Ante las altas temperaturas que se registran en la capital, especialistas del Ministerio de Salud (Minsa) recomendaron adoptar medidas sencillas para evitar el “golpe de calor”, que puede afectar la salud sobre todo a niños, mujeres embarazadas y adultos mayores.
5 de febrero de 2019
Atención: sepa cómo evitar el “golpe de calor” este verano
Ante las altas temperaturas que se registran en la capital, especialistas del Ministerio de Salud (Minsa) recomendaron adoptar medidas sencillas para evitar el “golpe de calor”, que puede afectar la salud sobre todo a niños, mujeres embarazadas y adultos mayores.
17 de julio de 2018
¿Se calienta más al sol un coche negro que uno blanco?
El color externo de un vehículo no afecta a la cantidad de calor que acumula cuando se expone al sol, según comprobó el año pasado Sanford Klein, del Laboratorio de Energía Solar de la Universidad de Wisconsin Madison.
Fuente:
Muy Interesante
8 de enero de 2018
2017-2018: cambia nuevamente el año, pero ¿qué es realmente el tiempo? ¿Es cierto que solo existe el presente efímero?
Piénsalo un momento.
En nuestra experiencia como seres humanos percibimos el tiempo como una secuencia de sucesos.
Es decir: un futuro que se vuelve presente y un presente que se transforma en pasado.
Sentimos que el presente es lo único que existe, pero es efímero, se esfuma a cada segundo.
Pensamos que el pasado es lo que ha dejado de ser y se aleja de nosotros rumbo al olvido, aunque parte de él permanece en nuestros recuerdos.
Y creemos que el futuro es algo potencial que aún no ha sucedido y promete diversos caminos alternativos.
Pero ¿qué hay de cierto en todo esto? ¿Es el tiempo algo real o una mera ilusión? ¿O una mezcla de ambos?
Prepárate, porque lo que dice la física clásica y actual al respecto puede dejarte perplejo, ya que cuestiona algunas de las creencias más difundidas sobre nuestro devenir.
¿Distintos tiempos?
"Los físicos no se ponen de acuerdo a la hora de contestar la pregunta general de qué es el tiempo", le comenta a BBC Mundo el Dr. Chamkaur Ghag, reconocido investigador del Departamento de Física y Astronomía del University College de Londres (UCL)."Pero sí hay consenso en aceptar lo que dice la teoría de la relatividad de Albert Einstein, que presenta un universo donde el espacio y el tiempo son inseparables y se influyen mutuamente, y donde los fenómenos se experimentan de distintas maneras según el estado de movimiento de los observadores".
En este cosmos el tiempo es relativo, explica Ghag: se dilata a medida que un cuerpo se mueve más rápido en relación con otros. Cuanto más se aproxima un objeto (o un individuo) a la velocidad de la luz, más notoria es la desaceleración del reloj.
Según Einstein, el tiempo también transcurre más lentamente cuando un cuerpo experimenta una fuerza gravitacional mayor.
En la película "Interstellar" (2014), de Christopher Nolan, hay una escena que lo explica bien: el protagonista desciende a un planeta sometido a una intensa gravedad por encontrarse cerca de un agujero negro. Cuando regresa a la nave nodriza tras lo que para él ha sido más de una hora, se encuentra con un compañero para el que han pasado... 23 años.
La dilatación del tiempo ha sido comprobada de manera experimental en las últimas décadas usando ultraprecisos relojes atómicos y modernos aceleradores de partículas. A lo que se ha sumado la reciente detección de las ondas gravitacionales generadas por las distorsiones en el espacio-tiempo.
Varios triunfos para las ideas de Einstein.
"Otro de los principios aceptados por los físicos es que el tiempo va para adelante y nunca para atrás", dice el Dr. Ghag.
"Y esto lo explica la segunda ley de la termodinámica: la entropía. Significa que las cosas van del orden al desorden".
El artículo completo en:
BBC Mundo
3 de septiembre de 2016
Crean un polo (camiseta) con 'aire acondicionado' contra el calor
Con este polo estarás casi 3°C más fresco!!!!
