Latest Posts:

Mostrando las entradas con la etiqueta gravedad. Mostrar todas las entradas
Mostrando las entradas con la etiqueta gravedad. Mostrar todas las entradas

2 de abril de 2019

La NASA pagará 19 mil dólares a voluntarios que pasen dos meses en una cama

Participarán en un estudio sobre los efectos de la ingravidez y deberán realizar todas sus actividades estando acostados.


¿Te gustaría ganar dinero por permanecer echado dos meses? Pues el Centro Aeroespacial Alemán (DLR) llevará a cabo un estudio, financiado la NASA y la Agencia Espacial Europea (ESA), que pagará cerca de 19 mil dólares a las personas que sean seleccionadas para pasar dos meses en una cama. 

Esta investigación estudiará los efectos de la ingravidez (falta de gravedad) en el cuerpo humano y las medidas que se podrán tomar para disminuir el daño en el cuerpo de los astronautas.

En un ambiente de ingravidez, el cuerpo sufre una serie de cambios debido a la poca actividad física, lo que afecta principalmente los músculos y huesos. Además, los fluidos corporales se desplazan hacia la cabeza. De acuerdo al sitio oficial del estudio, esto también sucede con las personas que pasan largo tiempo en cama.

Por ello, para simular condiciones del espacio lo más posible, los participantes deberán estar en una cama con 6 ° de inclinación, detalla la web del DLR.

Los astronautas que viven durante meses en la Estación Espacial Internacional, por ejemplo, buscan contrarrestar los efectos de la falta de gravedad haciendo constante ejercicio, pero ahora la NASA y la ESA buscan además obtener datos sobre los efectos de la gravedad artificialen el cuerpo.

Lea el artículo completo en: El Comercio (Perú)

26 de marzo de 2019

G, el diminuto número sin el que la vida no existiría

Es un número que Newton descubrió, Cavendish valoró y Einstein entendió. 
 
6,67 x 10-¹¹ o 0,000000000067 es un número diminuto pero sin él, la vida, el Universo y todo simplemente no existiría. 

Eso es porque ese número dicta la fuerza de gravedad, esa atracción constante que toda materia ejerce sobre el resto de materia, que es sorprendentemente ubicua pero también increíblemente débil. 

Su potencia se cuantifica con la llamada constante gravitacional, un número conocido sencillamente como G

Y si quieres experimentar su debilidad sólo tienes que levantar los brazos horizontalmente.

Toda la fuerza de la masa de la Tierra hala tus brazos hacia abajo. No obstante, no te cuesta mucho esfuerzo vencerla. 

O piensa en esto.

Piensa que un pequeño imán puede pegarse a la puerta de tu nevera y hasta sostener otras cosas mientras que resiste la fuerza de la gravedad con sólo la del magnetismo.

Sin palabras

Fue debido a su extremada pequeñez que, tras descubrir la Ley de Gravitación Universal, Isaac Newton incluyó G en su ecuación pero no lo pudo calcular. 

Pero un siglo más tarde, un inglés llamado Henry Cavendish se planteó el reto de determinar el valor de G y, por ende, la fuerza de la gravedad. 

Cavendish era un hombre adinerado del Londres del siglo XVIII, un poco excéntrico y quizás triste, pues no tenía muchos amigos. 

No hablaba casi con nadie, ni siquiera con las doncellas que trabajaban en su casa, pues su timidez le impedía hablar con mujeres. Les tenía que dejar mensajes en la mesa del hall para comunicarles cosas como qué le apetecía almorzar.

Así que dedicó toda su vida a la ciencia, sin que ningún otro interés lo distrajera. 

Para encontrar el valor exacto de G, construyó un aparato.

"El aparato es muy simple. Consiste de un brazo de madera de 6 pies de longitud hecho de manera que sea fuerte pero liviano. El brazo está suspendido en posición horizontal con un delgado cable de seda de 40 pulgadas, y de cada extremo cuelga una esfera de plomo de unas dos pulgadas de diámetro.

"Todo está encerrado en una caja de madera, para defenderlo del viento". 


Cerca de las dos bolas que Cavendish menciona, puso otras dos esferas estacionarias, para que hubiera una atracción que retorciera el aparato y la fibra de seda. Añadió un espejo de manera que el movimiento se reflejara en la pared, para verlo mejor.

Esa desviación era proporcional a la fuerza de la atracción gravitacional entre las bolas grandes estacionarias y las pequeñas. 

El problema es que estas últimas se podían mover con cualquier vibración, algo que Cavendish tuvo en cuenta.

"Resuelto a prevenir errores, decidí poner el aparato en una habitación que permaneciera constantemente cerrada y observarlo desde afuera con un telescopio". 

Con todo ese cuidado, encontró la respuesta... ese diminuto número con el que empezamos:

G = 6,67 x 10-¹¹ Nm²/kg²

Al verlo escrito así, a quienes no somos expertos, ya no nos parece tan sencillo, así que le preguntamos al astrofísico y escritor de ciencia Marcus Chown cómo se define G.

"Su definición exacta es la fuerza gravitacional entre dos masas de 2 kilogramos que están a un metro de distancia". 

"Como es una fuerza tan fantásticamente pequeña sólo tiene un efecto apreciable a escala planetaria: cuando la masa es grande".

Lea el artículo completo en: BBC Mundo

7 de enero de 2019

El gravitón, la presunta partícula que describiría todas las fuerzas de la naturaleza

Héctor Rago, astrofísico y profesor Universidad Industrial de Santander, explica cuál es la hipótesis que tiene la física teórica sobre esta presunta partícula. Una especie de "santo grial" que persiguen los investigadores.


La física contemporánea nos ha revelado la existencia del mundo subatómico, el reino de lo muy pequeño y nos ha revelado también las estrellas de neutrones y la expansión del universo, el reino de las grandes masas y enormes distancias. La tragedia de la física actual es que las descripciones que hacemos del mundo microscópico y del mundo astronómico son irreconciliables. (Lea también: ¿Viola la física el sentido común?)

Si consiguiéramos evidencias observacionales de una partícula hasta ahora hipotética, el gravitón, se allanaría el camino para conseguir una descripción unificada de todas las fuerzas de la naturaleza.

La materia a pequeña escala está gobernada por tres fuerzas fundamentales, la fuerza nuclear débil, la fuerza nuclear fuerte y el electromagnetismo. Ellas obedecen las leyes de la física cuántica que entre otras cosas establece que las fuerzas entre las partículas se deben a intercambio de otras partículas que actúan como mensajeras. Así, la fuerza nuclear es transmitida por partículas llamadas gluones. La fuerza débil es transmitida por los bosones Z y W. Finalmente las fuerzas eléctricas y magnéticas son mediadas por fotones, paquetes de energía electromagnética, los componentes de la luz. La teoría cuántica explica todas las propiedades del mundo subatómico y los resultados de las colisiones que se producen en los grandes aceleradores. Es una gran teoría.

