Latest Posts:

Mostrando las entradas con la etiqueta protones. Mostrar todas las entradas
Mostrando las entradas con la etiqueta protones. Mostrar todas las entradas

4 de diciembre de 2019

Física: ¿Hay partículas indivisibles?

En física de partículas no solemos hablar directamente de indivisibilidad sino que hablamos de partículas fundamentales o elementales.

Registro del CMS que pudiera ser la firma de la partícula de Higgs. afp
La respuesta en realidad es muy simple porque nosotros a día de hoy sí que conocemos partículas indivisibles. Pero si filosofamos un poco habría que definir qué significa indivisible. ¿Significa que no se pueden romper o que carecen de estructura interna? En física de partículas no solemos hablar directamente de indivisibilidad sino que hablamos de partículas fundamentales o elementales. Para nosotros son partículas fundamentales aquellas en las que a día de hoy, es decir, con el rango de energías que tenemos en este momento, no se ha observado ninguna estructura interna, o lo que es lo mismo, no están compuestas por otras partículas más pequeñas. Eso son partículas fundamentales y serían, por ejemplo, el electrón y otros leptones o los quarks.
Esto que te explico es lo que hemos podido observar hasta el momento con el rango de energías de las que disponemos. Por ejemplo, en aceleradores de partículas como el LHC (Large Hadron Collider) donde yo trabajo, usamos órdenes de energía de teraelectronvoltios, es decir un billón de electronvoltios. Un electronvoltio (eV) es una unidad que correspondería a la energía necesaria para mover un electrón dentro de una diferencia de potencial de un voltio. Estaríamos hablando de cantidades de energía que traducido a longitudes de onda son del orden de 10-18 metros. Es decir podemos detectar algo tan pequeño como eso, 10-18 metros, que realmente es tan pequeño que está dentro de la escala subatómica.

Con estas energías tan altas lo que hacemos en el acelerador de partículas es colisionar haces de protones, estos haces de protones son partículas que no son fundamentales porque están constituidas por otras partículas, los quarks que son los que al final colisionan entre sí. Podríamos decir que con nuestro “microscopio electrónico de protones” en el LHC y los rangos de longitud de onda de los que podemos disponer en este momento no nos permiten observar una estructura interna de lo que para nosotros son las partículas elementales o indivisibles. Eso es lo que estudiamos, a lo que llamamos el modelo estándar de física de partículas que explica las partículas fundamentales y sus interacciones.

Hasta el momento sí hay una serie de partículas indivisibles que son estos electrones y quarks que están divididos en tres familias y que curiosamente no tenemos ni idea de por qué son tres. Además hay mucha variedad de masas pero solo la primera familia de estas partículas, los electrones, los quarks up y los quarks down son los que forman la materia ordinaria, es decir la materia de la que está hecho todo lo que conocemos. El resto de partículas indivisibles que hemos detectado, como los muones y otro tipo de quarks, tienen que ser creados en el laboratorio o a raíz de rayos cósmicos que atraviesan la atmósfera y dejan este tipo de muones o de partículas que nos llegan a nosotros.

Esto es lo que conocemos a día de hoy. Pero las personas que investigamos en física de partículas tenemos la puerta abierta a que cuando aumentemos el rango de energías que utilizamos pueda descubrirse que estas que ahora consideramos indivisibles o fundamentales no lo son en realidad sino que estén compuestas por otras que todavía no podemos observar porque no contamos con la energía suficiente. No lo sabemos. Pero igual que en el siglo XIX se pensaba que el átomo era indivisible, nosotros ahora pensamos que el electrón y los quarks lo son también, aunque no podemos estar completamente seguros.

Bárbara Álvarez González es doctora en Física Experimental de Partículas e investigadora en la Universidad de Oviedo e ICTEA (Instituto de Ciencias y Tecnologías Espaciales de Asturias).

14 de abril de 2013

Electricidad I - Carga eléctrica



Como anunciamos hace unos días, hoy empezamos una mini-serie sobre electricidad, en la que trataremos de establecer unos conceptos básicos que nos permitan construir cosas más complejas en un segundo bloque, y que nos sirvan de referencia en otros artículos en general. A lo largo de esta primera aproximación a la electricidad, mi objetivo es doble; por un lado, responder conceptualmente a las preguntas más fundamentales acerca de los fenómenos eléctricos y, por otro, desterrar algunas de las nociones erróneas sobre electricidad que muchas veces tenemos en la cabeza. En este primer bloque, por lo tanto, nos interesan más los conceptos que las fórmulas, y habrá sólo las imprescindibles.

Aunque en este caso no sea tan útil como, supongo, lo será en otros, ésta es la “ficha” del bloque, para que sepas a qué atenerte cuando lo leas (esto parece la descripción de un paquete de software en Linux, pero bueno):

  • Nivel: Básico
  • Bloques en los que se basa: Ninguno
  • Bloques que se basan en él: Ninguno
(Cuando haya bloques que se basen en éste iremos actualizando las categorías).

A lo largo del bloque, de vez en cuando te encontrarás con texto dentro de cuadros de tres colores: azul, amarillo y verde. El texto de cualquier cuadro es un “extra”, que no es necesario leer para seguir el curso del bloque. Los cuadros azules son experimentos, en los que te sugerimos pequeñas experiencias acerca de lo que estás leyendo. Los cuadros amarillos son ampliaciones, en las que encontrarás enlaces a otros artículos o textos externos en los que leer más cosas acerca de algún aspecto concreto. Los cuadros verdes son desafíos que se responden más adelante en el bloque. Puede tratarse de preguntas para que razones, problemas numéricos, demostraciones o cualquier otro tipo de cosa que requiera que des una respuesta, para que compruebes lo mucho (o poco) que has aprendido hasta ese momento.

Ya sé que, a algunos, mucho de lo que diga os resultará conocido a lo largo del bloque en general, y especialmente en este artículo. Si es así, puede que siga siéndote útil, no tanto para entender, sino para explicar la electricidad. Mucho me temo que, a menudo, quienes la explicamos utilizamos ejemplos que confunden más que aclarar las cosas, y no hacemos el suficiente énfasis en aspectos importantes. Pero, si esto te resulta demasiado básico, siempre puedes esperar al siguiente bloque. Eso sí, si consigues terminar el bloque sin aprender absolutamente nada nuevo, me como el sombrero.

Si, por el contrario, o nunca has aprendido electricidad o nunca la entendiste cuando te la explicaron, tengo que pedirte algo diferente. En primer lugar, aunque no partamos de la base de que sepas cosas, es necesaria una buena dosis de concentración y de esfuerzo para razonar según lees y comprender los conceptos que se explican, de modo que no esperes leerte esto de un tirón y ser un experto en nada. No se adquiere conocimiento sin esfuerzo. Mi recomendación es que te leas el artículo tranquilamente, dejando los cuadros amarillos para una segunda lectura… y, cuando termines, que te lo leas de nuevo, incluidos los cuadros amarillos (aunque no tienes por qué leer los enlaces que allí se mencionan). Y, desde luego, que no tengas el menor rubor en preguntar las dudas que aún te queden.

Dicho esto, empecemos a establecer nuestros cimientos.



Electricidad

¿Qué es la electricidad? La respuesta a esa pregunta es más difícil de lo que pudiera parecer en principio. En Física, desde luego, no existe ninguna magnitud con ese nombre, y no emplearemos esta palabra en el bloque para referirnos a nada concreto. En general, podríamos decir que la electricidad es un conjunto de fenómenos físicos en los que desempeña un papel fundamental la carga eléctrica pero eso probablemente haga que cualquier lector sagaz arquee la ceja, porque no está realmente definiendo nada. 

Tenemos que ir más allá, y hablar de qué es la carga eléctrica… y para eso tampoco hay una respuesta concreta y sencilla, aunque todos sepamos en uno y otro caso a qué nos estamos refiriendo.


Naturaleza de la carga eléctrica

En Física, el término carga se emplea para denotar varias cosas diferentes, pero casi todas ellas tienen varias cosas en común al nivel más fundamental: suele tratarse de una propiedad de las partículas, cumple ciertas leyes de conservación y existe algún tipo de simetría, y está siempre asociada a una fuerza fundamental de la Naturaleza. Sé que todo esto intimida, y por eso he dicho que no es una pregunta fácil de responder. Si estás empezando con esto y quieres una respuesta fácil, sáltate el cuadro amarillo y ya volverás a él más adelante pues, como he dicho antes, no es necesario en absoluto para entender este artículo.