Con más o menos acierto, el ser humano se ha vestido a lo largo de toda la historia con pieles de animales y diferentes tejidos para mantener el calor corporal, pero diseñar ropas que logren justo lo contrario aún hoy es un reto. La clave para crear prendas más frescas es utilizar materiales que permitan la transpiración. Una estrategia que no llegó a convencer al grupo de ingenieros de la Universidad de Stanford (en Estados Unidos) que ha desarrollado un tejido que refleja la luz solar y facilita la expulsión de calor. Su estudio acaba de ser publicado en la revista Science.
"Si puedes enfriar a la persona en lugar del edificio donde vive o trabaja, podremos ahorrar energía". Así resume la filosofía de este trabajo Yi Cui, uno de los autores y profesor asociado de Ciencias e Ingeniería de los Materiales y Ciencias Fotónicas en Stanford. El problema es que, a la temperatura normal de la superficie de la piel, 34ºC, el cuerpo humano emite radiación infrarroja en un rango de longitud de onda que se solapa en parte con el espectro de la luz visible. En otras palabras: si la prenda no es transparente, no deja salir el calor. Y nadie querría vestirse para seguir pareciendo desnudo.
La solución vino de la mano de un tipo de plástico: el polietileno con nanoporos (denominado nanoPE). Este material es opaco y posee poros conectados con un diámetro de entre 50 y 1.000 nanómetros, un tamaño que permite dispersar y reflejar la luz visible a la vez que deja pasar la radiación infrarroja. Para que sea más parecido a una tela convencional, los científicos crearon un tejido formado por tres capas: dos láminas de esta variante de polietileno separadas por una malla de algodón, que aporta resistencia y espesor al conjunto.
El artículo completo en:
El Mundo (España)
3 de julio de 2016
Las leyes de la Termodinámica... ¡en cinco minutos!
Nuevamente les dejo un video de Quantum Fracture, esta vez nos explican, en tan solo cinco minutos, las leyes de la termodinámica.
¿Qué es la termodinámica?
En la web de Profesor en Línea encontramos la siguiente definición: La termodinámica (del griego termo, que significa "calor" y dinámico, que significa "fuerza") es una rama de la física que estudia los fenómenos relacionados con el calor.
Específicamente, la termodinámica se ocupa de las propiedades macroscópicas (grandes, en oposición a lo microscópico o pequeño) de la materia, especialmente las que son afectadas por el calor y la temperatura, así como de la transformación de unas formas de energía en otras.
Se considera a Nicolas Léonard Sadi Carnot, que aparece en la imagen de ariba, (París, 1 de junio de 1796 - 24 de agosto de 1832), como el padre de la Termodinámica.
Ahora veamos el video para conocer más de cerca las Leyes de la Termodinámica:
Experimentos: Cómo congelar agua ¡en menos de un minuto!
Un experimento sencillo y fascinante, solo se necesita agua embotellada, les sugieron que primero practiquen empleando marcas de diferentes de agua embotellada (agua sin gas).
Les dejo el video, es súper fácil de realizar, pero si eres menor de edad primero pide permiso a tu mamá o papá para que puedas usar el refrigerador.
23 de marzo de 2015
La escalofriante historia del frío artificial
1. El terco mercader que quería venderle hielo al Caribe
21 de diciembre de 2014
Cómo enfriar una bebida en solo dos minutos
Circunstancia equivalente a estar de camping, en la playa o en una excursión campestre y encontrarnos con el mismo problema: todas las latas de refrescos están a temperatura ambiente. No hay fallo. Sólo hace falta un poco de hielo y sal para enfriar tú bebida en tan sólo dos minutos.
Necesitarás un recipiente o bol para poner los hielos, añadir una cucharada sopera de sal y, a continuación, meter dentro uno de los refrescos. Tan sólo habrá que dar un par de vueltas a la lata para que la sal se disuelva y esperar dos minutos. ¡Bajarás su temperatura ambiente en más de 15 grados!
Como explican en este vídeo de Upsocl, la segunda ley de la termodinámica establece que “dos sustancias con diferentes temperaturas alcanzan el equilibrio térmico entre ellas”. Química pura y dura. La mezcla de la sal y el agua produce una reacción endotérmica –que absorbe energía– de tal forma que, una vez disuelta, la sal absorberá el calor de la lata de tal forma que el frío de los hielos pasará más rápido al recipiente que está a temperatura ambiente. En tan sólo 120 segundos.
