderían de que trataba el trabajo, alguna de las copias llegó a Sir Edward Bromhead, quien sí tenía los conocimientos adecuados para apreciarlo. Tras leerlo, se apresuró a escribir a Green ofreciéndole ayuda para futuras publicaciones.
Durante dos años no contestó, considerando que la carta había sido pura cortesía y que, dada la diferencia de clases sociales, hubiese sido de mala educación responder. Pero convencido por un amigo, finalmente lo hizo, dando comienzo a una importante colaboración. Entre 1830 y 1833 Green escribió otros tres artículos y Bromhead se encargó de que dos fueran publicados por la Cambrige Philosophical Society y el otro por la Edimburg Royal Society.
Bromhead le propuso viajar a la Universidad de Cambridge, conocer a importantes científicos, y comenzar sus estudios allí. Aun con ciertas dudas y tras sortear varias dificultades, Green dejó el molino –que años después se convertiría en un museo de ciencia en su honor- y comenzó a estudiar en la universidad a la edad de 40 años.
Se graduó en 1837, siendo el 4º de su promoción. En 1839 obtuvo un puesto de investigación en la universidad, pero a comienzos de 1840 cayó enfermo y tuvo que volver a Nottingham. Un año más tarde murió, con 49 años de edad. En el corto periodo que formó parte de la comunidad científica, ni Green ni sus compañeros supieron ver la importancia de sus matemáticas.
Pero con el paso del tiempo, su influencia en la ciencia fue creciendo: el concepto de potencial, que había ideado en su artículo de 1828, fue adoptado en la teoría del electromagnetismo (por ejemplo, en las ecuaciones de Maxwell) y en teoría de campos; las técnicas matemáticas que había desarrollado en ese mismo texto llevaron al enunciado del que hoy se conoce como Teorema de Green, y que aprenden en su primer año de carrera todos los estudiantes de física y matemáticas. También llevan su nombre las funciones de Green que ideó para resolver aproximadamente ecuaciones en derivadas parciales y que son una herramienta clave en la moderna teoría cuántica de campos. Sin duda, consiguió alcanzar su mayor sueño: contribuir a la ciencia.
Artículo tomado de: El País (Ciencia)
24 de noviembre de 2019
Por qué el tiempo va siempre hacia adelante y nunca hacia atrás
Así como largo, ancho o alto, el
tiempo es una dimensión. Pero mientras que podemos movernos en cualquier
dirección en esas otras tres dimensiones, solo podemos movernos en una
dirección de tiempo: hacia adelante, sin cesar. ¿Por qué?
¿Por qué no podemos retroceder en el tiempo?
Durante mucho tiempo los científicos no pudieron encontrar una explicación convincente.
Una de las complicaciones era que las leyes de la física funcionan bien ya sea que vayas hacia adelante o hacia atrás en el tiempo.
La respuesta finalmente vino de un lugar inesperado: los motores de vapor.
A principios de la Revolución Industrial, los ingenieros intentaron comprender cómo hacer que las máquinas de vapor fueran más eficientes.
Al examinar cómo todo ese calor y energía se movían alrededor de un motor, desarrollaron una rama completamente nueva de la ciencia que llamaron, apropiadamente, termodinámica.
La fuerza del calor
Resulta que la termodinámica podía explicar mucho más que el comportamiento de las máquinas de vapor.En particular, la segunda ley de la termodinámica ayudó a comprender por qué las cosas suceden en el orden en que lo hacen.
Esta señala que un sistema aislado o bien permanece cerrado o bien evoluciona hacia un estado más caótico, pero nunca a otro más ordenado.
Una taza se estrella en el suelo, por ejemplo, y todo su contenido se derrama.
Intuitivamente sabemos que ese proceso es irreversible.
Las cosas tienen una forma de desorganizarse, pero no son tan buenas para reorganizarse y la segunda ley de la termodinámica nos dice por qué.
Otra forma de verlo es en términos de desorden. Una taza está ordenada. Al romperse está desordenada.
La palabra para esto en física es...
Entropía
Cuanto más entropía hay en un lugar, más desordenado, turbio e inútil es.Así es como se ve la segunda ley de la termodinámica.