La otra fuerza fundamental es la gravitación, que moldea el mundo físico desde los planetas hasta la expansión del universo. En contra de lo que muchos creen, la gravitación es abrumadoramente más débil que las otras tres fuerzas. Basta un pequeño imán para levantar un clavo y vencer la atracción de toda la Tierra. La gravitación es tan débil que no juega ningún papel a escala microscópica y hace falta una enorme acumulación de materia para que la gravedad se imponga.

Disponemos de una gran teoría de la gravitación, la relatividad general. De acuerdo con ella, lo que interpretamos como fuerza gravedad es la deformación del tiempo y el espacio. Las ecuaciones de la relatividad nos hablan de fenómenos gravitacionales con una precisión exquisita.

La pregunta crucial es si existen situaciones donde coincidan lo muy masivo con lo muy pequeño, y necesitemos por tanto una versión cuántica de la gravedad. La respuesta es que sí. Las singularidades en el interior de agujeros negros o el mismísimo Big Bang requieren de una teoría cuántica de la gravitación.

Pero teoría cuántica y la relatividad general no se la llevan bien. Los intentos de cuantizar la gravedad no han sido totalmente exitosos.

Las analogías sugieren que la gravitación, es decir, la propia geometría del espaciotiempo, debe ser mediada por una partícula. Esta presunta partícula es el gravitón.

Tú estás intercambiando gravitones con la Tierra, y gracias a ese intercambio, tú pesas.
Las detecciones de ondas gravitacionales muestran que ellas viajan a la velocidad de la luz, y por tanto la masa del gravitón tiene que ser cero; además no tiene carga eléctrica, y su spin, que es una propiedad intrínseca de las partículas elementales, debe ser igual a 2. (Lea acá: La última prueba del universo que Einstein imaginó)

Detectar el gravitón directamente es una tarea ardua precisamente porque la gravedad es descomunalmente débil, el gravitón interactúa muy poco con la materia. Nuestros ojos detectan fácilmente unos cuantos fotones, pero la más sofisticada tecnología apenas se mueven cuando pasan billones de gravitones de una onda gravitacional.

Actualmente varios experimentos tratan de obtener evidencias indirectas de la existencia del gravitón, mientras que diversas teorías como las controvertidas supercuerdas, dimensiones extras, teoría de lazos tratan de prever sus propiedades.

La detección experimental del gravitón reconciliaría a la gravedad con los preceptos cuánticos, y tal vez nos conduzca a una descripción unificada de todas las fuerzas de la naturaleza: el santo grial de la física teórica que nos ha sido tan elusivo. (Lea acá: La ilusión del tiempo en nuestra cabeza)

Tomado de: El Espectador

8 de enero de 2018

2017-2018: cambia nuevamente el año, pero ¿qué es realmente el tiempo? ¿Es cierto que solo existe el presente efímero?

Termina un año y comienza otro... Y sí, otra vez caemos en la cuenta de que el tiempo pasa, implacable. 

Pero ¿te has preguntado alguna vez qué es realmente el tiempo más allá de lo que marcan los relojes y los calendarios?

Piénsalo un momento. 

En nuestra experiencia como seres humanos percibimos el tiempo como una secuencia de sucesos.

Es decir: un futuro que se vuelve presente y un presente que se transforma en pasado.

Sentimos que el presente es lo único que existe, pero es efímero, se esfuma a cada segundo. 

Pensamos que el pasado es lo que ha dejado de ser y se aleja de nosotros rumbo al olvido, aunque parte de él permanece en nuestros recuerdos.

Y creemos que el futuro es algo potencial que aún no ha sucedido y promete diversos caminos alternativos.

Pero ¿qué hay de cierto en todo esto? ¿Es el tiempo algo real o una mera ilusión? ¿O una mezcla de ambos?

Prepárate, porque lo que dice la física clásica y actual al respecto puede dejarte perplejo, ya que cuestiona algunas de las creencias más difundidas sobre nuestro devenir.

¿Distintos tiempos?

"Los físicos no se ponen de acuerdo a la hora de contestar la pregunta general de qué es el tiempo", le comenta a BBC Mundo el Dr. Chamkaur Ghag, reconocido investigador del Departamento de Física y Astronomía del University College de Londres (UCL).

"Pero sí hay consenso en aceptar lo que dice la teoría de la relatividad de Albert Einstein, que presenta un universo donde el espacio y el tiempo son inseparables y se influyen mutuamente, y donde los fenómenos se experimentan de distintas maneras según el estado de movimiento de los observadores".

En este cosmos el tiempo es relativo, explica Ghag: se dilata a medida que un cuerpo se mueve más rápido en relación con otros. Cuanto más se aproxima un objeto (o un individuo) a la velocidad de la luz, más notoria es la desaceleración del reloj.

Según Einstein, el tiempo también transcurre más lentamente cuando un cuerpo experimenta una fuerza gravitacional mayor.

En la película "Interstellar" (2014), de Christopher Nolan, hay una escena que lo explica bien: el protagonista desciende a un planeta sometido a una intensa gravedad por encontrarse cerca de un agujero negro. Cuando regresa a la nave nodriza tras lo que para él ha sido más de una hora, se encuentra con un compañero para el que han pasado... 23 años.

La dilatación del tiempo ha sido comprobada de manera experimental en las últimas décadas usando ultraprecisos relojes atómicos y modernos aceleradores de partículas. A lo que se ha sumado la reciente detección de las ondas gravitacionales generadas por las distorsiones en el espacio-tiempo. 

Varios triunfos para las ideas de Einstein.

"Otro de los principios aceptados por los físicos es que el tiempo va para adelante y nunca para atrás", dice el Dr. Ghag.
 
"Y esto lo explica la segunda ley de la termodinámica: la entropía. Significa que las cosas van del orden al desorden".

El artículo completo en:

BBC Mundo

5 de octubre de 2017

Las ondas gravitacionales anticipadas por Einstein le dan el Premio Nobel de Física a los investigadores Rainer Weiss, Barry C. Barish y Kip S. Thorne


Ondas gravitacionales
  • Son una predicción de la Teoría General de la Relatividad
  • Tomó décadas detectarlas directamente
  • Son ondas en la fábrica del espacio-tiempo generadas por eventos violentos
  • Las masas que se aceleran producen ondas que se propagan a la velocidad de la luz
  • Fuentes detectables tienen que incluir la fusión de agujeros negros y estrellas de neutrones
  • Su detección abre la posibilidad de investigaciones completamente nuevas

Los investigadores estadounidenses Rainer Weiss, Barry C. Barish y Kip S. Thorne fueron distinguidos este martes con el premio Nobel de Física 2017.