La carga de color y la carga eléctrica
Una carga diferente de la eléctrica, y de la que hemos hablado antes en El Tamiz, es la carga de color o simplemente color, asociada a la interacción nuclear fuerte. Como cualquier fuerza fundamental de la Naturaleza, la interacción fuerte está mediada por un bosón, en este caso al gluón. Como recordarás si leíste aquellos artículos, existen varios colores diferentes; las partículas subatómicas pueden tener unos colores u otros, y existe un bosón (el gluón, en este caso) que transmite una fuerza que ejercen, y notan, las partículas con carga de color. Las partículas sin color (como el electrón, por ejemplo) no notan esta fuerza.

La carga eléctrica, a veces simplemente llamada carga porque es la que más notamos y la que más aparece en la vida cotidiana, cumple las mismas condiciones: se trata de una propiedad de las partículas subatómicas, existen distintos tipos (en este caso dos, de los que hablaremos en un momento), y está asociada a un bosón, el fotón, que media una fuerza, la fuerza electromagnética, que notan aquellas partículas que tienen carga eléctrica.

El problema es que, para cualquier carga en Física, la definición es algo así como una pescadilla que se muerde la cola: es una propiedad de las cosas que puede tenerse de varios tipos o no tenerse, y las partículas que la tienen interaccionan unas con otras mediante una fuerza determinada. De modo que, al final, lo que de verdad determina cualquiera de estas cargas, incluida la eléctrica, es la fuerza a la que están asociadas. Podríamos definir la carga eléctrica como algo así:

La carga eléctrica es la propiedad de las partículas que ejercen y sufren la interacción electromagnética.
Hay dos tipos de cargas eléctricas diferentes. Dicho en términos de la fuerza electromagnética, existen dos fuentes diferentes, y dos reacciones distintas, ante esa fuerza. Tradicionalmente, se ha llamado a estos dos “sabores” de la carga eléctrica carga positiva y carga negativa… y esto, como tantas otras cosas relacionadas con ella, ha llevado a mucha confusión (en parte, porque el concepto de carga eléctrica apareció en Física bastante antes de que conociéramos la mecánica cuántica).

Pero no hay nada positivo en la “carga positiva”, y nada negativo en la “carga negativa”. Todo está en nuestra cabeza. Se trata de una manera de mirar la carga que es muy útil matemáticamente, y hace de nuestras fórmulas algo más simple de lo que serían si empleásemos otros convenios diferentes, pero eso es todo. Siempre que trates de aferrarte a conceptos como éstos, recuerda: las fórmulas están en tu cabeza, y son la forma que tenemos de tratar de predecir el comportamiento de las cosas. Las fórmulas no están en las cosas, son una construcción de nuestro intelecto.

Es decir, que existen dos tipos de cargas que cumplen ciertas simetrías, y punto. Podríamos, por ejemplo, llamar a la carga del electrón “carga positiva” y a la del protón “carga negativa”, cambiar el signo en varias de nuestras fórmulas, y no cambiaría absolutamente nada (excepto que, si no nos ponemos todos de acuerdo, sería difícil comprendernos unos a otros al hablar de la carga eléctrica). Pero la carga de color debería ser un signo de que podemos ir aún más allá.

Podríamos llamar a uno de los dos tipos de carga “carga verde” y a la otra “carga roja”, y aprender electricidad utilizando esos conceptos. Al utilizar fórmulas, la cosa se complicaría bastante, pero conceptualmente no habría problema alguno. De hecho, es una ventaja en cierto sentido, porque elimina algunos de nuestras ideas preconcebidas sobre la electricidad, y tal vez te abra la mente a ideas, o maneras de ver las cosas, nuevas. La idea de hacer esto no es mía ni mucho menos; la primera vez que leí sobre ello fue en la excelente página de William J. Beaty, Red and Green “Electricity”.

De modo que, aunque estoy seguro de que “sabes” que el electrón “tiene carga negativa” y el protón “positiva”, permite que, por ahora, utilicemos este convenio de colores para desterrar ideas preconcebidas, y que te diga lo siguiente: la carga eléctrica es la propiedad de las cosas que notan, y ejercen, la fuerza electromagnética, y existen dos tipos de carga eléctrica, la roja y la verde. Los electrones, por ejemplo, tienen carga roja, y los protones tienen carga verde (los equivalentes de la carga negativa y positiva tradicionales respectivamente, claro).

Los dos tipos de carga cumplen una cierta simetría, son como las dos caras de una misma moneda: se comportan de modos opuestos ante la interacción electromagnética. Por ejemplo, si un cuerpo tiene la misma cantidad de carga roja que verde, no nota la fuerza electromagnética “en total”. No es que no la note en absoluto: su carga roja sufrirá una fuerza determinada, y su carga verde otra igual pero opuesta, ya que son simétricas, y en total –salvo que pasen cosas extrañas, de las que hablaremos luego– el cuerpo no parece ser afectado por la fuerza cuando lo miramos “desde fuera”.

Lo mismo sucede al ejercer esa fuerza electromagnética sobre otras cosas: el cuerpo que tiene igual cantidad de ambas cargas sí ejerce fuerzas electromagnéticas sobre cualquier cosa con carga. Pero, una vez más, si su carga roja “empuja”, su carga verde “tira”, con lo que la carga que sufra esas fuerzas en general no parecerá sentir nada, ya que ambas se compensarán. Por eso, cuando decimos que algo no tiene carga eléctrica, lo que realmente queremos decir es que tiene la misma cantidad de carga roja que de carga verde. Es decir, ambos tipos de carga están en equilibrio.

Un ejemplo relativamente sencillo: el neutrón. Suele enseñarse en el colegio que el neutrón “no tiene carga” y punto. Y, efectivamente, un neutrón que entra en un campo magnético o en un campo eléctrico parece no sentir absolutamente ninguna fuerza, ¡pero sí la siente, sólo que varias veces! La cuestión es que, aunque no suela mencionarse en la escuela, un neutrón no es una especie de canica subatómica sin carga: está compuesto de partículas más simples. Aunque para este artículo no son importantes sus nombres ni la mayor parte de sus propiedades, esas partículas que forman el neutrón (de una manera similar a como los protones, electrones y neutrones forman el átomo) se llaman quarks, de los que hay varios tipos diferentes.
El neutrón está formado por tres de estos quarks: dos de ellos son del tipo down (esto no es importante) y tienen carga roja (esto sí lo es). El tercero es del tipo up, y tiene carga verde que vale el doble de la de los otros dos rojos. En total, existe un equilibrio en el neutrón entre la carga roja y la verde y, como resultado, decimos que el neutrón “no tiene carga”, y todos nos entendemos, pero no olvides lo que eso significa de verdad: que ambas cargas están en equilibrio entre sí, porque hay la misma cantidad de roja que de verde.


Neutrones, protones y quarks
El Tamiz tiene una serie, Esas maravillosas partículas, en la que recorremos muchas de las partículas fundamentales conocidas. Entre ellas hablamos precisamente del neutrón, el electrón, el protón y los quarks, sus tipos y propiedades, de modo que puedes leerla para saber más sobre ellos, aunque no sea necesario para entender esta entrada.


Desde luego, aquí puedes ver ya por qué utilizamos los nombres “positiva” y “negativa” para ambos tipos de carga: así podemos trabajar matemáticamente con ambos tipos “opuestos” de modo que la carga del neutrón sea -1 (de un quark rojo) -1 (del otro) +2 (del verde con el doble de carga) = 0. Pero la razón de que no hayamos empezado así es que, al ver ese “0″, parece que no hay nada en el neutrón, cuando eso es una mentira tremenda, ¡claro que hay cargas! Eso sí, ¿cómo pensar en el equivalente de ese “0″, de esa cancelación de ambos tipos de cargas opuestas, en nuestro sistema de colores?

