Latest Posts:

Mostrando las entradas con la etiqueta respiracion. Mostrar todas las entradas
Mostrando las entradas con la etiqueta respiracion. Mostrar todas las entradas

15 de septiembre de 2013

La Energía Química y la Combustión

Energía química

La humanidad ha utilizado desde su existencia reacciones químicas para producir energía. Desde las más rudimentarias, de combustión de madera o carbón, hasta las más sofisticadas, que tienen lugar en los motores de los modernos aviones o naves espaciales.

Las reacciones químicas, pues, van acompañadas de un desprendimiento, o en otros casos de una absorción, de energía.

¿Cuánta energía puede producir una reacción química? ¿De dónde procede esa energía? ¿Cómo puede medirse y calcularse?

Energía química almacenada
 
La energía es una propiedad inherente a la materia. La materia posee energía almacenada que se debe, por una parte, a la posición o a la altura de un cuerpo (energía cinética) y, por otra, a la naturaleza o las sustancias de que esté hecho el cuerpo al que se hace referencia, ya que a cada elemento o compuesto le corresponde cierta cantidad de energía química almacenada a la que se le denomina contenido energético.

Cuando se lleva a cabo un fenómeno químico, éste va acompañado por una manifestación de energía, ya sea que haya absorción o desprendimiento de ella, debido a la energía química que almacenan las sustancias
Lo anterior significa que, cuando la energía química almacenada de los reactivos es mayor que la energía de los productos, hay un excedente de energía que se libera, pues la energía se mantiene constante, es decir, no se crea ni se destruye.

Por ejemplo, al reaccionar metano (gas combustible) con el oxígeno (gas comburente), hay desprendimiento de energía como producto, porque el contenido energético del metano y del oxígeno es mayor al que posee el dióxido de carbono y el agua, que son las sustancias que se forman durante la reacción:

energiaquimica001

Por lo tanto, si, al reaccionar, una o varias sustancias producen otras con mayor contenido energético, habrá absorción de energía por parte de los reactivos, como lo muestra la siguiente reacción de fotosíntesis:

energiaquimica002


Las sustancias de gran contenido energético se utilizan como combustible, ya que al reaccionar con el oxígeno se genera una gran cantidad de energía en forma de luz y calor.

Alimentos
 
Los alimentos también almacenan energía química y mediante éstos los organismos obtienen la energía necesaria para vivir, es decir, para formar y renovar tejidos, mantener su temperatura, realizar trabajo muscular, etcétera.

Los alimentos contienen nutrientes tales como los carbohidratos, los lípidos (grasas), las proteínas y las vitaminas, a los cuales se les denomina biogenésicos (por ser de origen orgánico); otros nutrimentos de origen inorgánico son el agua y los minerales como el sodio, el fósforo, el azufre, el cloro, el cobalto, el manganeso y el zinc.

Los organismos utilizan los alimentos para obtener de ellos energía y nutrimentos; estos últimos son descompuestos para ser utilizados en el crecimiento y restauración celular. A este proceso de transformación se le denomina metabolismo.

La energía que se puede metabolizar a partir de los carbohidratos es de 4 kcal por gramo; de los lípidos, de 9 kcal por gramo y, de las proteínas, de 4 kcal por gramo. Se recomienda que en una dieta adecuada se ingieran alimentos que proporcionen aproximadamente 3.000 kcal por día (según la actividad física que se desempeñe), que contengan, de manera balanceada, todos los nutrimentos. Por ejemplo: 75 g de proteínas, 80 g de lípidos y de 400 a 500 g de carbohidratos. Además, se debe considerar que el agua es muy importante como nutrimento y que los seres humanos necesitan de 2 a 2,5 litros  por día, aunque los alimentos también proporcionan una cantidad proporcional de ella que se conoce como agua metabólica.
Es necesario recordar que los organismos obtienen energía a través de un mecanismo autotrófico o heterotrófico.