Göran K. Hansson, Secretario General de la Real Academia de las Ciencias de Suecia, anunció a los ganadores, que fueron premiados por la detección de las ondas gravitacionales que habían sido anticipadas por Albert Einstein y que son una consecuencia fundamental de su Teoría General de la Relatividad. 

Es un "descubrimiento que sacudió al mundo", señaló Hansson.

Los científicos son miembros de los observatorios Ligo-Virgo, responsables del descubrimiento.

La mitad del dinero que acompaña al premio le corresponde a Weiss, mientras que Barish y Thorne compartirán la otra mitad. 


La suma total es de 9 millones de coronas suecas (US$1,1 millones).

Los ganadores se suman así a una lista de otros 204 físicos honrados con el galardón desde 1901.

"Ventana al Universo"

Las ondas gravitacionales describen la distorsión en el espacio-tiempo que se produce cuando se aceleran objetos masivos.

Lo deformación del espacio que resulta de la fusión de dos agujeros negros fue detectada por primera vez por un laboratorio estadounidense en 2015. Fue la culminación de una búsqueda de varias décadas.

Desde entonces se han detectado otros tres ejemplos. 

"La primera observación de una onda gravitacional fue un hito, una ventana al Universo", señaló Olga Botner, de la Real Academia de Ciencias de Suecia, afirmó durante la conferencia de prensa-

La contribución del trío

Los laboratorios Ligo (en EE.UU) y Virgo (en Europa) fueron construidos para detectar las sutiles señales que producen las ondas gravitacionales.

Pese a que son generadas por fenómenos colosales, como la fusión de dos agujeros negros, Einstein mismo pensaba que el efecto sería demasiado pequeño como para ser registrado por la tecnología. 

Sin embargo, los tres laureados lideraron el desarrollo de un sistema en base a rayos láser con suficiente sensibilidad como para detectarlas. 

El resultado fue Ligo, un par de instalaciones separadas en dos sitios de EE.UU.: un observatorio en el estado de Washington y otro en Livingston, Luisiana.

La instalación europea está en Pisa, Italia. 

Weiss, uno de los ganadores, dijo que el descubrimiento había sido el trabajo de cerca de 1.000 personas. 

Pero la contribución del trío fue fundamental.

Weiss estableció la estrategia necesaria para hacer la detección. 

Thorne hizo gran parte del trabajo teórico detrás de la búsqueda. 

Y a Barish, quien asumió como segundo director de Ligo en 1994, se le atribuyen las reformas organizativas y la elección de las tecnologías que resultaron cruciales para el éxito de la misión. 

Fuente:

BBC

11 de diciembre de 2016

Una nueva teoría sobre la gravedad podría explicar la materia oscura

La teoría fue bautizada como "de gravedad emergente" y puede aclarar esa materia oscura que tantos dolores de cabeza está dando a los científicos. Erik Verlinde lleva seis años observando el cielo para explicarse el movimiento y la velocidad exacta de las estrellas y ahora concluye que no necesita invocar ninguna misteriosa partícula de materia oscura para entender qué pasa en las galaxias. Las cosas no funcionan exactamente como predijo Einstein, aunque el padre de la gravedad sí estableció las bases.


Las estrellas se comportan como si estuviesen presionadas o aguantadas por algo más fuerte que ellas. La gran fuerza gravitacional requerida desconcierta a los telescopios que intentan detectarla. Hasta ahora, los físicos han optado por la existencia de una "materia oscura" para explicar ese "algo" que desconocen y que sería necesaria para explicar el comportamiento gravitacional que los astrónomos observan en el Universo. Esa energía oscura -dicen- existe en gran cantidad (supone el 25% del Cosmos), pero hasta ahora nadie ha sido capaz de observarla, a pesar de los muchos esfuerzos por detectar su existencia y explicar qué pasa en las galaxias.

Verlinde dice que el problema está en que se ha estado mirando donde no es. No hay tal materia oscura, las estrellas giran y se mueven dentro de las galaxias porque la gravedad emerge. "A grandes escalas, la gravedad no se comporta como predice la teoría de Einstein", ha sentenciado.

Uno de los puntos importantes de la teoría de las cuerdas es una adaptación del principio holográfico del profesor Gerard't Hoof (Utrecht), premio Nobel en 1999. Según este punto, la información contenida en una región del espacio se determinada por el superficie que la contiene, esto hace que toda la información presenten en todo el universo pueda describirse en una esfera imaginaria gigante alrededor del mismo. Para Verlinde, "parte de la información de nuestro universo está contenida en el espacio mismo".

El artículo completo en:

El Mundo

24 de julio de 2016

¿Qué pasa con el crecimiento vegetativo en gravedad cero?

Es bien sabido que los patrones de crecimiento de las plantas están influenciados por una variedad de estímulos, siendo uno de ellos la gravedad. En la Tierra, las raíces de las plantas exhiben ciertos comportamientos característicos que se pensaba que eran dependientes de la fuerza de la gravedad. 

Sin embargo, las plantas de Arabidopsis cultivadas en la Estación Espacial Internacional (ISS) han demostrado que esta teoría está equivocada. Según un estudio publicado en BioMed Central, la ondulación e inclinación de la raíz se producen en las plantas de los vuelos espaciales de manera independiente a la gravedad.

En las raíces de plantas, la ondulación se compone de una serie de cambios regulares en las raíces durante el crecimiento. Se cree que están asociados con la percepción y la evasión de obstáculos, dependiendo de la detección de la gravedad y capacidad de respuesta. 

Mientras que la inclinación es la progresión de las raíces que crecen a lo largo de una superficie casi vertical. Se piensa que es una desviación de las raíces en la dirección de la gravedad y también sujeta a mecanismos similares que afectan al ondeado. 

A pesar de que la base precisa de estos patrones de crecimiento no se entiende bien, la gravedad se considera un jugador importante en estos procesos.

Para probar lo que ocurre con el crecimiento de raíces de las plantas cuando se quita del todo la gravedad, un equipo de investigadores de la Universidad de Florida, hizo crecer dos tipos de Arabidopsis thaliana, Wassilewskija (WS) y Columbia (Col-0), en la ISS

Las plantas se cultivaron en unidades de crecimiento especializadas que combinan un hábitat con un sistema de cámaras que captura imágenes de cada seis horas. Las imágenes han entregado los datos en tiempo real desde la ISS, existiendo un control terrestre de comprobación desde el Centro Espacial Kennedy.