Empecemos a dibujar cargas rojas y verdes, pero con una peculiaridad: cuando tengamos cargas de ambos colores superpuestas, lo haremos de color negro. Ese color negro, por tanto, será el equivalente gráfico del “0″ de ahí arriba. Una partícula negra, por tanto, será una partícula con la misma cantidad de carga roja que verde, y no notará aparentemente ninguna fuerza electromagnética, es decir, “no tendrá carga” en el lenguaje habitual. Imagina que los quarks que forman el neutrón (dos down rojos con la mitad de carga que otro up verde) son éstos, dibujados de un tamaño proporcional a su carga:




Si juntamos los dos quarks rojos con el verde…




Formamos, por fin, el neutrón:




Que es, evidentemente, negro, porque rojo y verde, al superponerse en nuestro sistema de colores, forman el negro… pero no es neutro porque no tenga cargas. Algo diferente sucede, por ejemplo, con el fotón, que no tiene carga, pero no porque esté compuesto de cosas más simples con cargas de distintos colores, sino simplemente porque no la tiene. Y soy consciente de que, visto “desde lejos”, no se nota la diferencia. Pero esto es importante para entender a qué nos referimos cuando decimos que un objeto macroscópico “tiene carga eléctrica”.

Aunque vayamos lentos, permite que “construya” un protón de manera similar. El protón está formado por dos quarks up y uno down, es decir, en nuestro código de colores, dos verdes grandes como el de ahí arriba y uno rojo pequeño:




Al unir los tres…





Obtenemos un protón que, al contrario que el neutrón, no es completamente negro ni mucho menos:




El electrón, por su parte, es (hasta donde sabemos) una partícula fundamental, no formada por otras más simples, y su carga es, en nuestros términos, roja, y tiene un valor tres veces mayor que la de un quark down rojo del neutrón, es decir, en nuestros dibujos, un tamaño de tres cuadrados:




Cuando se unen un protón y un electrón para formar un átomo, éste es el resultado:




Y lo que se tiene entonces es un átomo de hidrógeno (el elemento de un protón en el núcleo), que es neutro:




Esta manera de ver el átomo “negro” es bastante útil cuando se lo mira desde lejos, porque ambas cargas están en equilibrio, pero en la realidad existen los dos tipos de carga en él (la positiva (verde) en el núcleo y la negativa (roja) alrededor de él). Si miras el átomo de cerca puedes ver, eléctricamente hablando, algo así (no está a escala ni mucho menos):




Pero, dado que la materia que nos rodea está compuesta de átomos, al mirarla desde lejos también suele ser “negra” como la hemos dibujado antes, es decir, un solapamiento casi total de cargas rojas y verdes. Es decir, nos parece que no notamos la carga de los objetos. Fíjate en que no digo “no notamos la carga”, porque ¡desde luego que la notamos!, pero no la reconocemos como lo que es. De eso hablaremos en un momento, cuando discutamos sobre la Ley de Coulomb.

En el resto del bloque alternaremos la nomenclatura tradicional (positiva/negativa) con la que hemos empleado en este epígrafe (verde/roja); utilizaremos la segunda, sobre todo, cuando nos sirva para desterrar alguna idea preconcebida causada por la nomenclatura normal. Mi recomendación: en uno u otro caso, intenta traducir en tu cabeza a la nomenclatura contraria, por si una de las dos te ayuda a comprender mejor una cuestión.

Lea el artículo completo en:

El Tamiz

27 de febrero de 2013

La NASA propone tener un reactor nuclear en cada hogar

Los científicos del Centro de Investigación Langley de la NASA estiman que en el futuro sería posible instalar un reactor nuclear en casa en lugar del calentador de agua ya que será suficientemente pequeño y seguro. 


Este tipo de reactor no usa fisión, proceso en el que un núcleo pesado se divide en dos o más núcleos pequeños liberando una enorme cantidad de energía, que se usa en las actuales plantas nucleares. Tampoco se basa en la fusión, proceso de la unión de varios núcleos atómicos de carga similar que forman un núcleo más pesado. Se trata de reactores de reacciones nucleares de baja energía (LENR, por sus siglas en inglés) también conocidos bajo el nombre de reactores de fusión fría. 

La fusión fría es un nombre genérico dado a cualquier reacción nuclear de fusión producida a temperaturas y presiones cercanas al ambiente, muy inferiores a las necesarias normalmente para la producción de reacciones termonucleares (millones de grados Celsius), utilizando equipamiento de relativamente bajo costo y un reducido consumo eléctrico para generarla. Los primeros intentos de conseguirla ascienden a finales de la década de los ochenta, pero a día de hoy no se ha probado definitivamente que la fusión fría sea un proceso físicamente posible. 

Sin embargo el jefe del grupo de investigación, Joseph Zawodny, asegura que su equipo tiene una solución innovadora para conseguir el resultado. Propone procesar el níquel para que pueda contener el hidrógeno de la misma forma que una esponja contiene agua. 

El hidrógeno se ioniza, es decir, cada átomo de hidrógeno se despoja de su electrón y se queda solo con el protón. Luego hacen que los electrones del metal oscilen todos juntos de tal manera que los miles de millones de electrones transfieren la energía electromagnética que tienen almacenada a unos cuantos de ellos. De este modo, el grupo 'privilegiado' de electrones recibe energía suficiente para fusionarse con los protones a su lado (con los iones de hidrógeno) y formar neutrones ultralentos. Los núcleos de los átomos del metal 'capturan' estos neutrones de inmediato (en otras palabras, los absorben) y, gracias a que esta absorción hace extremadamente inestable a los núcleos, se lanza una reacción en cadena que transforma el níquel en cobre y libra la energía útil. 

Los investigadores subrayan que este tipo de energía es más limpia que los combustibles tradicionales. Los reactores de LENR producen energía "sin los peligros de la ionización radioactiva y sin producir basura nuclear" y pueden usarse en los sistemas de transporte e infraestructura. El jefe científico del Centro de Investigación Langley de la NASA, Dennis Bushnell, estima que un 1% del níquel extraído cada año podría cumplir con los requisitos energéticos del mundo con tan solo una cuarta parte del costo del carbón.

Fuente:

Actualidad RT

15 de febrero de 2013

¿Qué es lo que hace a un elemento radioactivo?

Plutonio

"Despegar" los componentes atómicos es lo que produce radioactividad.

La radioactividad es el resultado del quiebre del núcleo de un átomo.

Los núcleos atómicos están formados de protones cargados positivamente que se repelen entre ellos, "pegados" juntos por neutrones sin carga.

Neutrones y protones pueden transformarse espontáneamente en otras partículas y el resultado de la pérdida de "pegamento" desencadena una desintegración nuclear y radioactividad.

Fuente:

BBC Ciencia

29 de enero de 2013

El protón es más pequeño de lo establecido

No es fácil medir el radio del protón, porque los quarks que lo componen no dejan de interaccionar. Aun así, la comunidad científica ha fijado unos valores con los datos de complicados métodos de medición, pero los resultados difieren si se usan otras técnicas. Un equipo europeo ya apuntó hace unos años que el protón es más pequeño de lo establecido y ahora lo vuelve a confirmar con un nuevo estudio que publica Science.

“El electrón es una partícula como un punto, cuyo tamaño se ha medido en menos de 10-20 m, pero el protón, por el contrario, es una partícula compuesta de otras más pequeñas y fundamentales: los quarks”, recuerda Aldo Antognini, del Instituto Max Planck de Óptica Cuántica (Garching, Alemania).


Protón Crédito: Patrick Spiers

“Los quarks –dos up y un down por cada protón– se mueven e interactúan de forma muy dinámica entre ellos y el torbellino que forman es el que da lugar al tamaño del protón”, explica a SINC el investigador.

Antognini y otros colegas europeos y de EE UU presentan esta semana en Science un estudio que señala que el protón es más pequeño de lo que se cree. Los resultados confirman lo que el mismo equipo ya publicó en Nature en 2010: “El protón parece ser 0,00000000000003 milímetros menor de lo que pensaban los investigadores”.

En concreto, el denominado Committee on Data for Science and Technology (CODATA) establece un radio de carga para el protón de entre 0,87 y 0,88 femtómetros (1 femtómetro son 10-15 m), mientras que los nuevos resultados lo reducen a 0,84 femtómetros. El radio de carga eléctrica es la extensión media de la ‘nube’ que generan los quarks –que están cargados– al moverse.

Las diferencias parecen insignificantes, pero pueden tener repercusiones físicas “serias”, según los expertos, ya que sugieren que quizá haya un vacío en las teorías actuales de la mecánica cuántica. Además, los protones, junto a los neutrones, forman el núcleo atómico de cada átomo que existe en el universo.
El estudio también determina por primera vez el radio magnético del protón –0,87 femtómetros–. Este otro radio es la media de la distribución magnética dentro del protón, que viene dada por los momentos magnéticos de los quarks y las corrientes que producen al moverse.

