Latest Posts:

Mostrando las entradas con la etiqueta boson de Higgs. Mostrar todas las entradas
Mostrando las entradas con la etiqueta boson de Higgs. Mostrar todas las entradas

14 de enero de 2020

Lisa Randell: vivimos en "la época más inteligente y en la más estúpida"

Una entrevista con una de las mujeres más relevantes en el campo de la física, quien fue la primera en ocupar la cátedra de Física Teórica de las universidades de Harvard y Princeton. Para la física, el hecho de que la física avance, pero aun así existan personas que no creen en las vacunas o se declaran terraplanistas, tiene que ver con una incapacidad de la ciencia para explicar sus conceptos al común de la gente.


El diario El Espectador, de Colombia, le realizó la siguiente entrevista:

La física pasa por un buen momento. En los últimos años ha habido grandes descubrimientos, como el bosón de Higgs y las ondas gravitacionales. ¿Se siente afortunada de vivir en esta época?
Resulta gracioso, porque a pesar de todos estos descubrimientos siempre estamos interesados en lo que vendrá, en lo siguiente. El bosón de Higgs fue predicho hace 50 años. Nos interesa conocer qué hay más allá del modelo estándar de partículas. Esto no significa que los experimentos actuales no sean buenos, pero parece que necesitaremos energías mucho más altas para conocer aún más. No sabemos qué aprenderemos de los futuros experimentos. Pasarán muchos años hasta que se construya un colisionador de partículas de altas energías, si es que llega a existir. Por otro lado, las ondas gravitacionales pasan por un momento emocionante. Estamos justo al principio, es apasionante.

¿Qué significaría un colisionador de altas energías como el que quiere construir China?
Tendremos mucha suerte si se llega a construir. Hay propuestas de China y del CERN, que ha planteado la construcción de un futuro acelerador circular (FCC). Esto no significa que el actual LHC caduque, ya que pasarán muchos años antes de que el CERN lleve a cabo ese proyecto. El próximo paso no serán las altas energías, sino la etapa de alta luminosidad del LHC. Esto permitirá hacer muy buena física, pero no creo que haya nada que reemplace a las altas energías.

A pesar del conocimiento actual del universo, siguen existiendo terraplanistas. ¿Cómo se lo explica?
Sí, resulta gracioso. Además, estamos lidiando con la actual situación política en Estados Unidos… De algún modo, vivimos en la época más inteligente y en la más estúpida. No sé a qué se debe, si están asustados o no confían en la ciencia. Una de las cuestiones que me planteo al escribir libros de divulgación es por qué hay gente tan reticente a ciertas ideas. Claro que la mayoría de los que leen mis libros no son terraplanistas, pero mi intención es hacer que mis ideas se comprendan bien. Si no te dedicas a la ciencia, no tienes porque tener ciertos conocimientos. Debe haber algo más que explique por qué la gente desconfía de la ciencia, no sé qué es. Es algo que debemos abordar.

Otra de las cuestiones que la humanidad debería abordar es el cambio climático. ¿Le preocupa el futuro de la Tierra?
No me preocupa la Tierra, me preocupa la vida en la Tierra [ríe]. Nuestro planeta sobrevivirá. Creo que estamos provocando cambios muy rápidos, más de lo que podemos controlar. Es muy difícil mantener el estilo de vida actual, aunque encontremos otras fuentes de energía. Hay mucha gente que no ve naturaleza en su día a día. Yo me crié en Queens y no salía al campo, es algo que no hacía y que ahora me hace muy feliz. Creo que estamos desconectados de la naturaleza. No pensamos en las consecuencias masivas de todo esto. Hay especies que quizás ya no tengan donde ir. Si destruimos sus hábitats no van a sobrevivir.

La entrevista completa en: El Espectador (Colombia)



2 de enero de 2019

¿Qué fue del bosón de Higgs?

Seis años después de anunciar su descubrimiento, el CERN detecta el tipo de desintegración más común de la partícula envuelto en ruido de fondo.


Hace diez años, la construcción de una máquina descomunal para capturar una partícula diminuta atrapó la imaginación del mundo. Bajo el CERN, un gigantesco laboratorio de física a las afueras de Ginebra (Suiza), se había construido un acelerador de partículas de 27 kilómetros de circunferencia capaz de empujar protones hasta una velocidad cercana a la de la luz. Los físicos hacían chocar aquellos haces de partículas microscópicas para reconstruir las circunstancias energéticas de los primeros segundos de vida del universo y tratar de desvelar aspectos sobre la naturaleza de la materia invisibles en condiciones normales. En aquel tiempo se llegó a fantasear con la posibilidad de que la máquina crease un agujero negro que engullese el mundo, pero salvo algún inconveniente, todo salió más o menos según lo previsto.

En 2012, los responsables del CERN anunciaron el descubrimiento del bosón de Higgs, la partícula que daba masa a todas las demás, completaba el Modelo Estándar de Física de Partículas y justificaba en buena medida una inversión de más de 5.000 millones de euros. El éxito de la búsqueda del higgs se confirmó al año siguiente cuando Peter Higgs y François Englert recibieron el premio Nobel de Física de 2013 por haber predicho la existencia de la partícula medio siglo antes. Pero aunque el trabajo grueso parecía finalizado, la validez de unos modelos físicos o de otros, de qué es exactamente la materia oscura o de si la supersimetría, en la que no solo habría un bosón de Higgs, sino muchos, puede ser la teoría que nos lleve un paso más allá en la comprensión del universo, depende de detalles.

El artículo completo en: El País (España) 

10 de septiembre de 2014

Stephen Hawking: El bosón de Higgs tiene potencial para destruir el Universo

El científico Stephen Hawking ha advertido de que el bosón de Higgs podría ser tan inestable como para llevar el espacio y el tiempo al colapso y, por tanto, a la destrucción del Universo.

   Hawking, ha realizado estos comentarios en el prefacio del libro  'Starmus', dedicado al festival del mismo nombre que se organiza a final de mes en Tenerife. En él ha indica que el campo de Higgs --la fuerza en el universo que dan partículas de masa y, por tanto, actúa como el "pegamento" que mantiene todo unido-- "tiene la característica preocupante de llegar a ser metaestable" a energías superiores a 100 millones de gigaelectronvoltios. Esta teoría ha reavivado los temores infundados de que se podría crear un "agujero negro" en la Tierra.
   "Esto significa que el universo podría sufrir deterioro catastrófico de vacío, como una burbuja de la verdadera expansión de vacío a la velocidad de la luz. Podría suceder en cualquier momento y no lo vería venir", ha añadido el científico.

   Según explican en NBC News, sus palabras han sacudido la comunidad de la Física debido a la repercusión que puedan tener en la sociedad. Los expertos recuerdan que, cuando comenzó la actividad del CERN el temor de que todo se derrumbara en un agujero negro era una preocupación generalizada en Internet.