El fenómeno de fototropismo negativo en las raíces de las plantas está bien documentada, pero su papel en la orientación de crecimiento de la raíz sigue siendo explorado. Los autores encontraron que, en ausencia de gravedad pero con luz, las raíces permanecieron fototrópicamente negativas, creciendo en la dirección opuesta del crecimiento del brote, como lo hacen en la Tierra. 

El camino recorrido por las raíces en su crecimiento seguía con los complejos patrones de ondulación e inclinación, características de la Tierra y la influencia de la gravedad. Además, mientras estaban en órbita, cada cultivo conservaba un patrón único de inclinación terrestre.

Sin embargo, el equipo observó que el grado de ondulación mostrado por las plantas en el espacio no coinciden con lo que se preveía con las raíces de la Tierra. En el espacio, la ondulación era mucho más sutil. Este resultado refuerza la idea de que la ondulación e inclinación representan dos fenómenos separados, y que la gravedad no funciona como parte mecánica sobre estos dos procesos.
Aunque las plantas utilicen la gravedad como un tropismo para orientarse sobre la superficie de la Tierra, está claro que la gravedad no es esencial para la orientación de la raíz, ni es el único factor que influye sobre los patrones de crecimiento de las raíces
Parece ser que otras características del medio ambiente también son necesarios para asegurar que una raíz crezca fuera de la semilla, lo que mejora sus posibilidades de encontrar suficiente agua y nutrientes para asegurar su supervivencia
Concluyen los autores principales, Anna-Lisa Paul y Ferl Robert.

Fuente:

Xakata Ciencia

28 de febrero de 2016

Por qué es tan importante que se haya comprobado la predicción de Einstein sobre las ondas gravitacionales




"Hemos detectado ondas gravitacionales", anunció David Reitze, director ejecutivo de LIGO.

Hace 100 años Albert Einstein predijo la existencia de ondas gravitacionales como parte de su Teoría General de la Relatividad.

Durante décadas, científicos habían intentado, sin éxito, detectar estas ondas, fundamentales para entender las leyes del Universo y que muestran cómo los objetos hacen que el espacio-tiempo se curve.

Hasta este 11 de febrero de 2016.

"Hemos detectado ondas gravitacionales", anunció este jueves David Reitze, director ejecutivo del Observatorio Avanzado de Interferometría Láser de Ondas Gravitacionales, conocido como LIGO.

Según los expertos, las ondas captadas vienen de la colisión de dos agujeros negros, uno 29 veces más grande que el Sol y el otro con un tamaño 36 veces mayor, que crearon un nuevo agujero 62 veces la masa de nuestra estrella solar.

Este evento pudo ser "escuchado" por LIGO; y tras varios meses de revisiones y corroboraciones de los datos, pueden decir con seguridad que se trata de las ondas gravitacionales.

"Esto marca el inicio de una nueva era de la astronomía", le dijo a BBC Mundo la doctora Alicia Sintes, del departamento de física de la universidad de las Islas Baleares y el Instituto de Estudios Espaciales de Cataluña, España, quien participó en el proyecto.

"Esta será una herramienta con la que estudiar el Universo y todos los objetos astrofísicos que existen", agregó.

También es la constatación absoluta de la última predicción que hizo Einstein.

Ondas gravitacionales por todas partes





Según la teoría de Einstein, todos los cuerpos en movimiento emiten esas ondas que, de la misma forma que una piedra afecta el agua donde cae, producen perturbaciones en el espacio.Y fue el 25 de noviembre de 1915 cuando Albert Einstein presentó la versión final de sus ecuaciones del campo ante la Academia Prusiana de las Ciencias.


Estas son la base de su Teoría General de la Relatividad, un pilar fundamental de la física moderna que ha transformado nuestra comprensión del espacio, el tiempo y la gravedad.

Gracias a ella hemos podido entender muchas cosas: desde la expansión del Universo hasta el movimiento de los planetas y la existencia de los agujeros negros.

Pero Einstein también propuso la presencia de ondas gravitacionales. Estas son, esencialmente, las ondulaciones de energía que distorsionan la estructura del tiempo y el espacio.

Cualquier objeto con masa debería producirlas cuando está en movimiento. Incluso nosotros. 

Pero cuanto más grande es la masa y más dramático el movimiento, más grandes son las ondas.

Y Einstein predijo que el Universo estaba repleto de ellas.

Lea el artículo completo en:

BBC Ciencia

26 de noviembre de 2015

Diez preguntas para entender la teoría de la relatividad de Einstein





El 25 de noviembre de 1915, el físico presentó la formulación definitiva de su pensamiento. Algunos interrogantes y sus respuestas para comprenderlo.


1. ¿Qué conmemoramos exactamente este 25 de noviembre de 2015?
Se cumplen justo 100 años del día en que Albert Einstein explicó en una conferencia ante la Academia Prusiana de Ciencias, en Berlín, las ecuaciones definitivas de su teoría general de la relatividad. Tras casi una década de tortuosos intentos de compatibilizar la fuerza gravitatoria con su teoría especial de la relatividad (1905), y con el matemático David Hilbert pisándole los talones, por fin dio forma precisa y definitiva a la que se considera una de las cimas intelectuales de la humanidad. Su presentación se publicó aquel mismo día, 25 de noviembre de 1915, en las actas (Proceedings o Sitzungsberichte) de la academia.

2. ¿Einstein presentó ese mismo día la ecuación que hoy se conoce?
En realidad es un sistema de diez ecuaciones, pero se pueden escribir de manera unificada, utilizando una sola vez el signo “=”, y resumirlas en una sola: Rμν -1/2 gμν R = 8πG Tμν. En la forma original en la que la escribió Einstein en su artículo, la notación (por ejemplo usaba índices latinos en lugar de griegos) y la distribución de los términos era ligeramente distinta, pero aún así, es totalmente equivalente a esta.

3. ¿Y qué significa Rμν -1/2 gμν R = 8πG Tμν en un lenguaje que todos podamos comprender?
En lenguaje común, la nueva ecuación de Einstein relaciona dos aspectos: curvatura del espacio-tiempo ↔ Masa (energía). Por ponerlo en contexto, anteriormente la teoría de la gravedad de Newton, el mayor éxito de la revolución científica del siglo XVII, aportaba dos leyes que podemos visualizar así:
Masa → Gravedad; y
Fuerza de gravedad → Movimiento de cuerpos masivos,
donde “→” podemos leerlo como “crea”.