Para llevar a cabo esta investigación, el equipo ha empleado la espectroscopia láser del hidrógeno muónico. El hidrógeno es el elemento más simple que existe, con un protón y un electrón, aunque en el experimento se sustituye este último por un muón –con carga negativa como el electrón pero con una masa 200 veces superior–.

De esta forma se puede medir mejor el protón, analizando determinadas transiciones que se producen en los estados de este hidrógeno ‘exótico’. Antognini ha adelantado a SINC que su grupo tiene previsto investigar también con átomos de helio muónico.

Por su parte, los valores establecidos por CODATA se basan en otras técnicas: espectroscópica del átomo de hidrogeno –el normal, no muónico– y cálculos de electrodinámica cuántica (QED, por sus siglas en inglés) para analizar la dispersión de carga entre el protón y el electrón.

Algunos investigadores consideran que la interpretación de los resultados de cada método de medición puede estar detrás de las discrepancias. En cualquier caso, los científicos siguen debatiendo cuál de todas estas técnicas es la mejor para encajar las piezas del denominado ‘puzle del radio del protón”. El objetivo final, descubrir el tamaño exacto de esta partícula esencial en el funcionamiento del cosmos.


Referencia bibliográfica: A. Antognini, M. Diepold, T.W. Hänsch, T. Nebel, J. Vogelsang, R. Pohl et al. “Proton Structure from the Measurement of 2S−2P Transition Frequencies of Muonic Hydrogen”. Helen S. Margolis. “How big is the proton?” Science, 24 de enero de 2013.
Fecha Original: 24 de enero de 2013 Enlace Original

Fuente:

Ciencia Kanija

5 de octubre de 2012

Fuerza protón-motriz: el poderoso aliento de la vida

En 1961 el destacado bioquímico británico Peter Mitchell publicó en Nature un artículo en el que dilucidaba uno de los últimos grandes misterios por resolver en el estudio de la respiración celular: el mecanismo gracias al cual la energía extraída a partir de los electrones arrancados a los combustibles orgánicos a lo largo de las cadenas respiratorias se gestiona en el interior de la mitocondria antes de ser almacenada en forma de ATP, cerrando un amplio capítulo de la investigación bioquímica iniciado siglos atrás.

Desde que Lavoisier estableciera la equivalencia de respiración y combustión hacia finales del siglo XVIII, el estudio de este asunto central de la fisiología había recorrido un largo camino plagado de escollos, afanosamente traspuestos gracias al empeño de destacadas figuras de la ciencia. Entre los hitos que lo jalonan, cabe señalar la identificación por Eduard Pflüger en 1870 de cada célula individual como el entorno en el que la respiración tiene lugar, aunque no fue hasta 1912 cuando B.F. Kingsbury precisó la mitocondria como el orgánulo concreto en el que se produce, afirmación que no obstante no fue ampliamente aceptada hasta que Eugene Kennedy y Albert Lehninger, en 1949, demostraron que efectivamente es en la mitocondria donde se encuentran las enzimas respiratorias. Para entonces ya era sabido que la respiración es el proceso, consistente básicamente en la oxidación de glucosa, del que procede la energía necesaria para sostener todas las funciones vitales, y la investigación se orientó a descifrar los mecanismos por los que esta energía es extraída y aprovechada en la realización de trabajo metabólico. Sobre el conocimiento de la hemoglobina y su capacidad para fijar oxígeno, se empezó a buscar un pigmento similar localizado en las células, en las que Charles MacMunn acabó por encontrar rastros de algo que llamó pigmento respiratorio que en realidad, como luego averiguó David Keilin, se trataba de una agregación de tres pigmentos diferentes que denominó citocromos, distinguiéndolos entre sí con las letras a, b y c, ninguno de los cuales fijaba directamente oxígeno como se esperaba. El propio Keilin ideó un primer modelo de cadena respiratoria en el que los átomos de hidrógeno, tras ser arrancados de la glucosa, eran escindidos, y cuyos electrones se hacían circular luego paso a paso por los eslabones de la susodicha cadena (los tres citocromos), extrayendo en cada uno una pequeña y manejable cantidad de energía, hasta que eran cedidos al oxígeno en el último paso para formar agua con la concurrencia del correspondiente protón.

El modelo de Keilin resultó clarividente, pero había que esclarecer un punto fundamental: ¿cómo se almacena esa energía para su posterior empleo en trabajo por todo el organismo?. La respuesta se había estado madurando en estudios paralelos sobre la fermentación, y fue brindada finalmente en 1929 por Karl Lohman con el descubrimiento del ATP, cuyo carácter de moneda energética universal fue paulatinamente estableciéndose en estudios posteriores, como por ejemplo los de Vladimir Engelhardt (quien demostró que la formación de ATP era el objetivo no sólo de los procesos de fermentación sino también de los de respiración), de Severo Ochoa (que cuantificó en hasta 38 las moléculas de ATP que pueden ser generadas a partir de una sola molécula de glucosa mediante la respiración), o los que concluyeron que también la energía cosechada de la luz por los organismos fotosintéticos se invertía en ATP.

El siguiente paso importante fue la caracterización de la ATPasa por parte de Efraim Racker. La ATPasa es un enorme complejo enzimático que canaliza la energía hacia la formación de ATP, y se encuentra embebido en la membrana interna de las mitocondrias junto a las cadenas respiratorias con las que, empero, no mantiene conexión física. Esto sugirió la existencia de algún intermediario desconocido que transfería la energía entre éstas y aquella, y cuya búsqueda se acometió de inmediato aunque resultó rotunda e insistentemente infructuosa. Es necesario advertir que además se habían puesto de manifiesto un par de aspectos curiosos del proceso respiratorio: Por un lado no se apreciaba una relación estequiométrica entre el número de electrones que circulaban por las cadenas y el de moléculas de ATP sintetizadas. Estas varían entre 28 y 38 por molécula de glucosa, empleándose para cada una entre 2 y 3 electrones. La ausencia de números redondos resultaba una característica realmente extraña en una disciplina, la química, en la que todo se expresa en números enteros. Por otro lado se había constatado la necesidad de una membrana, íntegra tanto física como funcionalmente, para que la circulación electrónica y la producción de ATP quedasen acopladas. En una membrana dañada el tránsito electrónico no cesa, pero queda desacoplado de la síntesis de ATP y éste no se produce, disipándose la energía extraída en forma de calor.

En este contexto irrumpió Mitchell, dedicado a la sazón al estudio del transporte activo de sustancias a través de membranas bacterianas. Había llegado a comprender que este transporte generaba un gradiente de concentración entre ambos lados de esas membranas, y la existencia de un gradiente supone el establecimiento de un potencial que eventualmente puede ser usado como fuerza motriz. A partir de estas ideas básicas Mitchell aventuró su teoría del acoplamiento quimiosmótico, una idea revolucionaria que conmocionó la bioquímica. Según su modelo, los átomos de hidrógeno extraídos de la glucosa en la matriz mitocondrial se descomponen en sus elementos, protones y electrones, entrando estos últimos en la cadena de transporte respiratorio. La energía que rinden en su “caída” hacia el aceptor final, el oxígeno, está acoplada a bombas que transportan los protones hacia el espacio intermembrana y que se localizan, como se averiguó posteriormente, en tres de los cuatro complejos que componen la cadena. Al ser la membrana impermeable a ellos, se crea un gradiente a su través que es de doble naturaleza: eléctrica (dada la carga positiva del protón) y química (gradiente de pH), constituyente de la llamada fuerza protón-motriz cuyo encauzamiento a través de la maquinaria ATPasa impulsa la síntesis de ATP.