Esa 'S' representa la entropía y la 'd' es una forma matemática de representar el cambio. Entonces 'dS' simplemente significa un cambio en la entropía.
Ahora, si observas esta ecuación de izquierda a derecha, lo que dice es que la entropía de un sistema siempre tiene que aumentar.
Cuando una taza se rompe o la leche se mezcla con el café, eso está bien de acuerdo con la segunda ley de la termodinámica porque la entropía de esas cosas aumenta.
Pero si tu expectativa es que la taza se reconstituya o que la leche y el café se separen, lo que esperas es que la entropía caiga. Eso violaría la esa ley.
La segunda ley de termodinámica indica en qué orden pueden suceder las cosas en el Universo. Nos da una dirección clara para el flujo de lo que llamamos tiempo: hacia adelante.
El tiempo simplemente no puede fluir de otra manera porque eso disminuiría la entropía y violaría la segunda ley.
Más información en: BBC Mundo
11 de noviembre de 2019
Perú: fabrican máquina para generar agua potable a partir de la humedad
Proyecto Pukio que beneficiará a las zonas más vulnerables y alejadas del Perú. Especialistas peruanos diseñaron y fabricaron un dispositivo de bajo costo, para producir 200 litros de agua limpia al día, a partir de la condensación de la humedad ambiental.
El fundador de Inventum, César Coasaca, sostuvo que esta máquina se adapta con alta eficiencia a las condiciones geográficas y atmosféricas de cualquier ciudad del mundo.
“El dispositivo ha sido probado para operar en una ciudad desértica como Lima con una humedad de 90%, o en la sierra del país con humedad de 20%, así como también en zonas afectadas por fenómenos naturales”, precisó.
¿Cómo funciona?
A través de un sistema inteligente que enfría el aire y condensa el vapor del agua, este prototipo utiliza diversos filtros para generar agua limpia.
“Buscamos enfriar el aire hasta llegar a un punto de rocío y bajarle la temperatura hasta donde se pueda para poder llegar a producir la mayor cantidad de agua posible”, señaló.
El
equipo es desmontable, puede funcionar en ambientes abiertos, con
energía eléctrica convencional o con energías renovables (paneles
solares y energía eólica, fotovoltaica, entre otras).
Este proyecto recibió el cofinanciamiento de hasta 50 mil soles y apoyo técnico del Programa Innóvate Perú.
Con información de:
18 de junio de 2019
El mensaje que Albert Einstein envió a la Universidad de San Marcos (Perú)
“Vuestra acción muestra que la más antigua institución americana de alta enseñanza ha preservado el carácter supranacional de la Universidad”, dice parte de la carta escrita en 1951.
Albert Einstein, envió un mensaje a San Marco en mayo de 1951, por los 400 años de fundación de la universidad y luego que esta le otorgara el doctorado Honoris Causa. Aquí reproducimos el mensaje:
Albert Einstein, envió un mensaje a San Marco en mayo de 1951, por los 400 años de fundación de la universidad y luego que esta le otorgara el doctorado Honoris Causa. Aquí reproducimos el mensaje:
“Constituye un gran placer para mí el dar a mis colegas de la Universidad de San Marcos las sentidas gracias por la distinción que me ha otorgado. Vuestra acción muestra que la más antigua institución americana de alta enseñanza ha preservado el carácter supranacional de la Universidad. Ahora más que nunca tenemos razones para apreciar este espíritu. La institución de la universidad se basa en el ideal de universalidad del dominio de la investigación, esforzándose por obtener verdades libres de propósitos, intenciones o prejuicios extraños; esforzándose por lograr universalidad de espíritu sin restricciones por motivos nacionales o políticos, de otra clase. En resumen, lo que interesa es esforzarse por la universalidad de la mente y el espíritu. No es un secreto que hemos obtenido mucho más éxito en el desarrollo de la mente que en el desarrollo de la personalidad. Al parecer, incluso la búsqueda del conocimiento es amenazada por la falta de personas de espíritu verdaderamente universal. Si las universidades se mantienen fieles a su misión fundamental, pueden contribuir significativamente a la solución de las crisis que nos amenazan hoy”.Tomado de: Publimetro
1 de mayo de 2019
Emmy Noether, la fundadora del álgebra moderna
La alemana fue en 1932 la primera conferenciante plenaria en un Congreso Internacional de Matemáticos. Sesenta años más tarde fue invitada la segunda, Karen Uhlenbeck, recientemente galardonada con el Premio Abel.