El mecanismo autotrófico es propio de las plantas, algas y cianobacterias que, a partir de dióxido de carbono y energía luminosa del Sol, producen oxígeno y glucosa. De esta última se forman moléculas más complejas.

El mecanismo heterotrófico es propio de organismos como los de los animales; éstos ingieren el alimento previamente elaborado (carbohidratos, lípidos, etcétera), sus células lo oxidan mediante la respiración y con ello producen CO2, vapor de agua y otras sustancias de desecho.

Eficiencia de un motor de combustión interna
 
Las reacciones químicas de combustión de compuestos de carbono con oxígeno para liberar energía son bien conocidas por todos. Ocurren, por ejemplo, al quemar madera o gas en el horno o bien cuando la bencina de un auto proporciona la energía necesaria para su funcionamiento. Estas reacciones son demasiado violentas y poco controladas para que los organismos vivientes las puedan usar dentro de una célula.

Para que un motor funcione, éste requiere de combustible que, al reaccionar, desprende energía. En el caso del motor de combustión interna, la energía del combustible se transforma en potencia y movimiento, de tal forma que la fuerza producida sirve para hacer funcionar un autobús, una hélice y un generador, entre otras cosas.

El motor de cuatro tiempos es el motor de combustión interna más conocido, y su funcionamiento se lleva a cabo en cuatro etapas, las cuales son:

Primer tiempo (admisión): tiene lugar la penetración de una mezcla de combustible y aire a la válvula de admisión, al bajar el pistón.

Segundo tiempo (compresión): el pistón sube y comprime la mezcla al reducir el volumen.

Tercer tiempo (explosión): al encender la bujía, ésta provoca la explosión de la mezcla; en este momento el pistón es empujado y baja.

Cuarto tiempo (expulsión): los gases producidos por la explosión son expulsados a través de la válvula de expulsión; en este momento el pistón baja.

energfiaquimica003

Representación esquemática del funcionamiento de un motor de cuatro tiempos.

La combustión

La combustión es una oxidación violenta, la cual, a su vez, desprende energía en forma de calor y luz. Los principales productos de ella son: el CO2, el vapor de agua y la energía.

Ejemplos de este proceso son la combustión del gas de la estufa, de la leña, y del carbón. En todos estos fenómenos se presenta una oxidación y, por lo tanto, también tiene lugar una reducción, ya que cuando se produce la combustión de una de estas sustancias, el oxígeno se reduce ganando electrones y el elemento que se oxida los pierde.

En el organismo de los seres vivos existen procesos de "combustión orgánica", los cuales se denominan así por la similitud que guardan con los productos obtenidos. Sin embargo, no son propiamente combustiones, pues no son, oxidaciones violentas.

Un ejemplo de éstas es la degradación de la glucosa que, durante la respiración celular, produce CO2, H2O y energía, de acuerdo con la siguiente reacción:

energiaquimica004

En esta ecuación se observa que cada átomo de oxígeno "gana" 2 electrones (se reduce) y el carbono "pierde" 4 electrones (se oxida).

energiaquimica005

La oxidación del gas butano es una combustión inorgánica, ya que no se efectúa en los seres vivos. Su reacción es la siguiente:

energiaquimica006

Energía química en el organismo

Las células requieren energía para llevar a cabo la mayoría de los procesos biológicos. La energía proviene de los alimentos que ingerimos.

El oxígeno presente en el aire que respiramos se combina con los átomos de carbono e hidrógeno presentes en las moléculas de los alimentos liberando energía y formando después de numerosos pasos dióxido de carbono y agua.

La fuente original de alimentos son las plantas verdes. Estas son capaces de utilizar la energía solar, dióxido de carbono del aire y agua para crear moléculas orgánicas complejas formadas mayormente por carbono, hidrógeno y oxígeno y ricas en energía.

Estas moléculas son de tres tipos básicos: carbohidratos, lípidos y proteínas. Cualquiera de estos grupos puede combinarse con oxígeno y generar la energía necesaria para la vida.