Es decir, una masa –por ejemplo, la Tierra– crea un campo gravitatorio, que a su vez ejerce una fuerza que controla el movimiento de otras masas, como una manzana o la Luna. Con la aportación de Einstein, la teoría de Newton se veía ahora desbancada por otra que la incluía como una aproximación solo válida para masas y velocidades relativamente pequeñas. Pero la teoría de Einstein era mucho más que un refinamiento de la de Newton: cambiaba completamente el concepto de qué es y cómo actúa la gravedad.

4. ¿Qué diferencias hay entre la visión clásica del mundo de Newton y la relativista de Einstein?
Hay dos esenciales. Por una parte, en la formulación de Einstein desaparece la noción de gravedad, que ha sido sustituida por algo más misterioso y sugerente: la curvatura del espacio-tiempo. Y, por otra, unifica en una sola ecuación las dos leyes básicas de la teoría newtoniana. Es decir, ambas “→” quedan aunadas en una sola “↔”. Sin duda alguna, la eliminación de la gravedad como una fuerza ‘real’ y su interpretación como un ‘efecto aparente’ de la curvatura del espacio-tiempo es el elemento más revolucionario de la teoría. De esta manera, Einstein explicaba con una simplicidad pasmosa la observación de Galileo de que, en ausencia de fricción, todos los cuerpos caen al mismo ritmo: los objetos se mueven en un mismo espacio-tiempo que, al estar curvado, produce la impresión de movimiento bajo una fuerza que actúe sobre ellos.

5. ¿Podemos visualizar el concepto de la curvatura del espacio-tiempo?
Es habitual representar sus efectos como el movimiento de canicas en una cama elástica deformada por el peso de una masa mayor. Aunque ilustrativa, esta analogía no consigue transmitir el hecho esencial de que la curvatura del espacio-tiempo apenas afecta las direcciones espaciales de la cama elástica, sino que se produce mayoritariamente en la dirección del tiempo. La teoría es demasiado rica y sutil como para dejarse capturar completamente por analogías e imágenes simplificadas.

6. Entonces, ¿no hay forma de representar con una imagen sencilla la teoría de la relatividad?
Habría que utilizar distintas imágenes para ilustrar diferentes aspectos de la teoría, pero no hay una que lo capture todo correctamente. Lo de la cama elástica está bien, pero tiene limitaciones serias. Por ejemplo, no sirve para ilustrar ni medianamente bien lo que es un agujero negro, y da lugar a confusiones: ¿Cómo es que decimos que la curvatura es tan pequeña que no la notamos habitualmente y, sin embargo, es suficientemente grande como para que un proyectil, o la Luna, sigan una trayectoria curva en lugar de recta? Habría que explayarse mucho para explicar que nos movemos mucho más en el tiempo que en el espacio, y lo que eso conlleva.

7. ¿Qué relaciona la relatividad general con los agujeros negros?
Todo comienza en aquel mismo año 1915. En una carta fechada el 22 de diciembre, ¡nada menos que desde el frente de guerra ruso!, el astrónomo alemán Karl Schwarzschild comunicaba a un –imaginamos– atónito Einstein que había encontrado una solución extremadamente simple a sus ecuaciones. En concreto, para el caso de la curvatura (o gravedad) que crean los cuerpos masivos como el Sol, la Tierra, las estrellas y de unos objetos que ninguno de los dos vivirían para reconocer: los agujeros negros. Son pozos insondables y absolutos, más fantásticos que la más delirante creación de la imaginación humana.

8. ¿Einstein creyó en los agujeros negros?
La predicción de la existencia de los agujeros negros que implicaba la teoría fue tan radical –aún más que la expansión del universo– que ni siquiera Einstein fue capaz de entenderla. Fue uno de sus principales errores. Solo se aceptó después, tras un largo y arduo proceso completado en los años 60, dando así un magnífico ejemplo de que las mejores teorías de la física son a menudo ‘más listas’ que sus propios creadores. Hoy en día sabemos que los agujeros negros son reales. Recientemente en la película Interstellar hemos podido ver una de las mejores representaciones de lo que las ecuaciones de Einstein pueden llegar a contener.

9. ¿Por qué los agujeros negros también ‘enfrentan’ a la relatividad y la física cuántica?
Imagina que se te cae tu móvil o tableta a un agujero negro. ¿Hay alguna posibilidad, por muy remota que sea, de que recuperemos la información que había en ellos? La teoría de Einstein nos dice que no: cuando algo ha cruzado el horizonte del agujero negro, ya no es posible recibir ninguna señal suya. Sin embargo, la mecánica cuántica nos dice que la información nunca se puede perder: se puede embrollar muchísimo (como sucede si quemamos la tableta), pero en principio siempre ha de ser posible extraerla de nuevo. Esta contradicción entre ambas teorías se conoce como la paradoja de la pérdida de información en los agujeros negros. Esperamos que los esfuerzos en intentar resolver esta cuestión nos ayuden a entender cómo unificar ambas teorías.

10. ¿Tiene alguna aplicación práctica la relatividad general?
Si todavía alguien no está suficientemente impresionado por la nueva visión del mundo que la teoría de Einstein proporciona, y pide una utilidad práctica, basta con que se deje guiar por un navegador GPS. Si este no tuviese en cuenta el efecto, pequeñísimo pero medible, que la curvatura del espacio-tiempo tiene sobre la señal que el aparato recibe de los satélites, nuestros coches acabarían en pocos minutos en la carretera equivocada. Así que la próxima vez que su navegador le diga “ha llegado a su destino” y no se encuentre en el fondo de un barranco o empotrado contra un muro, piense por un instante que eso de la curvatura del espacio-tiempo debe de tener algo de cierto. Agradezca a Einstein los años de intenso trabajo que dedicó a entenderlo, y celebre su culminación en una teoría tan magnífica.

Tomado de:

El Espectador


8 de octubre de 2014

La verdadera influencia de la Luna sobre nosotros

¿Sabes todo lo que le debemos a la Luna?
Este miércoles gran parte del mundo será testigo de un eclipse lunar total, un fenómeno que nos hará ver al satélite de un color rojo pálido. Si quieres saber desde dónde podrás verlo, encontrarás más información al final de la página*.

Allá colgada en el cielo, se atribuyen a la Luna poderes mágicos y misteriosos, como convertir a un hombre en lobo o hacer que el pelo nos crezca más rápido.

Pero más allá de los mitos, el satélite de la Tierra es en verdad único y sí ejerce una extraordinaria influencia sobre el planeta.

La orquestación de las mareas, su papel en el inicio de la vida terrestre y cómo marca el ritmo y hasta la estabilidad del mundo son algunos de los asombrosos poderes reales de la Luna.
Algunos animales son más activos y vocales con la luna llena.
Tiene el tamaño exacto y está a la distancia justa, a 402.000 km, para ser la compañera perfecta del nuestro planeta.