El álgebra es una de las áreas fundamentales de las matemáticas, junto con el análisis, la geometría, la topología o la probabilidad. Es la disciplina que se dedica al estudio de los conjuntos (es decir, colecciones de elementos), sus operaciones y sus propiedades, y hoy en día abarca numerosos enfoques. No obstante, hasta hace poco más de un siglo, el álgebra se limitaba básicamente a resolver ecuaciones polinómicas (como 7x³ +2x² - 3x + 8 = 0). Durante los últimos 150 años el álgebra ha experimentado un desarrollo espectacular, gracias al trabajo de un buen número de matemáticos como Evariste Galois, David Hilbert, Ernst Kummer, Bernhard Riemann, Felix Klein, Paul Gordan o Richard Dedekind. Sin embargo, el impulso definitivo vino de la mano o, mejor dicho, de la mente, de una mujer: Emmy Noether.
El álgebra es una de las áreas fundamentales de las matemáticas, junto con el análisis, la geometría, la topología o la probabilidad. Es la disciplina que se dedica al estudio de los conjuntos (es decir, colecciones de elementos), sus operaciones y sus propiedades, y hoy en día abarca numerosos enfoques. No obstante, hasta hace poco más de un siglo, el álgebra se limitaba básicamente a resolver ecuaciones polinómicas (como 7x³ +2x² - 3x + 8 = 0). Durante los últimos 150 años el álgebra ha experimentado un desarrollo espectacular, gracias al trabajo de un buen número de matemáticos como Evariste Galois, David Hilbert, Ernst Kummer, Bernhard Riemann, Felix Klein, Paul Gordan o Richard Dedekind. Sin embargo, el impulso definitivo vino de la mano o, mejor dicho, de la mente, de una mujer: Emmy Noether.
Noether nació en 1882 en Baviera
(Alemania), en el seno de una familia en la que las matemáticas estaban
muy presentes: su padre, Max Noether, era profesor de la materia en la
Universidad de Erlangen-Nuremberg, y la visita a su domicilio de algunos
de sus colegas era habitual. Pese a ello, durante su niñez y juventud,
Emmy Noether no mostró un especial interés por las ciencias. En su
lugar, se dedicó principalmente al estudio de idiomas, con la idea de
ser maestra en alguna escuela femenina.
En 1900 se matriculó en estudios
de historia e idiomas en la Universidad de Erlangen-Nuremberg. Era una
de las dos únicas mujeres entre sus casi 1000 alumnos, y para asistir a
cada una de las clases necesitaba un permiso especial previo del
profesor a cargo de la misma. Sin embargo, Noether fue cambiando poco a
poco sus intereses. Primero, comenzó a asistir a clases de astronomía y a
partir de 1904 aparece matriculada oficialmente en estudios de
Matemáticas.
En 1908 defendió su tesis bajo la dirección de Paul Gordan en la llamada teoría de invariantes,
que estudia objetos que quedan fijos tras aplicarles una transformación
algebraica. Rápidamente Noether se convirtió en una reputada experta en
este campo que en aquellos años estaba en auge ya que servía para
explicar algunos aspectos matemáticos de la teoría de la relatividad de
Einstein. En ese sentido, cabe destacar el Teorema de Noether, que determina la relación entre leyes de conservación físicas y los invariantes del sistema.
10 de abril de 2019
La primera imagen de un agujero negro prueba (una vez más) que Albert Einstein tenía razón
Astrofísicos de todo el mundo dieron a conocer la primera imagen real de un agujero negro de la historia. Con ello, se obtiene la primera prueba directa de su existencia, predicha hace un siglo por Albert Einstein.
Hasta ahora se trataba de uno de los más enigmáticos objetos cósmicos, e incluso el propio físico alemán ponía en duda su existencia pese a que teóricamente existían.