Con este modelo quedaron explicadas la necesidad de una membrana íntegra, la relación no estequiométrica ni fija entre moléculas de glucosa procesada y de ATP obtenido y el fracaso en la identificación del fantasmal intermediario de enlace entre las cadenas respiratorias y el complejo ATPasa; el hecho es que sencillamente no existe tal; el espacio intermembrana es una represa en la que se almacenan protones contra gradiente de concentración aprovechando la energía que mueve los electrones hacia el oxígeno, y las ATPasas son las compuertas por las que se libera controladamente su fuerza contenida acoplándola a la producción de ATP, utilizado luego en cualquier lugar donde se precisa realizar trabajo. La aceptación general de esta brillante teoría no fue ni mucho menos inmediata. Muy al contrario, se recibió con sobrada incredulidad cuando no con abierta hostilidad en la comunidad científica, que tardó aún muchos años en asumirla como un descubrimiento; uno de los más importantes de la ciencia del pasado siglo para no pocos científicos hoy en día, y que acabó por granjearle a su genial autor el premio Nobel de 1978, además del reconocimiento final de sus colegas. Numerosos detalles del sistema quedaban por desvelar, así diversos aspectos del mecanismo de transporte electrónico de las bombas de protones o de la maquinaria ATPasa, muchos de los cuales se conocen ya al detalle. Esta última, por ejemplo, ha sido desentrañada pieza por pieza (se trata en definitiva de un portentoso nano-dispositivo mecánico-químico), y se ha medido con precisión la diferencia de potencial eléctrico a ambos lados de la membrana, que arroja un valor de 150 milivoltios a lo largo de un espacio de unos 5 nanómetros, que es el grosor de la membrana. Haciendo una simple conversión de escala, este potencial sería equivalente a 30 millones de voltios por metro; literalmente, disponemos de la energía del rayo en cada una de nuestras células.

Pero incluso ahora, la quimiosmosis plantea cuestiones de gran calado y trascendencia más allá de los límites de la bioquímica. A lo largo de los últimos años se ha puesto de manifiesto su carácter universal; toda vida conocida utiliza la quimiosmosis de una forma o de otra, hecho que ha llevado a algunos científicos a preguntarse por qué un mecanismo que, desde un punto de vista digamos convencional puede considerarse rocambolesco y contraintuitivo, parece ser inherente a la vida misma. Las posibles respuestas, serán materia de nuestra próxima entrega.

Tomado de:

E-Ciencia

10 de agosto de 2011

Descubierto un cinturón de radiación de antiprotones alrededor de la Tierra

Los físicos han sospechado desde hace mucho tiempo que los antiprotones deben quedar atrapados en un cinturón alrededor de la Tierra. Ahora, lo han encontrado.

La Tierra está constantemente bombardeada por partículas de alta energía conocidas como rayos cósmicos. Estas partículas están generadas por el Sol y otras fuentes más lejanas. (La fuente de los rayos cósmicos de mayor energía es aún un misterio).

Cinturones de Van Allen © by Kanijoman


Las partículas normalmente son protones, electrones y núcleos de helio que cuando colisionan con los núcleos de la atmósfera superior de la Tierra pueden producir lluvias de partículas hijas. Estas lluvias pueden ser tan extensas que se observan fácilmente desde tierra.

Los astrónomos se dieron cuenta hace tiempo de que estas colisiones deben producir antiprotones, de la misma forma que sucede en los aceleradores de la Tierra. Pero esto genera una interesante pregunta:¿Qué pasa con los antiprotones una vez que se han creado?

Claramente, muchas de estas antipartículas deben aniquilarse cuando se encuentran con partículas de materia común. Pero algunos astrónomos siempre han sospechado que los antiprotones restantes deben quedar atrapados por el campo magnético de la Tierra, formando un cinturón de radiación de antiprotones.

Ahora, los astrofísicos dicen que han descubierto finalmente este cinturón de antiprotones propuesto hace tiempo.

En 2006, estos chicos lanzaron una nave espacial llamada PAMELA a la órbita baja de la Tierra, específicamente para buscar antiprotones en los rayos cósmicos.

Pero como la mayor parte de naves en la órbita baja de la Tierra, PAMELA debe pasar a diario a través de la Anomalía del Atlántico Sur, una región donde los Cinturones de Radiación de Van Allen se acercan a la superficie de la Tierra. Aquí es donde las partículas energéticas tienden a quedar atrapadas. Por tanto, si algunos antiprotones quedaran capturados en esa mezcla, aquí es donde PAMELA debería encontrarlos.

Ahora el equipo de PAMELA ha analizado los 850 días de datos, buscando sólo en los momentos en los que la nave estaba en la Anomalía del Atlántico Sur (aproximadamente un 1,7 por ciento de este tiempo).

Quién lo iba a decir, estos chicos encontraron 28 antiprotones. Eso es aproximadamente tres órdenes de magnitud más de lo que se esperaría encontrar en el viento solar, demostrando que las partículas realmente están atrapadas y almacenadas en este cinturón.

Esto constituye “la fuente más abundante de antiprotones cerca de la Tierra”, dice el equipo de PAMELA.

La Anomalía del Atlántico Sur es bien conocida por ser un completo engorro. Debido a las partículas de alta energía que se acumulan ahí, el Telescopio Espacial Hubble debe desconectarse cuando pasa a través de la misma varias veces al día; y la Estación Espacial Internacional tiene un refuerzo extra para proteger a los astronautas de sus efectos.

El descubrimiento de un cinturón adicional de antiprotones no tendrá mucho impacto en el peligro que representa – el número de antiprotones es minúsculo en comparación con los electrones y protones ahí atrapados.

Pero siempre es interesante que las predicciones teóricas se confirmen. Esto es buena ciencia en funcionamiento.

Fuente:

Ciencia Kanija

21 de julio de 2011

La evidencia experimental de la existencia de los gluones

Brian Dorney, “In a World Without Color, Why do I believe in Gluons?,” Quantum Diaries, July 9th, 2011, nos recuerda la evidencia experimental que hay sobre la existencia de los gluones, las partículas elementales responsables de la interacción fuerte entre quarks. Los leptones (electrones y neutrinos) no tienen carga de color y no interaccionan fuertemente. Una ley de la Naturaleza prohíbe que las partículas con carga de color sean observadas de forma directa. Por ello, tanto los gluones como los quarks, las únicas partículas elementales con carga de color, se “hadronizan” formando chorros de partículas sin color (mesones y bariones que son partículas compuestas de quarks y gluones). Estos chorros permiten una observación indirecta de las partículas “coloreadas” y gracias a ellos los físicos experimentales dicen que observan quarks y gluones por doquier en los grandes aceleradores de partículas (como el LHC en el CERN y del Tevatrón en el Fermilab).

Esta tabla presenta todas las partículas elementales descubiertas hasta el momento (faltan las antipartículas de quarks y leptones). Los seis quarks están coloreados (la carga de color es algo parecido a la carga eléctrica pero tiene tres valores posibles en lugar de dos); como hay tres cargas de color posibles, hay en realidad 18 quarks diferentes. Igual que la carga eléctrica puede ser positiva o negativa, hay dos tipos de cargas de color llamadas color (rojo, verde, y azul) y anticolor (antirrojo, antiverde, y antiazul). Los gluones (“g” en la tabla) tienen un color y un anticolor de forma simultánea. Los quarks cambian de color cuando absorben y emiten gluones. La regla a recordar es fácil, el color se conserva; por ejemplo, un quark verde absorbe un gluón rojo-antiverde y se transforma en un quark rojo.

En la naturaleza, de forma libre, solo existen partículas neutras respecto a la carga de color (se dice que los quarks y gluones están confinados); estas partículas neutras se llaman hadrones. Hay dos tipos de hadrones, los mesones, partículas formadas por un quark y un aniquark (el quark tiene un color y el antiquark el anticolor correspondiente) y los bariones, partículas formadas por tres quarks cada uno con un color diferente (los tres colores se suman y dan como resultado un valor neutro de la carga de color). Cuando en el LHC del CERN una colisión protón-protón produce un par de quarks top de alta energía que se emiten en direcciones opuestas, estos se desintegran de forma casi instantánea en cascada de partículas de menor energía que se van desintegrando de forma sucesiva formando un chorro de partículas que se mueven en la dirección de movimiento del quark original; estas partículas son hadrones (mesones y bariones) y por eso se dice que el quark se ha “hadronizado.” La suma total de la energía y momento de estos chorros permite determinar la energía y momento del quark original que los produjo. Para un físico ver un chorro de partículas es casi lo mismo que ver un quark ya que sus propiedades se deducen de las del chorro.