Los animales no pueden generar carbohidratos, lípidos o proteínas a partir de las simples moléculas de dióxido de carbono, agua y usando la energía solar. En cambio, se alimentan de plantas que ya han hecho este trabajo o de otros animales que ya se han devorado plantas.

Bioquímica de la respiración celular

La conversión de los nutrientes en energía ocurre durante los llamados procesos de catabolismo. La moneda fundamental de energía dentro de las células es una molécula denominada ATP. La estructura de esta molécula es tal que contiene uniones químicas capaces de liberar mucha energía al partirse.

energiaquimica007

Dos ejemplos fundamentales de catabolismo son:
 
1. Fermentación.
2. Respiración.

La fermentación es un proceso de generación de energía que no depende de la presencia de oxígeno. Los productos finales del proceso son moléculas orgánicas pequeñas como el etanol. Este es el proceso mediante el cual se generan las bebidas alcohólicas.

La respiración es un proceso que sí requiere de oxígeno y que genera mayores cantidades de energía mediante una oxidación completa liberando dióxido de carbono y agua. La energía proviene en definitiva de los alimentos que comemos. Estos son sometidos a diversos procesos enzimáticos que los convierten en moléculas más pequeñas que forman la base de los mecanismos generadores de energía.

Tomado de:

Profesor en Línea

5 de febrero de 2013

¿Cómo respiran los pollitos dentro del huevo?


Pollito y cáscara de huevo

Los pulluelos respiran dentro del huevo a través de una membrana llamada alantoides.


Aunque los embriones de ave no tienen pulmones activos, la cáscara de huevo no es hermética y los gases pueden entrar y salir.

Dentro del huevo, una extensión del tubo digestivo con forma de salchicha forma una membrana especial llamada alantoides.

Está cubierta por una fina red de vasos sanguíneos que dejan entrar el oxígeno en la sangre y dejan salir el dióxido de carbono.

El alantoides es una de las adaptaciones que permitieron a los animales trasladarse desde los océanos a la tierra.

Los huevos de peces y anfibios no tienen esta membrana, pero las aves y los reptiles sí.

En los mamíferos, el alantoides se desarrolla aún más para formar el cordón umbilical.

Fuente:

BBC Ciencia

Lea en los archivos de Conocer Ciencia:

La forma de los huevos: Geometría y Evolución

Cocer un huevo tiene ciencia

Como obtener unos huevos más gordos

Por qué flotan los huevos pasados 

Diez cosas sobre el huevo que quizá no sepas

15 de enero de 2013

¿Por qué no se agota el oxígeno del planeta?



por-que-no-se-agota-el-oxigeno-del-planeta-1.jpg

El oxígeno es uno de los elementos químicos más importantes en todo lo relacionado a la vida humana y al ambiente en que vivimos, ya que es, por ejemplo, el principal componente de la corteza terrestre, el tercer elemento más abundante del universo, uno de los principales componentes químicos del cuerpo humano (al estar también presente en la masa del agua) y uno de los dos componentes más importantes de la atmósfera; básicamente, lo que respiramos.

Por lo tanto, siendo el oxígeno un elemento tan importante es fundamental también su presencia en el planeta y, aunque muchas veces esta presencia pareciera estar amenazada, se tiene la certeza científica de que el oxígeno no se está agotando y que, al igual que desde hace millones de años, sigue constituyendo alrededor del 21 % (más exactamente 20.94 %)de la atmósfera.
Ahora vamos a ver por qué no se agota el oxígeno del planeta.

El oxígeno y la energía

por-que-no-se-agota-el-oxigeno-del-planeta-2.jpg

¿Por qué la presencia del oxígeno parece estar amenazada? Para mantener las formas de vida que el hombre ha desarrollado a lo largo de la historia se necesita energía (para el transporte, la electricidad, el calor, etcétera) y la principal fuente de energía en el mundo son los combustibles fósiles: el petróleo, el carbón y el gas natural; todos ellos fuentes de energía no renovable