La primera imagen de un agujero negro constituye "la prueba más directa" jamás obtenida de la "existencia" de estos cuerpos celestes,
explica el astrónomo Frédéric Gueth, director adjunto del Instituto de
Radioastronomía Milimétrica de Europa, que participó en el proyecto.
Según la ley de la relatividad general publicada en 1915 por Albert Einstein,
que permite explicar su funcionamiento, la atracción gravitacional de
estos "monstruos" cósmicos es tal que no se les escapa nada:
Son objetos que poseen una masa extremadamente importante en un volumen muy pequeño. Como si la Tierra estuviera comprimida en un dedal o el sol únicamente midiera 6 km de diámetro, explicó recientemente a la AFP Guy Perrin, astrónomo del Observatorio de París-PSL.
La fuerza de gravedad que emana del agujero negro es tan fenomenal que no se ha logrado recrear en laboratorio.
Pero sabemos que existen de dos tipos:
Los agujeros negros estelares, que se forman al final del ciclo de vida de una estrella y que son extremadamente pequeños: tratar de observar los más cercanos equivaldría a buscar distinguir una célula humana en la luna.
Los agujeros negros estelares, que se forman al final del ciclo de vida de una estrella y que son extremadamente pequeños: tratar de observar los más cercanos equivaldría a buscar distinguir una célula humana en la luna.
Los segundos, los agujeros negros supermasivos, se hallan en el centro de las galaxias y su masa está comprendida entre un millón y miles de millones de veces la del sol.
Los agujeros negros empezaron a crearse muy temprano en el universo, junto a las galaxias, por lo que "engordan" desde hace 10.000 millones de años. Pero su formación sigue siendo un misterio.
El agujero negro del que ahora se tiene una imagen,
es uno de los más masivos de los que se conocen, con una masa 6.000
millones de veces superior a la del sol. Está situado a 50 millones de
años luz de la Tierra, en el centro de la galaxia M87.
26 de marzo de 2019
G, el diminuto número sin el que la vida no existiría
6,67 x 10-¹¹ o 0,000000000067 es un número diminuto pero sin él, la vida, el Universo y todo simplemente no existiría.
Su potencia se cuantifica con la llamada constante gravitacional, un número conocido sencillamente como G.
Y si quieres experimentar su debilidad sólo tienes que levantar los brazos horizontalmente.
Toda la fuerza de la masa de la Tierra hala tus brazos hacia abajo. No obstante, no te cuesta mucho esfuerzo vencerla.
O piensa en esto.
Piensa que un pequeño imán puede pegarse a la puerta de tu nevera y hasta sostener otras cosas mientras que resiste la fuerza de la gravedad con sólo la del magnetismo.
Sin palabras
Fue debido a su extremada pequeñez que, tras descubrir la Ley de Gravitación Universal, Isaac Newton incluyó G en su ecuación pero no lo pudo calcular.
Pero un siglo más tarde, un inglés llamado Henry Cavendish se planteó el reto de determinar el valor de G y, por ende, la fuerza de la gravedad.
Cavendish era un hombre adinerado del Londres del siglo XVIII, un poco excéntrico y quizás triste, pues no tenía muchos amigos.
No hablaba casi con nadie, ni siquiera con las doncellas que trabajaban en su casa, pues su timidez le impedía hablar con mujeres. Les tenía que dejar mensajes en la mesa del hall para comunicarles cosas como qué le apetecía almorzar.
Así que dedicó toda su vida a la ciencia, sin que ningún otro interés lo distrajera.
Para encontrar el valor exacto de G, construyó un aparato.
"El aparato es muy simple. Consiste de un brazo de madera de 6 pies de longitud hecho de manera que sea fuerte pero liviano. El brazo está suspendido en posición horizontal con un delgado cable de seda de 40 pulgadas, y de cada extremo cuelga una esfera de plomo de unas dos pulgadas de diámetro.
"Todo está encerrado en una caja de madera, para defenderlo del viento".
Cerca de las dos bolas que Cavendish menciona, puso otras dos esferas estacionarias, para que hubiera una atracción que retorciera el aparato y la fibra de seda. Añadió un espejo de manera que el movimiento se reflejara en la pared, para verlo mejor.