El gluón, igual que el fotón, es un bosón vectorial, es decir, una partícula con espín 1; los quarks y los leptones son fermiones y tienen un espín semientero 1/2. Como hay tres valores para la carga de color, hay ocho gluones diferentes. ¿Por qué ocho y no nueve? Se podría pensar que los gluones deberían ser nueve: rojo-antiverde, rojo-antiazul, verde-antirrojo, verde-antiazul, azul-antirrojo, azul-antiverde, rojo-antirrojo, verde-antiverde y azul-antiazul. Sin embargo, hemos dicho que los gluones están cargados y las combinaciones tipo color-anticolor del mismo color (en cursiva) no están permitidas, pues darían un gluón neutro. Estas tres combinaciones en cursiva solo se pueden dar en combinaciones lineales a pares (superposiciones cuánticas); de las tres posibles combinaciones lineales solo se pueden dar dos de ellas, por que la tercera es combinación lineal de las otras dos. Por ejemplo, solo se pueden dar las combinaciones (rojo-antirrojo) - (verde-antiverde) y (rojo-antirrojo) - (azul-antiazul). Por cierto, vale cualquier combinación lineal posible y la habitual en la mayoría de los libros es (rojo-antirrojo) - (verde-antiverde) y (rojo-antirrojo) + ((verde-antiverde) - 2 (azul-antiazul), pero la razón es un mero convenio (que corresponde a usar las así llamadas matrices de Gell-Mann).

La evidencia experimental de los gluones es anterior al LHC del CERN y se obtuvo en el LEP (Large Electron-Positron Collider) del CERN. En este acelerador colisionaban electrones y sus antipartículas los positrones, que no tienen carga de color. La aniquilación de un par electrón-positrón produce un fotón que a su vez puede desintegrarse en un par quark-antiquark, como muestra el diagrama de Feynman de arriba, izquierda. Estos dos quarks libres se observan como chorros tras su hadronización (desintegración en partículas compuestas de menor energía que son neutras para la carga de color). La ley de conservación del momento angular dice que si los dos leptones colisionan de frente, con un ángulo de 180 grados, los dos quarks también deben dirigirse en direcciones opuestas y los dos chorros que resultan también tienen un ángulo de 180 grados; esta señal es muy fácil de detectar. Así se hizo en LEP y si así se hace ahora en los dos grandes experimentos del LHC, tanto CMS como ATLAS; abajo tenéis un evento con dos chorros en direcciones opuestas observado en el experimento CMS.

La explicación de esta figura es sencilla. Las dos líneas negras son la estimación de las direcciones originales de los quarks que produjeron los dos chorros y están separadas un ángulo de 180 grados. En el centro de la figura se encuentra el punto de colisión, donde colisionaron un protón contra otro protón en direcciones opuestas. El círculo interior (líneas en azul y punteadas) corresponde a los detectores de silicio que trazan pixel a pixel las trayectorias tridimensionales de las partículas cargadas que forman cada chorro; la línea punteada es una estimación del ángulo (en realidad en 3D es un cono) de cada chorro. La trayectoria de estas partículas cargadas está curvada por los campos magnéticos en los que se encuentran los detectores; la curvatura permite determinar el momento (energía) de la partícula, así como el signo de su carga (en la figura las partículas con carga positiva se curva en la dirección del reloj y las que tienen carga negativa en dirección antihoraria). Fuera del círculo central aparecen histogramas en rojo y en azul que corresponden, respectivamente, a los calorímetros electromagnéticos (ECal), que detectan electrones y positrones, y a los calorímetros hadrónicos (HCal), que detectan hadrones (mesones y bariones). Cada histograma representa la cantidad de energía depositada en los calorímetros y permiten reconstruir con precisión la energía de las partículas del chorro. Los rectángulos rosados distribuidos de forma circular en el exterior son los calorímetros que detectan muones (ya que estas partículas a alta energía recorren grandes distancias debido a la dilatación del tiempo de la teoría de la relatividad que incrementa su vida media). Esta figura muestra un evento en el que no se han producido muones.

Retornando a los diagramas de Feynman de más arriba (el de la derecha presenta el proceso e+e- → qqg). Puede ocurrir que uno de los dos quarks en los que se desintegra el fotón emita un gluón. Como esta partícula también está coloreada, se producirá un chorro hadrónico y el evento en lugar de tener dos chorros, presentará tres chorros, pero no cualesquiera. La ley de conservación del momento obliga a que estos tres chorros se encuentren en el mismo plano, lo que hace que estos eventos presenten una señal muy distintiva. Si el gluón tiene suficiente energía, los tres chorros estarán bien separados y permitirán estudiar las propiedades del gluón con precisión. Gracias a este tipo de eventos se confirmó de forma definitiva la existencia del gluón a finales de los 1970 y principios de los 1980 en el experimento PETRA (Positron Electron Tandem Ring Accelerator) en DESY (Deutsches Elektronen Synchrotron), Alemania [1]. Las propiedades del chorro asociado al gluón coincidían con las predichas por la teoría de los quarks y gluones, llamada cromodinámica cuántica (QCD). Una propiedad importante del gluón es su espín, que es la unidad, a diferencia del espín de un quark que es semientero; si se suponía que el tercer chorro en estos eventos era un chorro debido a un quark se obtenía un desacuerdo con los experimentos porque el espín total de las partículas del chorro no daba el valor correcto [2]. El colisionador LEP confirmó el descubrimiento de los gluones y la validez de la QCD fuera de toda duda. Arriba os he presentado un evento con tres chorros (tri-jet) observado en CMS del LHC, que muestra dos chorros debidos a los quarks (ambos hacia abajo) y un chorro asociado al gluón (hacia arriba).

Los físicos (y los buenos aficionados) interesados en la historia de la física, disfrutarán con el artículo [3] de Paul Söding (DESY) sobre el descubrimiento del gluón, que incluye figuras de los eventos originales y detalla las técnicas utilizadas para verificar que el gluón realmente había sido descubierto.

[1] D.P. Barber, et. al., “Discovery of Three-Jet Events and a Test of Quantum Chromodynamics at PETRA,” Phys. Rev. Lett. 43: 830-833, 1979.

[2] P. Duinker, “Review of e+e- physics at PETRA,” Rev. Mod. Phys. 54: 325-387, 1982 (copia gratis en DESY).

[3] P. Söding, “On the discovery of the gluon,” Eur. Phys. J. H. 35: 3-28, 2010 (gratis en la revista).

Fuente.

Francis Science News

11 de julio de 2010

El increible protón menguante

Domingo, 11 de julio de 2010

El increible protón menguante

Diminutos cambios en el radio del protón tienen enormes implicaciones.

El protón parece ser 0,00000000000003 milímetros más pequeño de lo que los investigadores habían pensado anteriormente, de acuerdo con un trabajo publicado en el último ejemplar de Nature



La diferencia es tan infinitesimal que podría llevar a pensar que para nadie, ni siquiera para los físicos, tendría importancia. Pero las nuevas medidas podrían indicar que hay un hueco en las teorías existentes de la mecánica cuántica. “Es una discrepancia muy seria”, dice Ingo Sick, físico en la Universidad de Basilea en Suiza, que ha tratado de reconciliar el hallazgo con cuatro décadas anteriores de medidas. “Hay algo realmente mal en algún sitio”.

Los protones están entre las partículas más comunes. Junto con sus homólogos neutros, los neutrones, forman los núcleos de cada átomo del universo. Pero a pesar de esta apariencia cotidiana, los protones siguen siendo un misterio para los físicos nucleares, dice Randolf Pohl, investigador del Instituto Max Planck de Óptica Cuántica en Garching, Alemania, y autor del artículo de Nature. “No comprendemos gran parte de su estructura interna”, comenta.

Desde lejos, los protones parecen un pequeño punto de carga positiva, pero en una inspección más cercana, la partícula es más compleja. Cada protón está formado de partículas fundamentales menores, llamados quarks, y esto hace que su carga esté aproximadamente extendida sobre un área esférica.

Los físicos pueden medir el tamaño de un protón observando cómo los electrones interactúan con un protón. Un único electrón orbitando un protón puede ocupar sólo ciertos niveles discretos de energía, los cuales se describen a través de las leyes de la mecánica cuántica. Algunos de esos niveles de energía dependen en parte del tamaño del protón, y desde la década de 1960, los físicos han realizado cientos de medidas del tamaño del protón con una asombrosa precisión. Las estimaciones más recientes, realizadas por Sick usando datos anteriores, colocan el radio del protón alrededor de los 0,8768 femtometros (1 femtometro = 10-15 metros).