Pero no siempre estuvo allí, tal como explica Maggie Aderin-Pocock, científica y presentadora de televisión, además de gran admiradora lunar.

Su historia está estrechamente ligada a la de la Tierra. Es más, sin ella, probablemente, no estaríamos aquí.

Te contamos por qué.

Las mareas

Esa gran roca redonda que nos mira desde el espacio dirige las mareas en la Tierra con su fuerza de gravedad.

Como explican las leyes de la física, cuanto más cerca están dos objetos, mayor es la fuerza con la que se atraen entre sí, dice Aderin-Pocock, y eso es lo que ocurre entre nuestro planeta y su satélite.
La fuerza gravitacional de la Luna tira de los océanos y dirige las mareas.
La Luna tira de los océanos hacia ella y hace que la Tierra se abulte ligeramente: este abultamiento crea las mareas.

Pero las mareas que tenemos se deben a que la Luna está donde está. Si estuviera más cerca, la fuerza sería mayor: las mareas bajas serían más bajas, las altas harían desaparecer las ciudades costeras.
¿Cómo sería, por ejemplo, la marea alta de una luna que estuviera 20 veces más cerca?

Sería capaz de sumergir por completo ciudades como Londres o Nueva York, dice la experta en un documental de la BBC.

Parece inimaginable, pero cuando la Luna recién se había formado, estuvo una vez así de cerca y tuvo ese poder.

El origen de la vida

Hace 4.500 millones de años, un planeta del tamaño de Marte colisionó con la joven Tierra, y el choque lanzó una enorme cantidad de roca líquida alrededor, explica Aderin-Pocock.

Ese choque creó la Luna y cambió la química básica de nuestro planeta: se formó el llamado caldo de la vida, con hidrógeno, nitrógeno y carbono.

Pero aún pasaron otros 700 millones de años tras aquel impacto: la Tierra se enfrió, se formó una superficie rocosa, el vapor de agua se condensó en los océanos, y la Luna empujó esos océanos.
El choque de un gran planeta con la Tierra liberó enormes cantidades de energía.
De acuerdo al químico británico John Sutherland, fue precisamente este reflujo de mareas primitivas el que dio el puntapié inicial a la vida.

Sutherland sugiere que las primeras moléculas orgánicas se crearon a partir de estos químicos naturales, tal como le explicó a la BBC.

Para demostrar su teoría, el científico hizo experimentos en la playa: mezcló aquellos elementos primitivos y los calentó con luz ultravioleta.
Así recreó las condiciones de las charcas que deja la marea al retirarse, que se calientan con la luz del sol.
Según los científicos, la vida comenzó en las cálidas charcas creadas por las mareas.
Como resultado, obtuvo elementos de ácido ribonucleico ARN, los bloques esenciales de la vida.

En esas charcas cálidas creadas por las mareas, dice Sutherland, nació la vida hace 3.800 millones de años.

Y por eso hay que darle gracias a la Luna.

Ciclo vital

Los hombres antiguos reverenciaban la Luna y muchas culturas crearon a su alrededor leyendas, como la del hombre lobo.

Algunos creen que la luna llena nos altera, incluso que en esas noches hay más crímenes, en lo que se ha dado a llamar efecto Transilvania.

Sin embargo, esto es algo que la ciencia no ha podido comprobar.
Con cada ciclo lunar, los corales cerebro se cubren con una nueva capa ósea.
Pero sí es cierto que muchos animales se vuelven más activos, sonoros y fértiles cuando brilla la luna llena.

Los corales tropicales, por ejemplo, sincronizan su ciclo reproductivo y una noche de luna llena desovan todos a la vez.

La especie Diploria strigosa, conocida como coral cerebro, es un otro ejemplo.
Cada 29 días, con la luna llena, los corales generan una nueva capa ósea sobre la anterior y este crecimiento está dictado por la órbita mensual de la Luna.

Ritmo y estabilidad

La luna rota cada 29 días, el mismo tiempo que tarda en orbitar alredor de la Tierra y por eso nos muestra siempre la misma cara.

La Tierra, en cambio, lo hace cada 24 horas, pero hubo un tiempo en que la Tierra giraba tan rápido que un día duraba 5 horas.

La Luna, sin embargo, actuó como un freno, explica la experta Maggie Aderin-Pocock.

Desde su formación y durante miles de millones de años la fuerza gravitacional de la Luna ralentizó la rotación de la Tierra.


La Luna se está alejando de la Tierra a una velocidad de 3,78cm por año.
Y así, el mismo ritmo del planeta ha sido marcado por su satélite.

Y si la Tierra se ha ralentizado, como consecuencia, la Luna se ha acelerado.

Y eso quiere decir que se está alejando. Exactamente 3,78cm por año, según las precisas mediciones de los astrónomos.

La misma velocidad a la que nos crecen las uñas, compara Aderin-Pocock.

Eso, en el larguísimo plazo -es decir, miles de millones de años- hará que la Tierra gire más lentamente: habrá, entonces, días mucho más largos.

Y esto afectará la estabilidad del planeta.

Desde la colisión que creó la Luna, el eje la Tierra ha estado inclinado, girando a un ángulo constante de 23 grados, lo que permite las variaciones de la luz del sol y las estaciones, la estabilidad del clima, y por lo tanto el ciclo de la vida.
La estabilidad depende de la velocidad de rotación, como con una pelota de baloncesto.
Esta estabilidad depende de la velocidad de rotación del planeta, tal como se puede comprobar haciendo girar una pelota de baloncesto sobre un dedo: cuando más rápido gira, con mayor estabilidad se mantiene en su eje.

Cuando la Luna se aleje, el eje terrestre se desestabilizará y comenzará a oscilar, tanto que los polos podrían bajar hasta el Ecuador y el Ecuador ocupar la posición de los polos.
Eso volvería el planeta inhabitable tal como lo conocemos ahora.

Por eso, dicen los científicos, la Luna es un elemento fundamental para mantener la vida en la Tierra.

Y un último detalle dedicado a los fervorosos "lunáticos": la Luna es 400 veces más pequeña que el Sol, pero está 400 veces más cerca.

Pero por un efecto óptico, parecen, en el cielo, del mismo tamaño. Por eso son posibles fenómenos como los eclipses.

Y eso es una genial coincidencia cósmica.

*El eclipse será completamente visible desde el Pacífico sur. América del Norte y el occidente de América del Sur podrán apreciar el eclipse en horas de la madrugada. No será posible verlo desde ninguna parte de Europa, ni Medio Oriente ni África.