En la utilización de estos combustibles fósiles, el proceso de combustión mediante el cual se genera la energía consiste en la utilización del oxígeno molecular presente en el aire (O2) para romper los enlaces de carbono e hidrógeno, que es lo que libera la energía. Al mismo tiempo, los átomos de carbono cargados positivamente que quedan libres, se enlazan con dos átomos de oxígeno negativos, formando dióxido de carbono (CO2). Este proceso, entonces, es el que reduce la cantidad de oxígeno en el planeta, y aumenta la cantidad de dióxido de carbono.

por-que-no-se-agota-el-oxigeno-del-planeta-3.jpg

Producción de oxígeno

Pero si los combustibles fósiles son nuestra principal fuente de energía y se utilizan cada vez más, disminuyendo el oxígeno en la atmósfera, ¿por qué el oxígeno no se agota?

Aquí intervienen otros seres vivos, principalmente las plantas, en cuyo proceso de fotosíntesis realizan un procedimiento inverso al que realizamos nosotros para respirar: mientras nosotros respiramos el oxígeno presente en el aire (y también lo convertimos en energía para nuestro cuerpo), con la fotosíntesis las plantas utilizan CO2 para producir su energía y de esta manera liberan oxígeno al aire.

Estos procesos inversos y complementarios, respiración y fotosíntesis, son una clara muestra del equilibrio ecológico que se produce entre plantas y animales y, como vemos, es la explicación de por qué el oxígeno no se agota. 

por-que-no-se-agota-el-oxigeno-del-planeta-4.jpg

 Algunos científicos han dicho que si se utilizara 1 billón de toneladas de combustibles fósiles el nivel de oxígeno del planeta se reduciría solamente hasta 20.88 %, así que su presencia, esencial para nuestra vida y para el planeta, está asegurada.

De todas maneras, la utilización de combustibles fósiles como fuente de energía sí tiene otras consecuencias muy preocupantes y ya muy analizadas y discutidas en la comunidad científica, como los gases del efecto invernadero y el calentamiento global.


Fuente:

Ojo Científico

27 de noviembre de 2012

¿Por qué no podemos respirar debajo del agua?

Seguramente, lector, se habrá preguntado alguna vez por qué los seres humanos no tenemos la habilidad para respirar bajo el agua, como lo hace Acuamán o el Hombre de la Atlántida, o… los peces. Una de nuestras fuentes de energía diaria es el oxígeno, el cual obtenemos del aire mediante la respiración. Pero en el agua también hay oxígeno, y los peces pueden obtenerlo justamente de allí, ¿así que por qué es que nosotros no? Hagamos un paseo evolutivo para ver cómo es que ha cambiado tanto la respiración.


Tiktaalik roseae

Una interesante pregunta que nos permite remontarnos a unos 400 a 380 millones de años, que es cuando los primeros seres anfibios se expanden fuera del agua. Hasta esos tiempos, sólo las plantas y los insectos habían colonizado la tierra, el resto de la vida animal tenía el océano como única morada desde hacía miles de millones de años. Así es que nosotros los humanos, que somos primates y mamíferos, evolucionamos a partir de aquellos peces que comenzaron a vivir en aguas bajas, y se ayudaban con las aletas delanteras para moverse por el bajo fondo así poder cazar las presas que surcaban la superficie del agua. De esas criaturas surgieron los tetrápodos, primeros reptiles cuadrúpedos de los que evolucionaron todos los animales terrestres, incluyendo a los reptiles, mamíferos y aves.

Volvamos al oxígeno, tan necesario para mantener nuestro cuerpo funcionando. Nosotros lo respiramos a través de la nariz o la boca, luego baja por la tráquea hacia los pulmones, donde se dispersa por los alvéolos, que se encargan de intercambiar gases con las células sanguíneas. Los desperdicios, como el dióxido de carbono, siguen el camino inverso, y son espirados hacia fuera por la boca o la nariz. Los peces hace más o menos lo mismo, pero sólo que no permiten la entrada de aire a su sistema, sino que lo que entra es agua. Esta pasa por sus órganos especializados, las branquias, y allí se extrae el oxígeno, y se descarta el dióxido de carbono.