   Hawking admite, sin embargo, que la probabilidad de un desastre del Higgs es muy pequeña, ya que los físicos no tienen un acelerador de partículas lo suficientemente grande como para llevar el experimento a esos niveles de energía.

Fuente:

Europa Press

16 de octubre de 2013

Higgs intenta (sin éxito) explicar el bosón de Higgs


 


¿Cómo contaría Higgs en qué consiste el bosón de Higgs? Eso fue lo que le pidió la BBC al famoso físico británico Peter Higgs hace unos meses.

Pero, dada la complejidad del tema, incluso el "padre" del hallazgo tuvo dificultades para llevar su teoría a un lenguaje comprensible para la mayoría.

Puede ver su explicación en el video que acompaña a este texto.

En los últimos días se volvió a hablar del bosón de Higgs debido a que el físico británico y su colega belga François Englert, de 84 y 80 años, respectivamente, obtuvieran el Premio Nobel de Física 2013.

Ambos obtuvieron el reconocimiento por la investigación que presentaron en 1964, separadamente, y que planteó la teoría de cómo las partículas adquieren masa, lo que permite comprender -al menos en parte- el origen del universo.

Tras el anuncio se informó que Higgs, por el momento, no hablaría sobre el tema. Se dijo que es tímido, que estaba de vacaciones y, por eso, había apagado su celular.

Un colega refirió que el profesor emérito de la Universidad de Edimburgo, en Escocia, Reino Unido, quería relajarse porque sabía que, a su regreso, luego de que se diera a conocer la noticia, tendría que lidiar con una "tormenta mediática".

Fuente:

BBC Ciencia

2013: El bosón de Higgs se lleva el Nobel de Física

Peter Higgs y François Englert

Cómo la materia adquiere masa a través de la denominada "partícula de Dios" fue la teoría desarrollada por Peter Higgs y François Englert.

Una hora más tarde de lo previsto y en medio de una de las expectativas mediáticas más grandes de su historia fue anunciado el Premio Nobel de Física 2013.

La distinción fue otorgada al belga François Englert y al británico Peter Higgs por su teoría de cómo las partículas adquieren masa, lo que ayuda a entender mejor el origen del Universo.
En 1964 ambos científicos propusieron la teoría de manera independiente, Englert en conjunto con su colega Robert Brout, ya fallecido.

Sin embargo, el belga y el británico sólo se conocieron en 2012, en un seminario organizado por el Centro Europeo de Estudios Nucleares, a punto de anunciar descubrimiento de la escurridiza "partícula de Dios", base de la teoría de ambos autores, según le cuenta a BBC Mundo Alan Walker, amigo y colega de Higgs, físico y miembro honorario de la Universidad de Edimburgo.

Tras el anuncio, realizado en Estocolmo por Staffan Normark, secretario permanente de la Real Academia Sueca de Ciencias, Englert dijo estar "muy feliz". "Al principio pensé que no me lo había ganado, porque no vi el anuncio", le dijo al comité del Nobel luego de que este se retrasara más de una hora.

"Estoy sobrecogido de recibir este premio y quiero agradecer a la Academia Real Sueca", comentó por su parte Higgs a través de un comunicado dado a conocer por la Universidad de Edimburgo, de la cual es profesor emérito.

"También me gustaría felicitar a todos aquellos que han contribuido al descubrimiento de esta nueva partícula, y dar las gracias a mi familia, amigos y colegas por su apoyo. Espero que este reconocimiento de la ciencia fundamental ayude a crear conciencia sobre el valor de la investigación del universo", continuó el científico británico.

clic Lea también: El hombre detrás del nombre de la "partícula de Dios"

¿Qué es el "Bosón de Higgs"?

bosón de Higgs

El Bosón de Higgs, o partícula de Dios, es la madre de todas las partículas.

Un bosón es uno de los dos tipos básicos de partículas elementales de la naturaleza, junto con los fermiones.

Y el bosón de Higgs era el eslabón perdido para comprender el funcionamiento de la masa. Y, a partir de ella, entender cómo surgió el Universo.

La masa, en palabras simples, es la medida de la materia que contiene algo: una partícula, una molécula, una flor o un caballo.

Si no tuvieran masa, todas las partículas fundamentales que componen los átomos y los caballos se desvanecerían a la velocidad de la luz y el Universo, tal como lo conocemos, no habría podido constituirse en materia.

La teoría de cómo funciona el Universo, denominada Modelo Estándar, explica su funcionamiento en un sentido amplio, desde las partículas que componen los átomos y las moléculas de la materia que vemos hasta las más extrañas.

Sin embargo, había un enorme vacío en ella: no explica por qué las partículas tienen masa.

La pieza que faltaba en el rompecabezas del Modelo Estándar es precisamente el bosón de Higgs.

Esta partícula se origina en un campo invisible que llena todo el espacio. Aun cuando el Universo parece vacío, este campo está ahí y es en el contacto con este campo que las partículas adquieren masa. La teoría propuesta por Englert y Higgs describe este proceso.

clic Lea también: (Casi) todo lo que desearía saber de la partícula divina.

El artículo completo en:

 BBC Ciencia

27 de marzo de 2013

Científicos ahora aseguran que el LHC sí puede crear un agujero negro

lhc111111

Pese a que hace varios meses atrás una corte alemana rechazó la idea de que el Gran Colisionador de Hadrones (LHC) podía crear un agujero negro, ahora dos científicos pertenecientes a la Universidad de Princeton reviven la polémica, estableciendo que a partir de la colisión de dos partículas que viajan muy rápido se puede crear un agujero negro, siendo exactamente eso a lo que se dedica el LHC en la práctica.

El tema es que anteriormente se había calculado una cierta cantidad de energía para que dicha colisión provocara un agujero negro, sin embargo, estos nuevos estudios aseguran que la energía necesaria es 2,4 veces menor a lo que se pensaba inicialmente, por lo que existiría la posibilidad de que el colisionador lograse crear un agujero negro que, sin embargo, no necesariamente destruiría la Tierra, ya que puede ser uno muy pequeño e inofensivo.

William E. East y Frans Pretorius del Departamento de Física de la Universidad de Princeton, habrían demostrado su teoría y la han publicado en el diario científico Physical Review Letters, abriendo nuevamente la discusión en torno a lo peligrosos que pueden ser los experimentos del LHC, ya que durante bastante tiempo se han conducido actividades que finalmente llevaron al posible descubrimiento del Bosón de Higgs.

De todas maneras, podemos estar tranquilos durante un buen tiempo, ya que el CERN apagó la máquina por los próximos dos años con el fin de realizar reparaciones y mejoras.

Link: El LHC sí puede crear agujeros negros (ABC)

Fuente:

FayerWayer

14 de marzo de 2013

Científicos del CERN, "casi seguros" de haber encontrado bosón de Higgs



El colisionador de hadrones del CERN.

El colisionador de hadrones del CERN.

Los científicos de la Organización Europea de Investigación Nuclear, CERN, dicen que están cada vez más convencidos de que la partícula subatómica que identificaron en experimentos el año pasado es el largamente esperado bosón de Higgs.
 