El eclipse parcial comienza a las 09:15GMT, el total a las 10:25GMT, el eclipse total termina a las 11:24GMT y el parcial a las 12:34GMT.

Tomado de:

BBC Ciencia

2 de septiembre de 2014

Markarian 335: El agujero negro más impresionante que verás

Imagen: NASA.
La NASA mostró una interpretación visual de un impresionante fenómeno.
 
El Telescopio Nuclear Matriz Spectroscópico de la NASA (Nustar) consiguió información que más parece sacada de una película de ciencia ficción que de la realidad. Pero, les aseguramos, es tan cierta como  el suelo donde el hombre camina.

Se trata del agujero negro supermasivo Markarian 335 (Mrk 335), el cual tiene una columna de luz (corona) que parece salir desde su centro, en dirección a la inmensidad del espacio. La luz está conformada por rayos X alterados por la gravedad del hoyo.

Con imágenes como esta, creadas por un artista de la NASA, no nos quedan dudas de que el espacio exterior es, hoy más que nunca, la frontera final.

“Aún no entendemos exactamente cómo la corona se produce o por qué cambia su forma, pero vemos material iluminándose alrededor del agujero negro, permitiéndonos estudiar las regiones tan cerca, que efectos descritos por la teoría general de la relatividad de Enstein se cuelven prominentes”, dijo Fiona Harrison, investigadora principal del Nustar.

DATO

El agujero negro Markarian 335 tiene diez millones de veces más masa que el sol.
Fuente:
La República

23 de marzo de 2014

¿Cómo nacen las estrellas?


  • Nacen a partir de la agregación del gas y polvo frío de las nebulosas
  • Viven gracias al tenso equilibrio entre gravedad y reacciones nucleares
Corazón de NGC 604, una nebulosa con unas 200 estrellas nacientes.

Corazón de NGC 604, una nebulosa con unas 200 estrellas nacientes.NASA/Hui Yang

Las estrellas nacen por azar. Se juntan fragmentos de materia de las nubes frías de gas y polvo que flotan en el espacio, las llamadas nebulosas. Estas partículas se van agregando por atracción gravitatoria hasta formar una gran masa.

Este conglomerado, por efecto de la gravedad, se contrae sobre sí mismo y como consecuencia aumenta en su centro, la densidad, presión y calor. De esta manera, los átomos se mueven cada vez más rápido y chocan unos con otros. En esas condiciones, pronto se inician reacciones de fusión nuclear. Cuando comienzan ha nacido la estrella.

Las agrupaciones de masa que no logran iniciar las reacciones nucleares, es decir, las estrellas frustradas, se denominan enanas marrones. Las que sí lo logran continúan un arduo camino cósmico. Las reacciones nucleares liberan presión del centro de la estrella, contrarrestan el efecto de la gravedad, lo que evita que la estrella colapse sobre sí misma.

La estrella vivirá gracias a ese tenso equilibrio entre gravedad y reacciones nucleares. Morirá cuando la gravedad gane la batalla, algo que sucederá sin excepción.

Evolución estelar

Las estrellas evolucionan a medida que van agotando su masa, que es el combustible de las reacciones nucleares. Cuanto más masa tiene una estrella, más combustible tiene para alimentar su ‘motor’ y brilla más, pero vive menos tiempo.

Cuando se agota el combustible de su centro, la estrella vuelve a contraerse y aumenta de nuevo su temperatura, lo que favorece las aparición de nuevas reacciones nucleares. Esta vez se producen en la siguiente capa de masa alrededor de la central, que ya está gastada y contrayéndose. Esta capa circundante se expande y así la estrella se hace más grande.

El aumento de volumen es el responsable del cambio de color de las estrellas. Cuanto más grande, más se enfrían las capas externas y emiten luz visible en un color determinado. Las estrellas más frías son rojas (con unos 2800 ºC), las amarillas rondan los 5500 ºC, las más calientes son azules (aproximadamente 20.000 ºC) y las verdosas (100.000 ºC).

Un estrella típica de masa media es nuestro Sol. Es joven, tiene tan solo unos 4.600 millones de años. Es una gigante amarilla y dentro de 7.000 millones de años habrá madurado y se habrá convertido en una gigante roja.

Será unas cien veces más grande de lo que es en la actualidad y habrá engullido a la Tierra. Morirá a la edad de 12.000 millones de años tras perder gran parte de su masa, que habrá lanzado eyectada en todas direcciones formando una nebulosa planetaria. Será entonces una enana blanca, que brillará con debilidad hasta que se agote, se vuelva negra e inerte.

La mayoría de la estrellas mueren como enanas blancas, excepto las estrellas supermasivas, que son de color azul. Ellas tienen un final apoteósico. Su final consiste en una explosión de brillo excepcional llamada supernova. Desprenden en unos pocos segundos tanta energía como la que ha emitido y emitirá nuestro Sol en toda su existencia.

Fuente:

RTVE Ciencia
 

7 de febrero de 2014

Perú: Invidente crea sistema para resolver problema energético mundial

Fernando Sixto Ramos gestó esta idea hace 15 años, cuando la disfrazó de bomba hidráulica y los demás ingenieros de su empresa fueron incapaces de entender su funcionamiento al desmontarla. (EFE/Paolo Aguilar) 


El ingeniero peruano recibió un premio internacional.

Fernando Sixto Ramos, un ingeniero peruano invidente de 63 años, saltó a la fama esta semana (abril de 2012) en su país tras recibir un premio internacional por crear un sistema que podría resolver el problema energético mundial al multiplicar la fuerza generada por un motor tantas veces como se quiera.

Con el "sistema multiplicador de fuerza", una invención que ideó hace 15 años, a medida que perdía visión, este humilde ingeniero obtuvo la medalla de bronce en la categoría de mecánica y procesos industriales de la cuadragésima edición del Salón Internacional de Inventos, celebrado en Ginebra (Suiza) la semana pasada.

Ramos explicó a Efe que su sistema es "capaz de mover un barco con el motor de un coche" y se basa en dos ejes paralelos cuyos centros tienen un rodaje conectado al extremo de una barra que une a ambos y, a su vez, contiene en el medio dos rodajes "descéntricos" que varían su centro de gravedad.

Esto permite que al aplicar movimiento sobre uno de los ejes, el otro gire en sentido inverso y "regrese la fuerza multiplicada al primero, lo que además genera una fuerza exterior que se puede magnificar" si se le conectan otros paralelos que repitan la misma acción.

"Es así de simple. Creas una acción y una reacción. La fuerza la traspasas al otro eje y luego se multiplica, y así continuamente", aseguró con sencillez Ramos.