Son dos sistemas incompatibles. Nuestro sistema respiratorio no está capacitado para poder extraer el oxígeno del agua, ni los peces con branquias pueden hacerlo del aire. Así que, pasamos de preguntarnos por qué no podemos respirar bajo el agua a querer saber ¿cómo sucedió que de unos peces evolucionamos todos los animales que respiran aire hoy en día?

Cuando nosotros los humanos no somos más que un embrión, no somos tan diferentes a un pez. Incluso tenemos unas hendiduras llamadas el arco branquial, situadas a ambos lados de nuestra faringe, es decir la garganta. En los peces, esas hendiduras se abren para formar las branquias por las que pueden respirar el agua, en nosotros los mamíferos esas hendiduras se cierran. Pero en raras ocasiones nacen niños en los que esas hendiduras branquiales no se han cerrado del todo, lo que puede provocarles quistes, y en casos más extremos niños en los que crezcan vestigios de cartílagos similares a las branquias de los peces.

Esos son vestigios de nuestro pasado evolutivo. Hoy en día existen unos peces que respiran como nosotros, y no hablamos de los delfines y ballenas, que no son peces, sino mamíferos, sino que nos referimos a los llamados peces pulmonados. Estos respiran aire, y no agua. Sus antepasados eran parientes de los que dieron origen a los tetrápodos, que comenzaron también a respirar aire, y nos alejaron de la posibilidad de respirar bajo el agua.

Si vieron alguna vez un pez que es sacado del agua, verán que mueve la boca, como queriendo respirar por ella. En cierto modo lo hacen, no están capacitados para aspirar aire como los animales terrestres, pero pueden tragar aire y el tejido del estómago llega a captar algo, muy poco, ya que esos vasos sanguíneos no están capacitados para el intercambio de gases. Los peces de hace 400 millones de años que reptaban por las aguas barrosas comenzaron a tener órganos un poco más eficientes en captar el oxigeno del aire, luego aparecieron los anfibios, que pueden obtenerlo a través de la piel o tragándolo, como hacen las ranas, y más tarde evolucionaron los reptiles, y a partir de ellos las aves y los mamíferos, grupo al que pertenecemos.

Fuente:

Sinapsit

18 de octubre de 2012

Fumar dentro del coche intoxica el aire por encima de los límites recomendados por la OMS

Un estudio ha relevado que fumar en los coches aumenta los niveles de partículas finas contaminantes, muy peligrosas para la salud, superando los límites recomendados por los distintos Ministerios de Sanidad del mundo.



Médicos de Gran Bretaña midieron las concentraciones de este tipo de partículas en coches conducidos por 17 personas, 14 de ellos fumadores, utilizando un monitor electrónico en el asiento trasero.

La investigación aparece en la revista médica británica Tobacco Control.

A los voluntarios se les pidió que tuvieran un comportamiento normal, siguiendo sus hábitos de fumadores o no fumadores, de esta manera se hizo un seguimiento de tres días de los niveles de humo en los coches. De los 104 viajes que se hicieron, con una duración de 27 minutos, 63 estuvieron libres de humo.

En los viajes en los que se fumaba, los niveles de partículas finas fueron de media unos 85 microgramos por metro cúbico, frente a los 25 microgramos por metro cúbico para la contaminación interior establecido por la Organización Mundial de la Salud (OMS).

Incluso cuando el conductor abría la ventana o encendía la ventilación para eliminar el humo, los niveles de partículas todavía estaban por encima del punto de referencia en algún momento durante estos viajes.
El pico promedio durante los viajes de fumadores fue de 385 microgramos por metro cúbico, siendo el más alto de 880. En contraste, los niveles de partículas durante los viajes de no fumadores fueron sólo de 7,4 microgramos por metro cúbico.

El tamaño de estas partículas medidas es inferior a 2,5 micrómetros de diámetro. Estas partículas tan pequeñas se consideran muy peligrosas, ya que se pueden presentar en el pulmón, causando irritación.
Los niños expuestos a estos niveles de partículas finas son propensos a sufrir sus malos efectos en la salud
Dice Sean Semple, encargado del estudio, del Scottish Centre for Indoor Air en la Universidad de Aberdeen .