Sin embargo, los investigadores dicen que aún no puede estar cien por ciento seguros. El bosón de Higgs - que explicaría por qué la materia tiene masa - ha sido descrito como la piedra angular que falta de la física.

Desde hace tiempo se teorizó sobre él y físicos de todo el mundo han estado compitiendo para confirmar la teoría con experimentos prácticos.
 
Fuente:
 
BBC Ciencia 

24 de diciembre de 2012

Los diez hitos científicos de 2012 según Science

bosonhiggsCada año, los editores y expertos de la revista Science seleccionan los diez hitos científicos más destacados de cuanto ha sucedido en el transcurso de 2012. En esta ocasión, el primer puesto ha sido para el descubrimiento del bosón de Higgs, que confirma la hipótesis sobre su existencia formulada hace cuarenta años y completa el modelo estándar de la física, aportando una explicación a cómo otras partículas fundamentales obtienen su masa. Este hallazgo se logró mediante el Gran Colisionador de Hadrones (LHC), cuya construcción costó $10.000 millones y se encuentra bajo tierra en la frontera franco-suiza. Con él, se aceleraron partículas como protones hasta casi la velocidad de la luz.

A la lista de grandes hitos científicos del año se suman también la obtención de óvulos a partir de células madre, la secuencia genómica del hombre de Denisova a partir de un hueso de 80.000 años de antigüedad, el descubrimiento del fermión de Majorana (una partícula que es, a la vez, su propia antipartícula), los progresos en ingeniería genómica que permiten “editar” el ADN de un ser vivo, la medición de un ángulo de las esquivas partículas conocidas como neutrinos que ayudará a entender por qué el universo contiene tanta materia y tan poca antimateria, el sistema de descenso del robot Curiosity que explora actualmente Marte, el proyecto de la Enciclopedia del ADN llamado ENCODE, los avances en la interacción cerebro-máquina que han permitido a una persona mover extremidades robóticas con el pensamiento, y el desciframiento de estructuras proteínicas del parásito causante de la enfermedad del sueño mediante láser de rayos X.


Fuente:

Muy Interesante

20 de diciembre de 2012

La 'máquina del Big Bang' suspende su actividad en el CERN hasta 2015


El acelerador de partículas del CERN. | EM 
El acelerador de partículas del CERN. | EM
 
El acelerador de partículas elementales más grande del mundo, el Gran Colisionador de Hadrones (LHC, por sus siglas en inglés) de la Organización Europea de Investigación Nuclear (CERN, por sus siglas en inglés), ha suspendido las operaciones por 20 meses para un proceso de modernización que le permitirá incrementar su potencia de 8 a 14 teraelectronvoltios.

La noticia ha sido anunciada por el propio equipo del LHC en su página web, en donde han dejado el mensaje: "concluidas las operaciones de 2012. Volveremos a vernos pronto para las colisiones p-Pb (protones contra núcleos de plomo), en 2013. Las colisiones de alta energía protón-protón se reanudarán en 2015".

El LHC se despide tras haber cumplido su objetivo, detectar rastros de una partícula elemental con características similares a las del Bosón de Higgs, el pasado verano. Se trata del último elemento que faltaba en el modelo estándar de física de partículas.

El acelerador es un anillo de 27 kilómetros ubicado en la frontera entre Francia y Suiza y valorado en más de 6.000 millones de euros. Se puso en marcha en 2008 y, con una que otra pausa técnica, estuvo operativo durante unos tres años generando choques de protones de energía cada vez mayor.

El CERN ha señalado que, en este tiempo, el LHC ha realizado 6.000 billones de choques y, de estos, 400 produjeron resultados compatibles con partículas similares al bosón de Higgs. "El trabajo del LHC ha superado todas las expectativas en los últimos tres años y ha hecho logros fantásticos", ha señalado en un comunicado el director del acelerador, Steve Myers.

Los choques se iniciaron en 2008 a bajas energías y fueron aumentando paulatinamente, hasta la actualidad, cuando los dos haces circulaban a una energía de 4 teraelectronvoltios, por lo que los choques se produjeron a una energía de 8 Teraelectrovoltios.

Con las nuevas mejoras técnicas y el aumento de energía, se espera poder observar otro tipo de fenómenos que confirmen definitivamente la existencia del Bosón de Higgs.

Fuente:

El Mundo Ciencia

18 de diciembre de 2012

Descubrimiento del bosón de Higgs: El Hito Científico del año 2012


Ganador mejor logro cientifico FayerWayer_1000x530

Finalmente, este año los científicos encontraron la última pieza del Modelo Estándar: El bosón predicho por Peter Higgs y otros cinco físicos en 1964, y que posibilita el mecanismo por el cual las demás partículas como quarks y electrones ganan su masa, mientras que los fotones no.

Hasta el logro de este año del colisionador de hadrones del CERN, ningún experimento había sido capaz de encontrar evidencia de la existencia del bosón de Higgs, por lo que cuando anunciaron una partícula compatible con las propiedades del bosón el 4 de julio de 2012, todo el mundo científico celebró el anuncio, el que posteriormente fue corroborado en la revista científica Physics Letters B, tras ser revisado y aprobado por sus pares.

Ahora sólo queda esperar cuáles serán los próximos descubrimientos del colisionador de hadrones, aunque para eso tendremos que esperar hasta el 2015 cuando vuelva a estar operativo, pues el CERN lo someterá a un proceso de modernización para duplicar la energía de las colisiones de los actuales 8 TeV (tetraelectronvoltios), a 13 TeV.





Fuente:

FayerWayer

17 de noviembre de 2012

James Gillies: ´La gente debe saber qué es el Bosón de Higgs´



"Es importante comunicar la ciencia a la sociedad ya que de ella depende todo lo que hacemos", afirma el director de comunicación del CERN, el laboratorio europeo que alberga el mayor acelerador de partículas.


James Gillies es director de comunicación del CERN, el laboratorio europeo en el que se encuentra el mayor acelerador de partículas del mundo y donde se materializó el descubrimiento del Bosón de Higgs, uno de los mayores hallazgos científicos. Pese a la trascendencia de este hito, Gillies cree que el ciudadano común desconoce su alcance, a pesar de que descubrimientos como este cambiarán en el futuro su vida diaria en la práctica. 

El Bosón de Higgs es la piedra angular de las leyes físicas que intentan explicar el funcionamiento del Universo. Su existencia teórica se propuso en 1964 por el científico británico Peter Higgs. Sin el Bosón, de acuerdo con la teoría de Higgs, el universo sería una sopa gigante. Sin estrellas, planetas ni vida. Durante décadas, el célebre Bosón fue tan solo una teoría sin demostrar, hasta que el acelerador de partículas del CERN descubrió su existencia real.
 