Esa desviación era proporcional a la fuerza de la atracción gravitacional entre las bolas grandes estacionarias y las pequeñas.
El problema es que estas últimas se podían mover con cualquier vibración, algo que Cavendish tuvo en cuenta.
"Resuelto a prevenir errores, decidí poner el aparato en una habitación que permaneciera constantemente cerrada y observarlo desde afuera con un telescopio".
Con todo ese cuidado, encontró la respuesta... ese diminuto número con el que empezamos:
G = 6,67 x 10-¹¹ Nm²/kg²
Al verlo escrito así, a quienes no somos expertos, ya no nos parece tan sencillo, así que le preguntamos al astrofísico y escritor de ciencia Marcus Chown cómo se define G."Su definición exacta es la fuerza gravitacional entre dos masas de 2 kilogramos que están a un metro de distancia".
"Como es una fuerza tan fantásticamente pequeña sólo tiene un efecto apreciable a escala planetaria: cuando la masa es grande".
Lea el artículo completo en: BBC Mundo
6 de febrero de 2019
El asno mañoso y la Tercera Ley de Newton
Hubo una vez un burro que en sus ratos de descanso le gustaba estudiar física. Cuando aprobó los temas de mecánica quiso aprovechar sus conocimientos para flojear. Entonces dijo a su dueño: -Es una tontería que me amarre a su carro para tirar de él, ¿acaso no conoce la tercera ley de Newton? Y qué dice la tercera ley de Newton -contestó el dueño-. Y el astuto asno expresó adoptando una actitud de gran conocedor - La tercera ley de Newton es la que nos habla de las fuerzas de acción y reacción, y dice así-:
“A toda acción se opone siempre una reacción igual, es decir, que las acciones mutuas de dos cuerpos son siempre iguales y dirigidas en sentidos contrarios” (Resnick y Halliday,1998).
De tal manera –continuó el mañoso borrico- que si yo tiro del carro con una determinada fuerza, este tirará de mí con una fuerza igual, pero de sentido contrario. Así que para que me esfuerzo, si de todas formas la tercera ley de Newton me impide mover el carro.
La tercera ley de Newton, que el burro había estudiado y que quiso utilizar como argumento para no mover la carreta, establece que las fuerzas acción-reacción interactúan siempre en direcciones opuestas, y también nunca actúan sobre el mismo cuerpo sino sobre cuerpos diferentes. Es así como la fuerza que aplica el burro la hace sobre el suelo, quien lo empuja hacia adelante con una fuerza de reacción, entonces sobre la carreta actúa una fuerza de acción que se opone a una fuerza de fricción. La carreta se mueve cuando la fuerza de fricción ejercida por el suelo sobre las pezuñas del burro sea mayor que la fuerza de fricción ejercida por el suelo sobre la carreta. Una vez que se mueve la carreta, la fuerza que el burro ejerza sobre el suelo puede ser igual que la fuerza de fricción de la carreta, y así se moverá a velocidad constante. De lo contrario, si se sigue aplicando la misma fuerza, habrá una resultante que acelerará la carreta, es decir, su velocidad aumentará.1
Referencia Resnick, R. y Halliday, D. (1998) . Física. Volumen 1. México: Ed. Continental.
1 Segunda ley de Newton
5 de febrero de 2019
Atención: sepa cómo evitar el “golpe de calor” este verano
Las altas temperaturas afectan la salud sobre todo a niños, mujeres embarazadas y adultos.
Ante las altas temperaturas que se registran en la capital, especialistas del Ministerio de Salud (Minsa) recomendaron adoptar medidas sencillas para evitar el “golpe de calor”, que puede afectar la salud sobre todo a niños, mujeres embarazadas y adultos mayores.
Ante las altas temperaturas que se registran en la capital, especialistas del Ministerio de Salud (Minsa) recomendaron adoptar medidas sencillas para evitar el “golpe de calor”, que puede afectar la salud sobre todo a niños, mujeres embarazadas y adultos mayores.
El médico infectólogo del Instituto Nacional de Salud (INS) del Minsa, Dr. Manuel Espinoza Silva, señaló que el “golpe de calor” se caracteriza por presentar fiebre, dolor de cabeza, sensación de vértigo, náuseas, confusión, diarrea, sequedad en la boca, respiración rápida, pulso débil, piel enrojecida, y hasta la pérdida de la conciencia.