Hay un número creciente de países en legislar en contra de fumar en los coches, y tales medidas pueden ser apropiadas para evitar la exposición de los niños a estos altos niveles de humo.

En España está prohibido fumar conduciendo, no por la calidad del aire que respiramos, sino por considerarse una peligrosa distracción al conductor.


Fuentes:


5 de octubre de 2012

Si nos pintáramos todo el cuerpo con pintura dorada ¿nos pasaría lo mismo que a la chica de 'Goldfinger'?

 

Una de las imágenes míticas de la saga de James Bond (era Sean Connery, of course) pertenece a la tercera película, estrenada en 1964 bajo el título Goldfinger. Además de estrenar el autómovil Aston Martin DB5, que reaparecería en “Operación Trueno” (Thunderball) y en otras películas como “GoldenEye” y “Casino Royale”, una chica es asesinada de un modo muy original: cubriéndose cada centímetro de su piel con pintura dorada.

La intención es que así su pies sea incapaz de respirar y muera asfixiada. La actriz que interpretaba a la pobre chica dorada era Shirley Eaton, y publicó su autobiografía en el año 2000, a pesar de que corría la leyenda urbana de que había muerto asfixiada durante el rodaje de la escena. De hecho, los productores de la película creyeron conveniente que un médico asistiera al rodaje de la escena y que se dejaran 10 centímetros de piel sin pintar en el abdomen de la actriz, a fin de que la piel pudiera “respirar”.

Pero ¿cuánto hay de cierto en esto? ¿Realmente la piel necesita respirar y si tapamos todos sus poros nos asfixiaríamos?


A pesar de lo gráfico de la secuencia cinematográfico, sería imposible asfixiar de ese modo a una persona, ni con pintura dorada ni con pintura de cualquier otro color. Básicamente porque solo respiramos por la nariz y la boca, no por los poros de la piel. Si acaso, la mujer podría morir de calor, siempre que dejáramos la pintura el suficiente tiempo cubriendo su piel, porque los poros, bloqueados por la pintura, no podrían sudar, que es la forma que tiene nuestro cuerpo de regular su temperatura.

Otra suerte correría el ratón marsupial de Douglas (Smithopsis douglasi), porque es un animal de doce centímetros de longitud que respira por la piel. Él sí que podría haber protagonizado la escena de Goldfinger, aunque no fuese un personaje tan glamouroso (aunque el marsupial no fue descubierto hasta 1998, bastante después del rodaje).

Tal y como explica John Lloyd en El nuevo pequeño gran libro de la ignorancia:
Los ratones marsupiales de Douglas nacen inusualmente poco desarrollados: su período de gestación es de tan solo doce días, y la cría nacida apenas es más larga que un grano de arroz. Por lo tanto, no pueden utilizar los pulmones inmediatamente, así que intercambian el oxígeno y el dióxido de carbono a través de la piel: algo que antes se creía imposible en cualquier mamífero. Los investigadores se dieron cuenta de ello cuando se percataron de que las crías recién nacidas ni respiraban ni estaban muertas.
Pero bueno, Bond es Bond, y se lo perdonamos, como perdonamos que en las novelas de piratas aparezcan tantos mapas con una X señalando el tesoro, a pesar de que no hay mapas así documentados históricamente.

Fuente:

Xakata Ciencia

Fuerza protón-motriz: el poderoso aliento de la vida

En 1961 el destacado bioquímico británico Peter Mitchell publicó en Nature un artículo en el que dilucidaba uno de los últimos grandes misterios por resolver en el estudio de la respiración celular: el mecanismo gracias al cual la energía extraída a partir de los electrones arrancados a los combustibles orgánicos a lo largo de las cadenas respiratorias se gestiona en el interior de la mitocondria antes de ser almacenada en forma de ATP, cerrando un amplio capítulo de la investigación bioquímica iniciado siglos atrás.