El sistema es exponencial porque "un motor de un caballo se puede multiplicar por veinte, y seguidamente, por cuarenta hasta tener 800 caballos", puesto que depende de variables como la distancia entre ejes, la masa, el diámetro de excentricidad y la dirección, que "cuanto mayores sean, mayor será la fuerza incrementada".

Su simplicidad se halla en la mecánica clásica, con la palanca de Arquímedes y los paralelos de Tales: "Se varía la gravedad de un cuerpo para que caiga y la fuerza de caída se incrementa con una palanca para transmitirla al otro eje. Es como Kung Fu. Usas la fuerza del oponente para vencerlo", dijo.

Ramos gestó esta idea hace 15 años, cuando la disfrazó de bomba hidráulica y los demás ingenieros de su empresa fueron incapaces de entender su funcionamiento al desmontarla.

Sin embargo sus aplicaciones van más allá de una bomba de agua, un coche o un tractor, ya que "podría aplicarse a centrales termoeléctricas, hidroeléctricas o a molinos eólicos" que aumentarían su potencia, hasta hacer "la locura de propulsar el viento de un molino para que mueva otros molinos".

"Con ello puedes abaratar los costos de desalinizar o depurar agua", agregó el ingeniero, quien indicó que "se puede salvar el planeta si todos contribuimos porque solamente las ideas cambian el mundo".

"Con el principio del multiplicador se benefician todos: los países subdesarrollados tendrían energía más barata y los avanzados solucionarían sus problemas energéticos porque se han dedicado a optimizar el combustible, pero se habían olvidado de optimizar la mecánica, donde siempre hay un eslabón que se escapa", sentenció.

Ramos confirmó que una universidad de Alemania, país que en 2011 programó el cierre de sus centrales nucleares, se ha interesado por su proyecto, pero confesó que primero quiere desarrollarlo en Perú "porque no hay ánimo de lucro, sino de servicio".

El ingeniero invidente llegó tarde a Ginebra para que el jurado revisara su invento, que quedó por detrás de una mano robótica y un cortador de mármol, pero el interés suscitado entre los asistentes convenció a los jueces para otorgarle la medalla de bronce.

El Instituto Nacional de la Defensa de la Competencia y de la Propiedad Intelectual (Indecopi) intentará agilizar el proceso para patentar este sistema concebido por un invidente que vio en el movimiento de las fuerzas una vía para cambiar el mundo.

Tomado de:

Primera Hora

14 de septiembre de 2013

¿Por qué si usted y una araña se caen del techo a ella no le pasa nada?


Experimento con gelatina

El gel balístico es gelatina como la que nos comemos pero más densa.

¿Por qué las arañas y moscas pueden caminar por las paredes?

La respuesta se encuentra en la física y quien la descifró fue Galileo Galieli, el mismo que insistió en que la Tierra giraba alrededor del Sol.
Se llama la Ley de la caída libre de cuerpos y, como suele suceder, es más fácil y divertido entenderla por medio de un experimento.

En éste, el científico Mark Miodownik muestra cómo hacer gel balístico, el que usa la policía para examinar el impacto de las armas de fuego pues se asemeja al tejido humano vivo.

Con la ayuda de ese gel, usted podrá comprobar que el tamaño importa cuando se trata de sobrevivir a una caída.

Qué se necesita

Dos jarras medidoras de 1 litro
Un tazón o balde grande
Un tazón pequeño, como los de comer cereal
Un tazón grande, como los de servir ensalada
200 gramos de gelatina
Aceite de cocinar
Cuchara
Nevera
Dónde hervir agua
Un lugar en el que se pueda tirar desde lo alto gel balístico sin causar problemas

Cómo se hace

Tenga mucho cuidado con el agua hirviendo y asegúrese de que la gelatina no le caiga a nadie ni nada cuando la suelte.

La gelatina toma 15 horas en cuajar.

Experimento con gelatina

Eche 900ml de agua caliente en una jarra medidora y agréguele 100g de gelatina. Repita el proceso en la otra jarra medidora.

Experimento con gelatina

Revuelva la mezcla en ambas jarras con cuidado, para que no le entren burbujas de aire.

Experimento con gelatina

Cuando la gelatina esté bien disuelta, meta las jarras en la nevera y déjelas ahí durante tres horas.

Experimento con gelatina

Sáque las jarras de la nevera y póngalas en un tazón con agua recién hervida durante 10 minutos. Revuelva con cuidado hasta que la gelatina esté completamente líquida.

Experimento con gelatina

Engrase los tazones que usará como moldes -el pequeño y el grande- para que no se les pegue la gelatina cuando se enfríe.

Experimento con gelatina

Vierta lentamente unos 450ml de la gelatina líquida en el molde pequeño y 1.350ml en el grande. Métalos en la nevera y déjelos 12 horas.

Experimento con gelatina

Cuando saque la gelatina de la nevera, deben estar elásticas pero firmes.

Experimento con gelatina

Desenmolde y...

Experimento con gelatina

...tras asegurarse de que no hay nada ni nadie abajo, deje caer las dos gelatinas desde un lugar alto a una superficie dura.

Experimento con gelatina

Si sale bien el experimento verá que mientras la gelatina pequeña está entera, la grande habrá sufrido por la caída.

Experimento con gelatina

El experimento ilustra la ley cuadrático-cúbica, un principio matemático que ayuda a entender desde por qué no se puede construir una escalera para llegar al cielo hasta por qué King Kong no habría podido caminar en tierra, mientras que las ballenas nadan graciosas en el mar.

Ahora sí: la ley de caída libre de los cuerpos

Animales relativamente grandes como nosotros son propensos a sufrir lesiones graves al caer desde una gran altura. Sin embargo, un animal más pequeño sale ileso.

Esto se debe a una relación fundamental en la naturaleza, descubierta por Galileo, que establece que cuando el ancho de un cuerpo se duplica, el área de superficie se multiplica al cuadrado y el volumen, al cubo.

Así, algo que es 10 veces más ancho, tiene 100 veces el área de superficie, pero 1.000 veces el volumen. Y a medida que el volumen aumenta, también lo hace la masa en proporción.

Esto significa que cuanto mayor sea el objeto, menor será es la relación de superficie a volumen.
Por lo tanto, los seres humanos se rigen por fuerzas gravitacionales, ya que nuestra superficie es relativamente pequeña en comparación con el volumen.

En el caso de los animales muy pequeños, la gravedad es insignificante, pues tienen una gran relación de superficie a volumen.

Viven en un mundo dominado por las fuerzas de superficie, como la fricción y la adhesión, que superan la fuerza relativamente débil de la gravedad.

Eso explica por qué las arañas y moscas pueden trepar por las paredes.

Fuente:

BBC Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0