“El
golpe de calor puede afectar a personas de cualquier edad, pero los
grupos de mayor riesgo son los niños, que no manifiestan sus síntomas
con facilidad, así como las mujeres embarazadas y los mayores de 65
años”, detalló.
Explicó que esta afectación
ocurre generalmente como consecuencia de la exposición prolongada y el
esfuerzo físico en altas temperaturas.
“El
golpe de calor es la forma más grave de lesión por calor y puede ocurrir
si la temperatura del cuerpo alcanza los 40 grados o más, sin tener
ninguna enfermedad o infección”, señaló.
Siga estas recomendaciones
El
especialista instó a las personas a beber abundante agua (entre 6 a 8
vasos al día) para evitar la deshidratación, usar sombreros de ala
ancha, vestir ropa holgada de algodón, mantener las viviendas y lugares
de trabajo ventilados.
Asimismo, recomendó
evitar exponerse al sol, en exceso, en horas centrales del día (entre
las 11 y las 17 horas), evitar consumir alcohol y comidas muy abundantes
y grasosas o con alto contenido de azúcares.
“Es
mejor priorizar la ingesta de verduras, como la lechuga, acelga,
pepinillo, rabanitos, tomate, caigua o nabo; y frutas como el melón,
sandía, pepino, entre otras”, recomendó.
Finalmente,
señaló que, en caso de presentar síntomas, es importante acudir de
inmediato al establecimiento de salud. “Durante el trayecto al servicio
de emergencia, se puede utilizar paños de agua tibia o bañar al paciente
también con agua tibia”, indicó.
4 de febrero de 2019
José Ignacio Latorre: "El futuro será cuántico o no será"
El futuro será cuántico o no será. Y
el mañana que nos espera es apasionante. La cuántica nos permitirá
hacer lo que hasta ahora sólo podíamos soñar.
Eso sostiene José Ignacio Latorre, catedrático de Física Teórica en la Universidad de Barcelona, director del Centro de Ciencias de Benasque Pedro Pascual y uno de los físicos españoles más reconocidos internacionalmente en el campo de la física cuántica.
Reconozco mi ignorancia: ¿qué es eso de la física cuántica?
Intentaré explicárselo muy sintéticamente.
Cuando llegamos al mundo de lo más pequeño, al mundo de lo microscópico, las leyes que rigen ese mundo no son las mismas que las que vemos en nuestro día a día, son leyes más sutiles, más peculiares.
Pero el hombre, muy poco a poco, durante el siglo XX y durante el siglo XXI ha logrado comprenderlas y actualmente estamos en la situación de empezar a explotarlas, a aprovecharlas.
Del mismo modo que las leyes del mundo grande, las leyes de la física clásica, las entendemos desde Newton y con ellas hacemos puentes, enviamos naves a donde haga falta y creamos máquinas que nos ayudan, ahora los humanos hemos llegado al control de la materia a nivel atómico.
Aún estamos en la infancia de la Física Cuántica, estamos empezando ahora a comprenderla a fondo.
Durante el siglo XX hemos llevado a cabo algunas aplicaciones prácticas y ahora en el siglo XXI estamos realizando lo que se llama "la segunda revolución cuántica".
¿Qué aplicaciones prácticas de la Física Cuántica se han realizado en el siglo XX?
Pues gracias a la mecánica cuántica a día de hoy tenemos todas nuestras comunicaciones, los láseres, la fibra óptica…
Tenemos en medicina la resonancia nuclear magnética que nos permite ver una foto del interior del cuerpo humano.
Y también todo el sistema GPS está basado en tener unos relojes atómicos en órbita en unos satélites que envían una señal con una precisión impresionante, que es la que nos permite saber en qué lugar de la Tierra estamos.
Por su parte, los ordenadores utilizan lo que se llama Física del Estado Sólido, que consiste en que cuando hay muchos átomos lo que les pasa a los electrones es que se mueven en capas de conducción, y eso también es mecánica cuántica.
Así que toda la informática, todos los chips, están basados en principios cuánticos.