Pequeña maravilla

Pohl y su equipo han llegado a un número menor usando un primo del electrón, conocido como muón. Los muones son unas 200 veces más pesados que los electrones, lo que los hace más sensibles al tamaño del protón. Para medir el radio del protón usando el muón, Pohl y sus colegas dispararon muones desde un acelerador de partículas a una nube de hidrógeno. Los núcleos de hidrógeno constan de un único protón, orbitado por un electrón. A veces los muones reemplazan al electrón y orbitan al protón. Usando lásers, el equipo midió los niveles de energía muónica relevantes con una precisión muy alta y encontraron que el protón era aproximadamente un 4% menor de lo esperado.

Esto podría sonar a que no es mucho, pero la diferencia es tanta respecto a anteriores medidas que los investigadores descartaron los dos primeros experimentos en 2003 y 2007. “Pensamos que nuestro sistema de lásers no era lo bastante bueno”, dice Pohl. En 2009, observaron más allá del estrecho rango en el que esperaban ver el radio del protón y vieron la inconfundible señal.

“¿Qué nos da esto? No lo sé”, dice Sick. Dice que cree que el nuevo resultado es correcto, pero que no hay una forma obvia de hacerlo compatible con las medidas de años anteriores.

“Está muy claro que hemos pasado algo por alto”, concuerda Carl Carlson, físico teórico del College of William & Mary en Williamsburg, Virginia. La posibilidad más intrigante es que partículas anteriormente no detectadas estén cambiando la interacción entre el muón y el protón. Tales partículas podrían ser los ‘supercompañeros’ de las partículas existentes, como se predicen en una teoría conocida como supersimetría, la cual busca unificar todas las fuerzas fundamentales de la física, excepto la gravedad.

Pero, comenta Carlson, “lo primero es revisar los cálculos existentes con mucho cuidado”. Podría ser que se haya cometido un error, o que las aproximaciones realizadas usando los cálculos cuánticos actuales simplemente no sean lo bastante buenas. “Ahora mismo, apostaría mi dinero en que se hace alguna corrección”, señala. Aquí es donde pasaré también mi tiempo de investigación durante el próximo mes”.

Fuente:

Ciencia Kanija

1 de diciembre de 2009

LHC logra un récord



Lunes, 01 de diciembre de 2009

LHC logra un récord

Ver los Archivos de Conocer Ciencia:

¿Qué es el LHC? Primera Parte

¿Qué es el LHC? Segunda Parte

¿Qué el el LHC? Tercera Parte


 LHC o Gran Colisionador de Hadrones del CERN se ha convertido hoy en elacelerador de partículas más potente del mundo después de que esta mañana sus dos haces de protones hayan alcanzado una energía de 1,18 teraelectronvoltios (TeV). Hasta ahora el récord lo ostentaba el colisionador Tevatron del Fermi National Accelerator Laboratory (Fermilab) de Estados Unidos, que en 2001 consiguió los 0,98 TeV. 

“Es fantástico, pero seguimos trabajando paso a paso porque todavía queda mucho por hacer antes de que el año que viene comiencen a llegar los primeros descubrimientos físicos. Mantendré el champán en frío hasta entonces”, ha declarado el Director General del CERN, Rolf Heuer 

Los nuevos avances llegan tan sólo 10 días después de que 
el LHC volviera a ponerse en marcha, lo que demuestra el “excelente funcionamiento” de la máquina. El 20 de noviembre se inyectaron los primeros haces de partículas en el Gran Colisionador y en los días posteriores los operadores de la máquina restablecieron la circulación de los haces en el interior del anillo. La operación se realizó de forma alterna, primero en una dirección y luego en la otra, a una energía de inyección de 450 GeV y aumentando la duración del haz de forma gradual hasta aproximadamente 10 horas. El 23 de noviembre circularon por primera vez dos haces juntos y los cuatro grandes detectores del LHC registraron los primeros datos de colisión

“Estaba aquí hace 20 años cuando encendimos el anterior 
acelerador de partículas más importante del CERN, el LEP”, señala el Director de Investigación y Tecnología Steve Myers. “Pensé que se trataba de una máquina fantástica de manejar, pero ésta es algo más. Lo que nos llevaba días o semanas con el LEP, lo estamos haciendo en horas con el LHC. De momento todo augura que será un programa de investigación fabuloso”.

Fuente:

28 de noviembre de 2009

De la botella al big bang: el viaje de un protón en el LHC


Megapost de fin de semana

Sábado, 28 de noviembre de 2009

De la botella al big bang:

El viaje de un protón en el LHC

Partiendo del doblaje casero de una animación del CERN titulada The Bottle to Bang, explicaremos un poquito más en profundidad lo que ocurre con los protones desde que salen de la “botella” de hidrogeno hasta que los hacemos colisionar a velocidades cercanas a la de la luz. La historia de este viaje nos permitirá conocer un poquito mejor cómo funciona el LHC, que es lo que ocurre en cada uno de los dispositivos. Dividiremos el viaje en las 6 etapas que usa el CERN en twitter –@cern – cuando retransmiten en directo los experimentos.

 

Enlace al video original The Bottle To Bang @ CERN

 

La apariencia insignificante de unas botellas de gas de hidrogeno comprimido marcan inicio  de la cadena de aceleradores de partículas más larga y más potente del mundo, culminando en el espectacular Gran Colisionador de Hadrones del CERN.

 

Primer a Etapa – Obtener los protones

Los átomos de hidrogeno se inyectan con un flujo preciso y controlado en la cámara de alimentación del acelerador lineal de partículas del CERN, el Linac 2.

 

El protio

El isótopo más común del átomo de hidrogeno es el protio, formado por únicamente un protón y un electron. Los isótopos son los diferentes tipos de átomos de un mismo elemento que difieren en el número de neutrones; en este caso, el protio es el único isótopo estable que no tiene neutrones de la naturaleza. El protón, como ya sabemos, tiene una carga positiva y pertence al del grupo de los hadrones.

Obtenemos los protones al extraer los electrones de cada átomo de hidrogeno,  dejando libres los núcleos, en este caso, los protones. Aprovechando la carga positiva de los protones, podemos ejercer una fuerza sobre ellos mediante campos eléctricos.

A partir de este momento puede empezar el viaje que los llevará a tomar parte en colisiones de gran energía similares a las que sucedieron al Big Ban.

 

Segunda Etapa – La aceleración lineal inicial

Los protones son acelerados en el Lineac 2 hasta que alcanzan un tercio de la velocidad de la luz.

linac2

El Lineac 2

 

Debido a su velocidad, poco práctico seguir con una aceleración lineal porque necesitaríamos kilómetros y kilómetros de acelerador. Por ese motivo, esta etapa más bien es un “pequeño empujón” que se le da a los protones para lo que viene a continuación.

 

Tercera Etapa – Aceleración en el PSB y el PS

Cuando salen del Lineac 2, se dirigen al Proton Synchroton Booster (PSB), un pequeño acelerador encargado de amplificar la intensidad y acelerar el haz antes de que sea injectado en elSincrotrón de Protones.

Como hemos comentado antes, a partir de ahora los aceleradores son circulares, en el caso del PSB con una longitud de circunferencia de 157 metros. Para conseguir que la intensidad del haz de protones sea máxima, se divide el paquete de protones inicial en cuatro, cada uno de los cuales circulara por uno de los cuatro anillos idénticos, montados uno encima de otro, que forman el PSB.

En esta etapa, los protones circulan dando vueltas por los anillos, acelerados por un campo eléctrico que los empuja mediante pulsos en un punto concreto, del mismo modo que empujamos un niño en un columpio cada vez que este alcanza un cierto punto. A parte de este campo eléctrico que va acelerando los protones, también hay un conjunto de electroimanes que ejercen una fuerza sobre los protones perpendicularmente al sentido del movimiento con la finalidad de mantener a los protones en el interior del anillo.

El PSB recibe los protones del Lineac 2 con una energía de 50 MeV y los acelera hasta alcanzar el91,6 % de la velocidad de la luz, con una energía de 1,4 GeV. Momento en el cual, se recombinan los paquetes de cada anillo y se vuelve a formar un solo haz compacto que se deja fluir hacia el Sincrotrón de Protones.