Desde que Lavoisier estableciera la equivalencia de respiración y combustión hacia finales del siglo XVIII, el estudio de este asunto central de la fisiología había recorrido un largo camino plagado de escollos, afanosamente traspuestos gracias al empeño de destacadas figuras de la ciencia. Entre los hitos que lo jalonan, cabe señalar la identificación por Eduard Pflüger en 1870 de cada célula individual como el entorno en el que la respiración tiene lugar, aunque no fue hasta 1912 cuando B.F. Kingsbury precisó la mitocondria como el orgánulo concreto en el que se produce, afirmación que no obstante no fue ampliamente aceptada hasta que Eugene Kennedy y Albert Lehninger, en 1949, demostraron que efectivamente es en la mitocondria donde se encuentran las enzimas respiratorias. Para entonces ya era sabido que la respiración es el proceso, consistente básicamente en la oxidación de glucosa, del que procede la energía necesaria para sostener todas las funciones vitales, y la investigación se orientó a descifrar los mecanismos por los que esta energía es extraída y aprovechada en la realización de trabajo metabólico. Sobre el conocimiento de la hemoglobina y su capacidad para fijar oxígeno, se empezó a buscar un pigmento similar localizado en las células, en las que Charles MacMunn acabó por encontrar rastros de algo que llamó pigmento respiratorio que en realidad, como luego averiguó David Keilin, se trataba de una agregación de tres pigmentos diferentes que denominó citocromos, distinguiéndolos entre sí con las letras a, b y c, ninguno de los cuales fijaba directamente oxígeno como se esperaba. El propio Keilin ideó un primer modelo de cadena respiratoria en el que los átomos de hidrógeno, tras ser arrancados de la glucosa, eran escindidos, y cuyos electrones se hacían circular luego paso a paso por los eslabones de la susodicha cadena (los tres citocromos), extrayendo en cada uno una pequeña y manejable cantidad de energía, hasta que eran cedidos al oxígeno en el último paso para formar agua con la concurrencia del correspondiente protón.

El modelo de Keilin resultó clarividente, pero había que esclarecer un punto fundamental: ¿cómo se almacena esa energía para su posterior empleo en trabajo por todo el organismo?. La respuesta se había estado madurando en estudios paralelos sobre la fermentación, y fue brindada finalmente en 1929 por Karl Lohman con el descubrimiento del ATP, cuyo carácter de moneda energética universal fue paulatinamente estableciéndose en estudios posteriores, como por ejemplo los de Vladimir Engelhardt (quien demostró que la formación de ATP era el objetivo no sólo de los procesos de fermentación sino también de los de respiración), de Severo Ochoa (que cuantificó en hasta 38 las moléculas de ATP que pueden ser generadas a partir de una sola molécula de glucosa mediante la respiración), o los que concluyeron que también la energía cosechada de la luz por los organismos fotosintéticos se invertía en ATP.

El siguiente paso importante fue la caracterización de la ATPasa por parte de Efraim Racker. La ATPasa es un enorme complejo enzimático que canaliza la energía hacia la formación de ATP, y se encuentra embebido en la membrana interna de las mitocondrias junto a las cadenas respiratorias con las que, empero, no mantiene conexión física. Esto sugirió la existencia de algún intermediario desconocido que transfería la energía entre éstas y aquella, y cuya búsqueda se acometió de inmediato aunque resultó rotunda e insistentemente infructuosa. Es necesario advertir que además se habían puesto de manifiesto un par de aspectos curiosos del proceso respiratorio: Por un lado no se apreciaba una relación estequiométrica entre el número de electrones que circulaban por las cadenas y el de moléculas de ATP sintetizadas. Estas varían entre 28 y 38 por molécula de glucosa, empleándose para cada una entre 2 y 3 electrones. La ausencia de números redondos resultaba una característica realmente extraña en una disciplina, la química, en la que todo se expresa en números enteros. Por otro lado se había constatado la necesidad de una membrana, íntegra tanto física como funcionalmente, para que la circulación electrónica y la producción de ATP quedasen acopladas. En una membrana dañada el tránsito electrónico no cesa, pero queda desacoplado de la síntesis de ATP y éste no se produce, disipándose la energía extraída en forma de calor.