–¿Cree que la población en general es conocedora de lo que significa el Bosón de Higgs y su descubrimiento? 
–No, no lo creo. Y ese es el verdadero reto. Hemos visto que hay muchos factores que determinan que la gente lo desconozca. Hemos trabajado duro para que aumente la población que es consciente de lo que es el Bosón de Higgs. Necesitamos un giro en cuanto al reconocimiento que la sociedad da a un descubrimiento como este y que sepan por qué realmente es importante, ya que hasta ahora la gente ha oído hablar de ello y sabe que es importante porque los medios le han dicho que es importante, pero no tienen claro por qué. Necesitamos que lo sepan.
 
–¿Por qué debería ser importante para un ciudadano ajeno al trabajo científico saber qué es esta partícula? ¿En qué puede mejorar su vida diaria?
–Cuanto más he trabajado en comunicación científica más me he convencido de que todo el mundo es curioso por naturaleza. Forma parte de lo que nos hace humanos y al investigar estamos satisfaciendo una necesidad humana básica de entender dónde estamos, los misterios de nuestro universo. Todo lo que hacemos simplemente depende de la ciencia.
 
–¿Qué es el famoso Bosón?
–Todo tiene masa y es atraído por ella, es lo que nos hace estar en la tierra. El bosón es una partícula elemental que explica la existencia de la masa, la materia de la que estamos hechos, y sin ella no existiríamos. Por eso algunos, no nosotros, la han llamado la partícula de Dios.
 
–¿Y por qué se necesitaba un acelerador como el del CERN para descubrir su existencia?
–El acelerador permite acelerar los protones a mucha velocidad, hacerlos colapsar, porque de esos colapsos pueden salir nuevas partículas (como el Bosón). También se puede descubrir de la caída de partículas del espacio, pero es más difícil.
 
–¿Y qué puede aportar esa curiosidad a la vida diaria del ciudadano común?
–Por un lado, simplemente satisfacer una necesidad que ya he dicho que es humana. Por otro lado, también es muy importante trasladar a la sociedad el mensaje de que, realmente, este u otros descubrimientos van a mejorar su vida diaria de forma práctica. No puedo decirle ahora lo que dentro de 50 años se va a lograr gracias al descubrimiento del Bosón de Higgs, pero sí le aseguro que algo importante se hará con él. Por ejemplo, si nadie hubiera tenido una curiosidad inicial por la luz y la posibilidad de que existieran las bombillas, aún estaríamos con velas y no tendríamos electricidad. En el corto plazo, también hay una aplicación directa porque la clase de gente que tiene más curiosidad y que investiga requiere a otros investigadores que desarrollen tecnología de la que no dispone para su investigación. De modo que se retroalimenta y esta tecnología pasa a beneficiar también a la sociedad.
 
–¿Qué hace tan relevante aplicar una buena comunicación científica a la sociedad?
–Que la sociedad sea conocedora es importante. Siempre pongo el ejemplo sobre un estudio aislado que se comunicó de forma equivocada desde algunos medios y que se malinterpretó también por el público. El estudio hablaba de ciertos efectos negativos de la vacuna triple vírica (sarampión, rubeola y polio), que es una vacuna muy importante para los niños. Era una información incompleta que pudo generar mucho riesgo a muchos niños si los padres decidían no vacunarlos. En un nivel más alto de los puestos de decisión, conocer sobre la ciencia es fundamental para tomar decisiones sobre políticas mundiales, tales como qué hacemos frente al cambio climático, que evidentemente puede tener una influencia del ser humano y podemos hacer algo al respecto.
 
–¿Hay Dios dentro del Bosón de Higgs ?
–Es una partícula que explica la vida dentro del universo, pero no, Dios no está en ella.

Fuente:


Lea también:


6 de noviembre de 2012

Peter Higgs: 'No me gusta nada que al bosón se le llame la partícula de Dios'

Peter Higgs en el CosmoCaixa de Barcelona. | Antonio Moreno
Peter Higgs en el CosmoCaixa de Barcelona. | Antonio Moreno
"No me gusta nada que al bosón se le llame la 'partícula de Dios' porque confunde a la gente, al mezclar ámbitos que no tienen relación alguna, como la ciencia y la teología". Con esta contundencia ha respondido este martes Peter Higgs en Barcelona, al ser preguntado por el apodo con el que se conoce popularmente a la partícula que lleva su nombre.

"En realidad fue una broma que nadie debía haberse tomado en serio", ha dicho el físico, recalcando que es absurdo intentar derivar implicaciones metafísicas o religiosas de su trabajo, como algunos han pretendido en los últimos meses. "En realidad, el nombre que propuso el físico Leon Lederman para titular el libro que da origen a este apodo era 'la maldita partícula', porque todo el mundo pensaba que era imposible demostrar su existencia, pero a su editor no le gustó y se inventó lo de 'la partícula de Dios'", recordó el científico.

Higgs, catapultado a la fama mundial este año cuando el CERN anunció en julio el descubrimiento del bosón cuya existencia él postuló hace casi medio siglo, se encuentra de visita en España invitado por el Instituto de Física de Altas Energías (IFAE) y el Museo CosmoCaixa de la ciudad condal, donde esta tarde impartirá una conferencia titulada Inventando una partícula elemental'.

La demostración de la existencia del bosón de Higgs, anunciada por los científicos del CERN con una probabilidad de acierto de más del 99.99%, es la pieza crucial que faltaba en el Modelo Estándar de Física para explicar por qué la materia tiene masa. Higgs propuso su existencia en un trabajo pionero publicado en 1964, y casi cinco décadas después, los experimentos realizados en el LHC, el mayor acelerador de partículas del mundo, le han dado la razón, convirtiéndole en un candidato firme para el premio Nobel.

En una rueda de prensa multitudinaria, el físico ha reconocido que el hallazgo del bosón en Ginebra le ha cambiado la vida, al colocarle delante de los focos de la prensa de manera abrumadora. "Es como una ola que a veces me supera", ha confesado Higgs, que a sus 83 años se ha convertido en el científico más mediático del planeta, con la excepción quizás de Stephen Hawking.

Fue el propio Hawking quien, poco después del anuncio del CERN, declaró que Higgs se merecía ganar el Nobel tras confirmarse la existencia de su bosón. Sin embargo, de momento este año la Academia Sueca no se lo ha concedido, quizás porque todavía falta la confirmación definitiva de algunos detalles del hallazgo.
"Obviamente soy consciente de la posibilidad de ganarlo, y en la Universidad de Edimburgo se organizó este año una especie de comité para planificar cómo reaccionar y gestionar la concesión del Nobel", ha reconocido Higgs. "Pero francamente, con toda la atención mediática que ya he tenido este año, casi prefiero tener un respiro", ha confesado el físico.

Fuente:

21 de octubre de 2012

¿Hay lugar para Dios en el Big Bang?

Big Bang

El descubrimiento del bosón de Higgs está tan fresco que la exhibición en el museo de la Organización Europea para la Investigación Nuclear (Cern) no se ha actualizado todavía.