El Sincrotrón de Protones del CERN es un acelerador toroidal de partículas con 628 metros de circunferencia y por el cual los protones circulan durante 1,2 segundos, alcanzando un 99,9 % de la velocidad de la luz. En esta etapa se supera un punto de transición, un punto dónde la energía que añadimos al protón ya no puede traducirse en un incremento de velocidad puesto que se estánacercando al límite de la velocidad de la luz. Por otro lado, esta energía añadida se traduce en un aumento de la masa en los protones. En resumen, los protones no pueden ir más rápido, por lo que se vuelven más pesados.

La microscópica energía cinética de cada protón se mide en electron-voltios; que es la energía cinética que adquiere un electron al ser acelerado por una diferencia de potencial en el vacio de un voltio [wiki es] y equivale a 1,60217653E-19 Julios. En este momento, la energía de cada protón alcanza los 25 giga-electro-voltios (GeV). Para que nos hagamos una idea, 50 keV es la energia que tienen los electrones que producen los Rayos X de una radiografia. Cómo hemos comentado antes, cómo los protones no pueden ir más rápido, estos han incrementado su masa y ahora pesan 25 veces más que cuando estaban en reposo.

Para más información sobre este fenómeno, os recomiendo leer el artículo sobre el Principio de Equivalencia entre Masa y Energía de fisica-relatividad.com.ar. Yo aún no tengo los suficientes conocimientos para poder entenderlo del todo y explicarlo, pero espero que en un par de años los tenga y pueda hacer un artículo sobre ello.

Cuarta Etapa – Preparando los haces para el LHC

Los paquetes de protones se encaminan ahora hacia la cuarta etapa: El Súper Sincrotrón de Protones (SPS), un acelerador formado por un anillo de 7 km de circunferencia. EL SPS está diseñado específicamente para aceptar protones con la energía que tienen en el anterior Sincrotrón y prepararlos para lanzarnos en el LHC, aumentandoles la energía hasta los 450GeV.

El Gran Colisionador de Hadrones – Large Hadron Collider, está situado a unos 100 metros bajo el suelo entre la cordillera del Jura y los Alpes y con sus 27 km de circunferencia ocupa los dos lados de la frontera entre Francia y Suiza.

Esta formado por dos conductos que se cruzan en las cuatro cámaras dónde se sitúan los detectores para los 6 experimentos que tiene el LHC:

 

  • Punto 1 : ATLAS – A Toroidal LHC ApparatuS – cuyo propósito es detectar y medir las propiedades de cualquier proceso o partícula que se produzca en las colisiones; 
    y el 
    LHCf – Large Hadron Collider forward – que medira el número y la energia de los piones neturales [wiki en es] producidos por el colisionador.
  • 0911195_01

    http://atlas.web.cern.ch/

     

  • Punto 2 : ALICE – A Large Ion Collider Experiment – optimizado para estudiar las colisiones de iones pesados, ya que el LHC también está preparado para colisionar nucleos de Plomo.
  • ALICE-SetUp-NewSimple

    http://aliceinfo.cern.ch/

     

  • Punto 5 : CMS - Compact Muon Solenoid – que se encarga de buscar evidencias de lasupersimetría (SuSy) o de dimensiones extra (como predice la Teoria de Cuerdas) y de encontrar el famoso bosón de Higgs [wiki en es]
    y el 
    TOTEM - Total Cross Section, Elastic Scattering and Diffraction Dissociation.

    http://cms.web.cern.ch/

  •  

  • Punto 8 : LHCb - Large Hadron Collider beaty – que estudiará la física del quark abajo (quark b), entre uno de los objetivos está medir los parámetros de las violaciones de la simetria CP[wiki en es] que se produzcan en las desintegraciones de los hadrones como el protón que contentan el quark b.
  • http://lhcb.web.cern.ch/

     

Quinta Etapa – Recorriendo 27 km 11.000 por segundo en el LHC

Mediante un lanzador muy sofisticado, vamos inyectando durante media hora haces de protones por cada uno de los dos conductos que forman el LHC, por uno en sentido horario y por el otro, de manera sincronizada, en sentido anti horario.

Para situarnos un poco, el CERN divide el recorrido se divide en 8 etapas. Por ejemplo, en sentido horario se distribuyen de la siguiente manera:

Punto 2 (ALICE experiment) -> 3 -> 4 -> Punto 5 (CMS) -> 6 -> 7 -> Punto 8 (LHCb) -> Punto 1 (ATLAS)

Al final, nos encontramos con 2808 paquetes circulando por los 27 km de anillo. Durante este tiempo, el LHC sigue añadiendo energía a los protones en cada revolución mediante los pulsos del campo eléctrico alcanzando una velocidad tan cercana a la de la luz, que recorren los 27 km 11000 veces por segundo! El 99,9% , una velocidad de 297000 km/s (27 km/v x 11000 v/s) frente a los 299792,458 km/s de la velocidad de la luz.

Al final, los protones que corren por el LHC tienen una energía de 3,5 TeV pero llegarán a 7 TeV en 2011 como hemos comentado antes; y pesan 7000 veces más que cuando estaban en reposo! En este momento, la fuerza magnética que necesitamos para mantener los haces en el interior del anillo es tan grande que cerca de 12000 amperios recorren cada uno de los electroimanes y para esto necesitamos temperaturas muy bajas para que se los imanes se vuelvan superconductores. Por ese motivo, LHC se encuentra exactamente a 1,9 K de temperatura, a 2 grados por encima del cero absoluto (la temperatura mínima teóricamente posible), es decir -271,25 grados centígrados. La temperatura más baja que se ha alcanzado en el laboratorio es de 0,5 K, lograda por el MIT en el 2003. Frío, más frío que el espacio exterior y que se ha logrado usando helio líquido. El problema del año pasado fue, precisamente, una fuga de helio del sistema de refrigeración y se ha necesitado un año para repararlo y volver a enfriarlo hasta 1,9 K.

Sexta Etapa – Bang!

collision1


0911200_02-A4-at-144-dpi

 

Ahora llega el momento de provocar la colisión: Un imán desvía la trayectoria de los haces de protones para que se encuentren de frente y se produzca la colisión en cada una de las cámaras dónde se encuentran los detectores. Actualmente, los protones circulan con 3,5 TeV de energía cada provocando una colisión de 7 TeV; por lo que podemos decir que ahora mismo el LHC funciona a medio rendimiento, y no será hasta el 2011 cuando veremos de lo que es capaz, con colisiones de 14 TeV!

En estas colisiones se reproducen algunos de los eventos que ocurrieron instantes después de el Big Bang. Los protones, están formados quarks (dos quarks arriba y un quark abajounidos por gluones (los portadores de la fuerza nuclear fuerte) y al colisionar en el LCH, las huellas que dejan los restos de partículas que se forman es analizada por una red de computación diseñada específicamente por el CERN.

El fujo de datos que generar los detectores se estima en unos 300Gb/s, que llegarán a unas computadoras que se encargarán de buscar los “evento interesante” de esta gran cantidad de datos, dejando un flujo filtrado de unos 300Mb/s. Se espera que el proyecto genere unos 27 Terabytes de datos al día, más unos 10 Terabytes de resumen, que se enviarán a varias instituciones de alrededor del mundo. Si quieres ver en tiempo real el flujo de datos de los detectores, puedes visitar la web dedicada a la red de computadores del LHC

En la primera fila de procesamiento (Fila 0) encontramos el centro de cómputo del CERN, con una red de 10Gb/s; en la segunda fila (Fila 1), se encuentran 11 instituciones académicas de Europa,Asia y Norteamérica. La tercera fila de procesamiento (Fila 2) esta conectada la primera a través de las Redes Nacionales de Investigación y educación – NREN [wiki en] y esta formada por otras150 instituciones situadas alrededor del mundo.

Por otra parte, desde casa también podemos participar en la red de computación distribuidaLHC@Home [wiki en | web/] cediendo parte de la capacidad de procesamiento de nuestros ordenadores personales para la simulación de colisiones, lo que permitirá a los científicos del CERN obtener datos para poder “calibrar” el LHC y mejorar las colisiones.

Se espera que estos datos nos permitan comprender mejor el nacimiento de nuestro universo, su evolución, su comportamiento actual y el futuro que nos depara.

Enlaces interesantes

Lo que realmente busca el LHC | Artículo de NewScientist.com traducido por CienciaKanija

Fuente:

RTFM

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0