Y a eso se suma que ahora viene una segunda revolución en la física cuántica…
¿Y qué aplicaciones prácticas espera que se consigan en esa segunda revolución cuántica?
La Unión Europea, no yo, ha establecido al respecto cuatro grandes pilares de progreso.
Una es la computación cuántica: hacer ordenadores que trabajen directamente con leyes cuánticas.
La segunda es la comunicación cuántica: establecer criptografía y comunicación segura cuántica.
La tercera es la simulación cuántica, que permite indagar los materiales, las moléculas…
Y la cuarta son sensores cuánticos, lo que nos permitirá medir con muchísima precisión, desde sensores de movimiento que para, por ejemplo, controlar las vibraciones del ala de un avión, a medidas de campos magnéticos increíblemente pequeñas.
El artículo completo en: BBC Mundo
31 de enero de 2019
Qué es la "luz líquida" y por qué se le considera el quinto estado de la materia
En el cuento "La luz es como el
agua" Gabriel García Márquez narra las aventuras de Totó y Joel, dos
niños que en las noches rompen las bombillas de su casa y navegan entre
los caudales de luz que brotan de ellas.
"Un chorro de luz dorada y fresca como el agua empezó a salir de la bombilla rota, y lo dejaron correr hasta que el nivel llegó a cuatro palmos. Entonces cortaron la corriente, sacaron el bote, y navegaron a placer por entre las islas de la casa", escribe el Nobel.
La escena, por fantástica que parezca, no está muy lejos de la realidad.
Los científicos que estudian fenómenos cuánticos han demostrado que la luz, bajo condiciones especiales, puede comportarse como un líquido que fluye y ondula alrededor de los obstáculos que encuentra, como la corriente de un río entre las piedras.
¿Cómo lo hacen?
La "luz líquida" es una sustancia muy particular. No es sólido ni plasma y tampoco se comporta exactamente como un líquido o un gas.Los científicos la llaman Condensado de Bose-Einstein (BEC) y la consideran el "quinto estado de la materia".
En este estado, las partículas se sincronizan y se mueven al unísono, formando un "superfluido".
"Se parece a cualquier otro líquido o gas, pero con propiedades especiales, una de las cuales es que todas sus partes están relacionadas", le dice a BBC Mundo Daniele Sanvitto, investigador del Instituto de Nanotecnología de Italia.
Los superfluídos no crean ondas, y no experimentan fricción ni viscosidad.
Tienen un "comportamiento colectivo", dice Sanvitto. "Es como un grupo de bailarines haciendo los mismos movimientos o una ola de gente marchando al mismo compás".
Así, un líquido común, al toparse con una pared rebotaría, pero un superfluido, como la luz líquida, circularía a lo largo de la pared.
" Si enviaras un chorro de estos contra una pared, la escalará en cualquier dirección y eventualmente se volverá a conectar después del obstáculo", explica Sanvitto.
¿Para qué sirve la luz líquida?
Hasta hace unos años, los superfluídos solo podían lograrse en temperaturas cercanas al cero absoluto (−273°C), pero en 2017 Sanvitto y sus colegas lograron producir luz líquida a temperatura ambiente.Esto lo lograron usando mezclas de luz y materia, llamadas polaritones.
"Este es el primer paso para tener aplicaciones de este líquido en la vida diaria", dice Sanvitto.
Hasta el momento, los experimentos con BEC se han logrado solo a pequeña escala en los laboratorios, pero los investigadores le ven un gran potencial para transmitir información y energía sin desperdicio.
Un ejemplo sería la creación de computadores ópticos, que puedan aprovechar la interacción de las partículas de luz sin el problema de la disipación o el calentamiento de los computadores comunes. Esto hará que sean mucho más rápidos y consuman menos energía.
Esta tecnología también podría revolucionar el manejo de los láseres y los paneles solares. Incluso, como lo menciona el científico Michio Kaku en una entrevista con This Week in Science, hay quienes piensan que en un futuro los BEC podrían sentar las bases para teletransportar objetos.
Por ahora eso solo es posible en la imaginación, como alguna vez lo fue en el cuento de García Márquez…
Tomado de: BBC Mundo
Suscribirse a:
Entradas (Atom)