En la obra expuesta -un cortometraje que proyecta imágenes del nacimiento del Universo en una enorme pantalla- el narrador pregunta: "¿Encontraremos el bosón de Higgs?" 

Ahora que finalmente ha sido visto -un descubrimiento científico que nos acerca más que nunca a los primeros momentos después del Big Bang- Cern ha abierto sus puertas a eruditos que toman un enfoque muy diferente hacia la pregunta de cómo se creó el Universo.

El 15 de octubre, un grupo de teólogos, filósofos y físicos se reunió dos días en Ginebra para hablar sobre el Big Bang.

¿Qué ocurrió cuando personas de tan distintas visiones del Universo se sentaron a discutir?

"Me di cuenta que era necesario discutirlo", dijo Rolf Heuer, director general de Cern.

"Necesitamos, como científicos ingenuos, discutir con filósofos y teólogos la época anterior al Big Bang".

clic Vea también: dentro de la máquina del Big Bang

Antes del Big Bang

Uno de los organizadores de Cern de esta inusual reunión fue Wilton Park, un foro global establecido por Winston Churchill.

Es una organización usualmente asociada con discusiones de alto nivel sobre política global e incluso intercambios confidenciales sobre asuntos de seguridad internacional, lo cual quizás enfatiza cuán seriamente toma Cern este encuentro.

Pero la misma idea de un "tiempo antes del Big Bang" es un territorio imposible para los físicos.
Es una zona de pura especulación; antes del tiempo y el espacio como los científicos los entienden, y donde las leyes de la física se rompen completamente.

Entonces ¿lo hace eso un ámbito en el que se puedan entender la ciencia y la religión?

Uno de los participantes más francos, Lawrence Krauss, un físico teórico y director del Proyecto Orígenes en la Universidad Estatal de Arizona, afirma que definitivamente no.

"Uno tiene la impresión de una reunión como esta que a los científicos les importa Dios; pero no", indica.

"No puedes refutar la teoría de Dios".

"El poder de la ciencia es incierto. Todo es incierto, pero la ciencia puede definir esa incertidumbre".

"Por eso la ciencia progresa y la religión no".

Pero la sugerencia de que ciencia y religión son fundamentalmente incompatibles fue un motivo de discordia durante la reunión.

John Lennox, profesor de matemáticas en la Universidad de Oxford, también se declara cristiano. Él piensa que le solo hecho de que los seres humanos puedan hacer ciencia es evidencia para Dios.

"Si los ateos tienen razón en que la mente hace ciencia... es el producto de un proceso no guiado sin sentido".

"Ahora, si supieras que tu computadora es producto de un proceso no guiado sin sentido, no confiarías en ella".

"Por eso, para mí el ateísmo socava la racionalidad que necesito para hacer ciencia".

Pero este debate aparentemente insoluble de Dios versus ciencia fue sólo una parte del encuentro.

Heuer expresó que deseaba que los participantes "desarrollaran un entendimiento común" de la visión de los demás.

Pero incluso intercambiar ideas fue por momentos engorroso; científicos y filósofos suelen hablar lenguajes muy diferentes.

Educarse mutuamente

Partícula de Higgs

El descubrimiento de una "partícula de Higgs" precedió este encuentro de religiosos y científicos.

Andrew Pinsent es director de investigación en el Centro Ian Ramsey para la Ciencia y la Religión de la Universidad de Oxford. También es un físico entrenado que alguna vez trabajó en Cern.
"Tenemos que educarnos mutuamente en los términos que usamos", dice.

Por ejemplo, explica, "los filósofos han estado discutiendo el significado de la [palabra] verdad durante siglos".

Pero para muchos físicos, usar esa palabra es un territorio incómodo cuando hablan de lo que sabemos sobre el Universo y el Big Bang.

Krauss afirma que la palabra está en el centro de "una de las diferencias fundamentales entre ciencia y religión".

"Quienes son religiosos creen que conocen la verdad", indica.

"Y saben la respuesta antes de que se haga la pregunta. En cambio, con los científicos es exactamente lo contrario".

"En la ciencia, aunque usamos la palabra verdad, lo que realmente importa es si funciona".

"Por eso es un asunto sensible, porque si sabes la verdad, no necesitas lidiar con esta preguntita de si algo funciona o no".

A pesar de la barrera de visiones opuestas del mundo y léxicos incompatibles, Pinsent cree que colaborar con la filosofía podría ayudar a la ciencia a enfrentar mejor las preguntas muy grandes.

"No ha habido nuevos avances conceptuales en la física en un cuarto de siglo", afirma.

Agrega que esto es en parte porque la ciencia en aislamiento "es muy buena para producir cosas" pero no para producir ideas".

Invoca a Einstein como ejemplo de un científico verdaderamente filosófico.

"Empezó formulando las preguntas que haría un niño", puntualiza Pinsent, "como '¿qué sería cabalgar sobre un rayo de luz?'"

Y Heuer acepta la idea de llevar filosofía al mismo Cern.

"No iría tan lejos como dejarlos hacer experimentos aquí", bromea, "pero no tendría ningún problema en tener un filósofo residente".

¿Demasiado especializado?

Big Bang

La misma idea de un "tiempo antes del Big Bang" es un territorio imposible para los físicos.

La principal conclusión del evento fue simple: seguir hablando.

"Enfrentamos un problema en nuestra cultura de hiperespecialización", señala Pinsent.

"Esta ignorancia de otros campos puede causar problemas, como una carencia de cohesión social".

Y aunque Krauss dijo que la reunión se sintió a ratos como "gente que no se puede comunicar al tratar de comunicarse", incluso ve algún valor en este intercambio algo esotérico.

"Mucha gente de fe ve la ciencia como una amenaza", indica.

"No creo que la ciencia sea una amenaza, así que es útil para los científicos mostrar que no lo ven necesariamente de esa manera".

Como dijo un colaborador durante el encuentro: "la religión no agrega a los hechos científicos, sino da forma a nuestra visión del mundo".

Y como Cern está buscando pistas sobre cómo existió el mundo para empezar, desea ver cómo sus descubrimientos encajarían en cualquier visión del mundo.

Fuente:

BBC Ciencia

Contenido relacionado

15 de octubre de 2012

¿Qué hay después del bosón de Higgs?

¿Es curioso y le gustaría saber cómo está hecho todo lo que vemos en el universo? El descubrimiento del bosón de Higgs es, si se confirman sus características, la pieza que faltaba para conseguirlo. Sin él no existiríamos. Pero ¿qué más sorpresas nos esperan?