En este contexto irrumpió Mitchell, dedicado a la sazón al estudio del transporte activo de sustancias a través de membranas bacterianas. Había llegado a comprender que este transporte generaba un gradiente de concentración entre ambos lados de esas membranas, y la existencia de un gradiente supone el establecimiento de un potencial que eventualmente puede ser usado como fuerza motriz. A partir de estas ideas básicas Mitchell aventuró su teoría del acoplamiento quimiosmótico, una idea revolucionaria que conmocionó la bioquímica. Según su modelo, los átomos de hidrógeno extraídos de la glucosa en la matriz mitocondrial se descomponen en sus elementos, protones y electrones, entrando estos últimos en la cadena de transporte respiratorio. La energía que rinden en su “caída” hacia el aceptor final, el oxígeno, está acoplada a bombas que transportan los protones hacia el espacio intermembrana y que se localizan, como se averiguó posteriormente, en tres de los cuatro complejos que componen la cadena. Al ser la membrana impermeable a ellos, se crea un gradiente a su través que es de doble naturaleza: eléctrica (dada la carga positiva del protón) y química (gradiente de pH), constituyente de la llamada fuerza protón-motriz cuyo encauzamiento a través de la maquinaria ATPasa impulsa la síntesis de ATP.

Con este modelo quedaron explicadas la necesidad de una membrana íntegra, la relación no estequiométrica ni fija entre moléculas de glucosa procesada y de ATP obtenido y el fracaso en la identificación del fantasmal intermediario de enlace entre las cadenas respiratorias y el complejo ATPasa; el hecho es que sencillamente no existe tal; el espacio intermembrana es una represa en la que se almacenan protones contra gradiente de concentración aprovechando la energía que mueve los electrones hacia el oxígeno, y las ATPasas son las compuertas por las que se libera controladamente su fuerza contenida acoplándola a la producción de ATP, utilizado luego en cualquier lugar donde se precisa realizar trabajo. La aceptación general de esta brillante teoría no fue ni mucho menos inmediata. Muy al contrario, se recibió con sobrada incredulidad cuando no con abierta hostilidad en la comunidad científica, que tardó aún muchos años en asumirla como un descubrimiento; uno de los más importantes de la ciencia del pasado siglo para no pocos científicos hoy en día, y que acabó por granjearle a su genial autor el premio Nobel de 1978, además del reconocimiento final de sus colegas. Numerosos detalles del sistema quedaban por desvelar, así diversos aspectos del mecanismo de transporte electrónico de las bombas de protones o de la maquinaria ATPasa, muchos de los cuales se conocen ya al detalle. Esta última, por ejemplo, ha sido desentrañada pieza por pieza (se trata en definitiva de un portentoso nano-dispositivo mecánico-químico), y se ha medido con precisión la diferencia de potencial eléctrico a ambos lados de la membrana, que arroja un valor de 150 milivoltios a lo largo de un espacio de unos 5 nanómetros, que es el grosor de la membrana. Haciendo una simple conversión de escala, este potencial sería equivalente a 30 millones de voltios por metro; literalmente, disponemos de la energía del rayo en cada una de nuestras células.

Pero incluso ahora, la quimiosmosis plantea cuestiones de gran calado y trascendencia más allá de los límites de la bioquímica. A lo largo de los últimos años se ha puesto de manifiesto su carácter universal; toda vida conocida utiliza la quimiosmosis de una forma o de otra, hecho que ha llevado a algunos científicos a preguntarse por qué un mecanismo que, desde un punto de vista digamos convencional puede considerarse rocambolesco y contraintuitivo, parece ser inherente a la vida misma. Las posibles respuestas, serán materia de nuestra próxima entrega.

Tomado de:

E-Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0