El físico teórico Peter Higgs durante una visita en el detector CMS, del acelerador de partículas LHC en 2008. / CERN

“¿Por qué se emocionó la gente con la relatividad de Einstein, cuando yo era un niño, allá por los años treinta? ¿Por qué la gente adora las buenas fotos de Saturno? ¿Por qué tantas personas se preocuparon tanto cuando Plutón fue degradado como planeta? ¿Por qué fascina la materia oscura y la energía oscura del universo?”, comenta el premio Nobel de Física Sheldon Lee Glashow al plantearse la repentina popularidad, todo un exitazo mundial, de una nueva partícula elemental, minúscula, pero esencial para comprender de qué estamos hechos, bautizada con el extraño nombre de bosón de Higgs y recién descubierta, o casi. El hallazgo, anunciado el pasado 4 de julio en el Laboratorio Europeo de Física de Partículas (CERN), junto a Ginebra, culmina más de medio siglo de búsqueda científica con enormes esfuerzos de investigación en el mayor complejo de máquinas de experimentación científica que se ha construido jamás. Y ahora ¿Qué hay después Higgs? ¿Qué nuevos fenómenos de la naturaleza pueden surgir en el gran acelerador de partículas LHC y sus detectores, en los que el Higgs se ha hecho realidad por fin?

Los físicos, por supuesto, siguen en la brecha, intentado siempre desvelar los enigmas de la naturaleza. Y para ellos un descubrimiento es siempre un escalón más, nunca el final de la escalera. Pero a veces el hallazgo es tan importante que condiciona los siguientes pasos a dar. El bosón de Higgs no es una partícula cualquiera, dice Glashow, es la última pieza que faltaba en la teoría contemporánea que describe como están hechas las cosas, todo lo que vemos en el universo. “Y juega un gran papel”, añade, con su habitual entusiasmo este físico estadounidense de la Universidad de Boston.


Una colisión de partículas registrada en el detector Atlas en el que se ha producido un posible bosón de Higgs. / CERN / ATLAS

“Sin el Higgs no existiríamos”, apunta el director del CERN, el alemán Rolf Heuer. “Cuando estudiamos los componentes más pequeños de la materia, abordamos las mayores preguntas del universo, y el bosón de Higgs nos dirá cómo las partículas fundamentales de las que todos estamos hechos adquieren su masa y, por tanto, permiten la existencia de cosas complejos, como los seres humanos”, comenta.
Heuer fue quién presentó, el 4 de julio, en el auditorio del CERN y con transmisión por internet a todo el mundo, las charlas de Joe Incandela y Fabiola Gianotti, los portavoces de los dos enormes detectores Atlas y CMS en los que habían por fin aparecido las huellas del ansiado bosón de Higgs. Daniel Froidevaux dice que “fue un momento mágico”. Para este físico suizo que empezó a proyectar y trabajar en el experimento Atlas hace 25 años “ha sido una suerte inmensa, porque nadie te puede garantizar que en tu vida profesional vayas a presenciar un descubrimiento así”. Se emocionó, reconoce, hasta las lágrimas, el 4 de julio, pero ya mira hacia adelante, como todos los expertos, confiando en que el LCH proporciones señales de un universo desconocido. Ese es realmente el objetivo del gran acelerador, dice.
La idea básica de este tipo de máquinas (y el LHC es la más potente jamás construida) es hacer chocar frontalmente partículas –protones, en el acelerador de Ginebra- aceleradas hasta casi la velocidad de la luz de manera que en las colisiones y, siguiendo las leyes de la física, formen otras partículas, casi siempre conocidas, pero a veces, muy de vez en cuando, nuevas, como el bosón de Higgs.

Encontrar el famoso bosón ha sido muy difícil, “como dar con un tipo especial de copo de nieve en una gran nevada”, señala Heuer.

Pero pueden desvelarse más secretos de la naturaleza. Nuevas familias de partículas que ahora solo son hipótesis de los teóricos, incluso huellas de nuevas dimensiones espaciales que puedan existir además de las tres en las que vivimos (alto, ancho y largo) y que estén escondidas en el microcosmos, son algunas posibles piezas a cazar en el CERN en los próximos años.

Conviene hacer un somero repaso de cómo es y cómo funciona el microcosmos. La materia de nosotros mismos, de todo lo que nos rodea y lo que vemos en el cosmos, incluidos planetas, estrellas y galaxias, está formada por partículas elementales gobernadas por fuerzas fundamentales. Los átomos son objetos compuestos por un núcleo rodeado de electrones (que parecen ser partículas fundamentales, indivisibles), y el núcleo esta hecho de protones y neutrones (en muchos casos), a su vez formados por quarks, estos si indivisibles (por lo que ahora se sabe). Pues bien, los físicos, a lo largo del siglo XX y con la estrategia eficaz de combinar observaciones, experimentos y teorías que los expliquen, han logrado describir esas partículas y sus interacciones en el llamado Modelo Estándar (MS), verificado y comprobado con una precisión enorme.

“El bosón de Higgs nos dirá cómo las partículas adquieren su masa y permiten la existencia de cosas complejas”

El modelo estándar describe las partículas elementales y como funcionan. Es un poco como un kit con distintas piezas y las instrucciones para montarlas. Las piezas son las partículas que constituyen la materia y las instrucciones describen como funcionan, es decir las fuerzas entre ellas, que curiosamente, consisten en intercambios también de partículas. Las piezas son 12 partículas (como los quarks o los electrones) organizadas en tres familias, y las fuerzas de interacción del MS son también tres: el común electromagnetismo, la fuerza débil responsable de las desintegraciones radiactivas y la fuerza fuerte que mantiene unidos los quarks en los protones y neutrones del núcleo atómico.

Pero el MS no es perfecto y una de sus deficiencias importantes, además de no lograr acomodar en ella la cuarta fuerza, la gravedad, es su incapacidad de explicar por qué unas partículas tienen masa y otras no, y por qué las primeras tienen masas diferentes. Y aquí se incorporó el bosón de Higgs al MS como solución teórica, hace casi medio siglo. Esta partícula es la manifestación del denominado campo de Higgs con el que interaccionan más o menos intensamente las partículas que tienen masa, y nada las que no la tienen (como el fotón de la luz). Este mecanismo fue propuesto por varios físicos teóricos (el británico Peter Higgs, entre otros), pero ha sido muy difícil comprobar si era correcto, si la naturaleza funciona realmente así, y sólo con el descubrimiento experimental del bosón concreto empiezan a aclararse las cosas.
La partícula que los físicos de Atlas y CMS anunciaron el 4 de julio es un bosón (un tipo de partículas) y muy posiblemente el que se estaba buscando, pero los expertos no están aún seguros, así que lo primero es estudiarlo con más detalle y salir de dudas. “Determinar si es exactamente esa partícula o si hay más bosones de Higgs adicionales requerirá analizar los datos del LCH durante las próximas una o dos décadas y el estudio, probablemente, continuará en un futuro acelerador diseñado especialmente para medir con alta precisión sus propiedades”, dice Aurelio Juste Rozas, investigador del Instituto de Física de Altas Energías (IFAE, en Barcelona) y miembro del experimento Atlas.

También considera que la cosa llevará tiempo Marcos Cerrada, del Ciemat, físico del CMS. “Pero si se trata precisamente del bosón de Higgs, sabemos perfectamente qué características debe tener”, añade.

Igualmente pide paciencia Froidevaux: “A finales de ese año sabremos un poco más, pero bien podemos tardar diez años en caracterizar el nuevo bosón y verificar que sus propiedades son compatibles con el Modelo Estándar”. De manera que el camino inmediato a seguir con el LHC esta claro, no así lo que se puede descubrir.

“El LHC tiene mucho recorrido. La nueva etapa que aumentará la energía nos abre una región inexplorada”

Hay que tener presente que el descubrimiento “se ha alcanzado mucho antes de lo esperado inicialmente tras analizar tan solo un 1% de las datos que se esperan acumular con este acelerador, lo cual es prometedor de cara a unos futuros descubrimientos que puedan estar aguardándonos”, advierte Juste Rozas.

El LHC seguirá funcionando hasta diciembre; luego, a principios de 2013 se apagará para realizar, durante dos años, las adaptaciones necesarias antes de encenderlo de nuevo a finales 2014 con el doble de energía. “Yo no esperaría otro gran descubrimiento antes del próximo diciembre, pero yo no decido, decide la naturaleza, así que uno nunca sabe…”, reconoce Heuer.

“Después del Higgs, ¿El diluvio?”, se pregunta con ironía el físico teórico del CERN Luis Álvarez Gaumé. “Esperemos que sea un diluvio lleno de sorpresas y descubrimientos nuevos. El análisis de lo que podría ser la partícula de Higgs continúa y hay que poner mucha atención para ver si existen anomalías sistemáticas en los datos que indiquen de forma indirecta la existencia de una realidad más allá de la que conocemos”.

Lo interesante de la física de partículas a principios del siglo XXI es que si es asombroso lo mucho que conocen y entienden los científicos de cómo es el universo en sus componentes más elementales, más asombroso aún es lo muchísimo que desconocen y que intenta desvelar con teorías e hipótesis y, necesariamente, con experimentos que demuestren su veracidad. Se refieren a todo esto como “nueva física”, porque saben que el Modelo Estandar, por bien que funcione, no es la última palabra, no es perfecto, dejan cabos sueltos…. Luego no puede ser la descripción definitiva del mundo subatómico.

“Personalmente espero que si hay otro descubrimiento sea una sorpresa, algo que no esperamos, pero tengo muchas esperanzas de encontrar indicios, por ejemplo, de partículas supersimétricas”, dice Incandela. “La filosofía es no dejar ninguna piedra sin levantar: buscamos indicios de partículas supersimétricas, indicación de dimensiones extra, una cuarta generación de partículas, etcétera. Se busca sistemáticamente lo esperado por todo tipo de teorías, pero también lo inesperado, intentado simplemente observar desviaciones de las predicciones del modelo estándar”, apunta Martine Bosman, del IFAE.

De esas partículas supersimétricas no ha aparecido aún señal alguna en los experimentos, pero abundan en las discusiones entre los físicos teóricos, en los artículos científicos, los congresos y las charlas en las instituciones de física de todo el mundo, incluido el CERN. Se trata de un nuevo modelo teórico que engloba al Modelo Estándar y que supera en parte sus limitaciones. Y, según las predicciones de esas teorías supersimétricas, llamadas SUSY, debe existir todo un conjunto de nuevas partículas primas de las ya conocidas, pero con características propias, denominadas supersimétricas. Nadie sabe si realmente existen, ni siquiera aparecerían en los experimentos del gran acelerador de Ginebra, caso de existir. Pero se buscan con ahínco. “El LHC tiene mucho recorrido todavía: la etapa siguiente en la que se aumentará la energía, nos abre una nueva región inexplorada hasta ahora”, avanza Cerrada.

Lea el artículo completo en:

El País Ciencia

25 de agosto de 2012

Si imaginas el electrón como una pequeña bolita, por qué no imaginas igual al bosón de Higgs


Me resulta realmente curioso que mucha gente imagine el electrón como una pequeña bolita cargada que gira sobre sí misma, pero que se imagine el bosón de Higgs como una “cosita” alargada, como un pequeño diagrama de Feynman. El bosón de Higgs es un partícula puntual, como lo es el electrón. ¿Por qué no se imagina la gente el bosón de Higgs como una pequeña bolita? No tengo ni idea, pero obviamente, ni el electrón es una bolita pequeña cuyo radio tiende a cero hasta hacerse puntual, ni el bosón de Higgs lo es. Permíteme un pequeño comentario al respecto.

Lo primero, qué es un electrón. No, no es una bolita pequeñita y cargada que gira sobre sí misma. Ni siquiera en el límite de radio tendiendo a cero. Los físicos creemos que el electrón es una excitación (fluctuación o vibración) localizada del campo electrón. El campo electrón permea todo el espaciotiempo (algunos físicos dicen que el vacío del campo electrón permea todo el universo, pero es lo mismo). Las excitaciones del campo electrón en las regiones donde no hay ningún electrón (el vacío) se llaman partículas virtuales (en ciertas circunstancias pueden convertirse en partículas, pero no son partículas). Como el electrón tiene una antipartícula llamada positrón, estas excitaciones virtuales son pares electrón-positrón virtuales. Sabemos que existen y hemos medido sus efectos (por ejemplo, afectan a los niveles atómicos de los electrones en los átomos). Ahora bien, por qué hay un número finito de electrones en el universo. Pues porque el Big Bang produjo un número finito de excitaciones localizadas tipo partícula electrón y como esta partícula es estable y no puede desintegrarse en nada, dichas excitaciones localizadas o partículas se han conservado hasta hoy en día.

Ahora podemos pasar al bosón de Higgs. ¿La gente se imagina el Higgs como una bolita pequeñita y neutra que no gira sobre sí misma? Mucha gente rehuye de esta imagen, pero como en el caso del electrón, no es eso. Los físicos creemos que el bosón de Higgs es una excitación (fluctuación o vibración) localizada del campo de Higgs. El campo de Higgs permea todo el espaciotiempo (algunos físicos dicen que el vacío del campo de Higgs permea todo el universo, pero es lo mismo). Las excitaciones del campo de Higgs en las regiones donde no hay ningún bosón de Higgs (el vacío) se llaman partículas virtuales; como el bosón de Higgs es idéntico a su antipartícula, estas excitaciones virtuales son bosones de Higgs virtuales. Sabemos que existen y resulta que las partículas masivas tienen masa porque interaccionan con estos Higgs virtuales (adquieren masa al interaccionar con el vacío del campo).

Por qué no hay Higgs por todos lados y su masa total no afecta a la densidad de masa-energía total del universo. Muy sencillo, el Higgs es una partícula con mucha masa y por tanto inestable, desintegrándose casi instantáneamente en partículas de menor masa (lo mismo le pasa al quark top y a las demás partículas con masa grande). Por ello, en el universo entero no hay ninguna excitación localizada estable de tipo partícula de Higgs. Para poder observar una partícula del campo de Higgs hay que excitar el campo con mucha energía (en una colisión protón-protón del LHC, por ejemplo) y la excitación resultante es inestable y se desintegra en unas billonésimas de billonésima de segundo en otras partículas (excitaciones de otros campos).

Desde el punto de vista de la teoría de campos no hay diferencia significativa en la relación entre la partícula llamada electrón y el campo electrón (que tiene cuatro componentes en dos parejas) y la relación entre el bosón de Higgs y el campo de Higgs (que a baja energía tiene una sola componente). Obviamente, uno tiene carga y el otro es neutro, uno es estable y el otro inestable. Pero conceptualmente tan partícula es uno como el otro. Si alguien afirma que “entiende” o intuye o se imagina qué es un electrón, debe también entender o intuir o imaginarse qué es un bosón de Higgs.

Yo sé que entender qué es un vacío cuántico y por qué es un “mar” repleto de partículas virtuales es difícil, pero no hay diferencia conceptual, repito, entre el vacío del campo electrón y el vacío del campo de Higgs.

El segundo no es más misterioso que el primero. Aunque ambos son muy misteriosos para quien quiere verlos desde un punto de vista clásico.

Espero haber ayudado algo. Pido perdón si lo he complicado aún más.

Fuente:

9 de julio de 2012

Tres minutos poara entender el bosón de Higss

Bueno, pues aquí lo tenéis. Después de muchos días de trabajo y gracias al talento de David Tesouro (animación y la parte más importante del curro), Miguel Fernández Flores (grafismo) y Nicola Zonno (ilustraciones), estrenamos nuestro primer videográfico de ciencia en lainformacion.com. Después del éxito de "El bosón de Higgs explicado a mi abuela", queríamos hacer algo en nuevos formatos y nos pusimos a ello. Aún tenemos que mejorar mucho, pero creo que este primer videográfico os gustará :-)

* Podéis pillar el código del vídeo e insertarlo en vuestros blogs, si os gusta (Hacedlo!!)


Otras piezas de nuestra cobertura sobre el bosón de Higgs:


Fuente:

5 de julio de 2012

Lo que necesitas para entender el bosón de Higgs en cinco preguntas

1. ¿Por qué es tan importante encontrar el bosón de Higgs?
 
Porque podría contener la respuesta a la siguiente cuestión: ¿cómo decide la naturaleza a qué partículas les asigna masa y a cuáles no? Todas las partículas elementales que forman la materia (seis leptones y seis quarks) tienen masa. Sin embargo otras como el protón, responsable de la fuerza electromagnética, no tienen masa. La presencia o ausencia de masa podría venir dada por el bosón de Higgs, cuya existencia se propuso en los años sesenta. 

“Confirmar la existencia del bosón de Higgs en el modelo estándar supondría haber comprendido el mecanismo por el cual las partículas adquieren masa, un mecanismo que en su versión más simple predice la existencia de –al menos– un bosón que cuando interacciona con las otras partículas (quarks, leptones y otros bosones), hace que estas adquieran masa”, explica Teresa Rodrigo, investigadora del Instituto de Física de Cantabria que participa en los experimentos del CERN.

2. ¿Qué es el campo de Higgs?
 
Para explicar por qué unas partículas tienen masa y otras no, el físico británico Peter Higgs (y simultánea pero independientemente, también Francois Englert, Robert Brout, Gerald Guralnik, Dick Hagen y Tom Kibble) postuló en los años 60 del siglo XX un mecanismo que se conoce como el “campo de Higgs”. Al igual que el fotón es el componente fundamental de la luz, el campo de Higgs requiere la existencia de una partícula que lo componga, que los físicos llaman “bosón de Higgs”. El campo de Higgs sería una especie de continuo que se extiende por todo el espacio, formado por un incontable número de bosones de Higgs. La masa de las partículas estaría causada por una especie de “fricción” con el campo de Higgs, por lo que las partículas más ligeras se moverían por este campo fácilmente mientras que las más pesadas lo harán con mayor dificultad.

3. ¿Quién acuñó el nombre de “partícula de Dios”?
 
Fue el Premio Nobel de Fïsica Leon Lederman, en el libro “Si el universo es la respuesta, ¿cuál es la pregunta?”. Sin embargo muchos investigadores prefieren el apodo de "la partícula de la botella de champagne", haciendo alusión a la anécdota según la cual el físico David J. Miller ganó en 1993 una botella de champagne ofrecida por el ministro de ciencia británicoWilliam Waldegrave, que la ofreció como “premio” a quien fuese capaz de explicarle que era el bosón de Higgs.

4. ¿Por qué se usa el LHC para buscar el bosón de Higgs?
 
La confirmación o refutación de la existencia del bosón de Higgs es uno de los objetivos del Gran Colisionador de Hadrones (LHC, por sus siglas en inglés), el mayor y más potente acelerador de partículas del mundo que opera la Organización Europea para la Investigación Nuclear (CERN) en la frontera franco‐suiza, cerca de Ginebra (Suiza). En el interior del anillo del acelerador del CERN colisionan protones entre sí a una velocidad cercana a la de la luz. Según los cálculos los bosones de Higgs deberían producirse en choques frontales entre protones de energías del orden de 20 TeV. Al fin y al cabo, cuanto mayor sea la energía de las partículas que chocan más masa tendrán las resultantes, según la famosa ecuación de Einstein E=mc2. No obstante, el bosón de Higgs no se puede detectar directamente, ya que una vez que se produce se desintegra casi instantáneamente dando lugar a otras partículas elementales más habituales (fotones, muones, electrones…) que sí son detectadas en el LHC.

5. ¿Por qué se habla de probabilidades en lugar de hablar de descubrimiento del bosón de Higgs? ¿Qué significan los “sigmas” de los que hablan los físicos?
 
El bosón de Higgs no puede observarse directamente porque si tiempo de vida es demasiado corto. Al final de su vida, decae y se transforma en otras partículas que son las que los detectores observan. Por ejemplo, en dos fotones. Pero otros muchos procesos también generan dos fotones, de modo que los científicos tienen que comparar el número de “eventos de dos-fotones” y compararlo con lo que se espera para una determinada partícula.
 
Para reclamar la paternidad de un descubrimiento, los físicos necesitan tener un exceso de colisiones significativas, lo que precisa de otra magnitud: la desviación estándar o el “número de sigmas”, que establece la significancia estadística de ese descubrimiento. Al hacer el anuncio sobre el bosón de Higgs, Fabiola Gianotti ha dicho: "Hemos observado señales claras de una nueva partícula en el nivel de cinco sigma en la región de la masa alrededor de 126 gigaelectronvoltios (GeV)”. El valor cinco sigma es el nivel mínimo aceptado por la comunidad científica para confirmar el descubrimiento de una partícula, e indica que la probabilidad de que lo que estemos viendo sea fruto del azar es más pequeña que unas pocas partes en diez millones (o que la confianza es del 99,99994%).

Fuente:

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0