Fuentes:
ElConfidencial
60minutos
19 de abril de 2014
Sobre la entropía
Posiblemente pocas ideas científicas tan fundamentales tengan más expresiones diferentes que la segunda ley de la termodinámica. Una que no suele emplearse demasiado pero que encierra en una sola frase su esencia se debe a Ludwig Boltzmann que, parafraseando a Josiah Willard Gibbs, dijo: “La imposibilidad de una disminución no compensada de la entropía parece estar reducida a una improbabilidad”. Y es que el concepto de entropía está en el centro de la termodinámica, y en el de la evolución del universo.
El origen del concepto de entropía tiene está en una paradoja planteada por William Thomson (más tarde lord Kelvin) en 1847: la energía no puede crearse ni destruirse, sin embargo la energía térmica pierde su capacidad de realizar trabajo (por ejemplo, levantar un peso) cuando se la transfiere de un cuerpo caliente a uno frío. En 1852 Thomson sugirió que en un proceso como la conducción del calor la energía no se pierde sino que se “disipa” o deja de estar disponible. Además, la disipación, según Thomson, es equivalente a una ley natural que expresa la “direccionalidad” de los procesos naturales.
William Macquorn Rankine y Rudolf Clausius propusieron sendos conceptos que representaban la misma tendencia de la energía hacia la disipación. Llamado inicialmente “función termodinámica” por Rankine y “disgregación” por Clausius , sería éste el que le diese su nombre definitivo en 1865, entropía, a partir de a palabra griega para transformación. Cada proceso que tiene lugar en un sistema aislado aumenta la entropía del sistema.
Así, Clausius formuló la primera y la segunda leyes de la termodinámica en su frase “La energía del universo es constante, y su entropía tiende a un máximo”. De esta simple expresión se deduce que el universo terminará alcanzando una temperatura uniforme, que no habrá energía disponible para realizar trabajo y que el universo sufrirá, por tanto, una lenta “muerte térmica”.
En 1871 James Clerk Maxwell publicó un experimento mental intentando demostrar que no siempre el calor tiene que fluir de un cuerpo a mayor temperatura a otro a menor. Un agente microscópico ( que Thomson bautizaría después como “el demonio de Maxwell”) controlando una trampilla en una pared que separa un gas frío de otro caliente, podría elegir dejar pasar sólo aquellas moléculas del gas que se muevan más rápidamente de lo que lo hacen el promedio de las moléculas del gas caliente. De esta manera el calor iría del gas frío al gas caliente. Este experimento mental venía a indicar que la “disipación” no era algo inherente en la naturaleza, sino que surgía de la inhabilidad humana de controlar los procesos microscópicos. La segunda ley de la termodinámica tiene sólo un valor estadístico; en regiones macroscópicas la entropía casi siempre aumenta.
Boltzmann intentó resolver un problema apuntado por Joseph Loschmidt en 1876, y por Thomson dos años antes, que ponía en peligro la interpretación mecánica de la termodinámica en general y de la segunda ley en particular. Esta ley sugiere que existe una asimetría en el tiempo que rige los procesos físicos; el paso del tiempo tiene como consecuencia un cambio irreversible, el incremento de entropía. Sin embargo, si las leyes de la mecánica aplicasen a los constituyentes de los sistemas termodinámicos, su evolución debería ser reversible, ya que las leyes de la mecánica son las mismas tanto si el tiempo fluye hacia delante como si lo hace hacia atrás; las leyes de Newton pueden decirnos donde estaba la Luna hace mil años con tanta exactitud como dónde estará dentro de mil a partir de ahora. A primera vista, no parece existir una correspondencia mecánica para la segunda ley de la termodinámica.
No sería hasta 1877 que Boltzmann encontró una solución a esta dificultad interpretando la segunda ley en el sentido del demonio de Maxwell.
Lea el artículo completo en:
Cultura Científica
30 de octubre de 2012
Cosas imposibles que la gente se empeña en conseguir (aunque ya se sepa que es imposible)
12 de octubre de 2012
¿El pelo de los mamíferos surgió para protegerse del calor o del frío?
20 de agosto de 2012
La entropía no es desorden: La ordenación espontánea de poliedros
4 de mayo de 2012
YPF: es la termodinámica, estúpido
—A partir de este momento, hagamos lo que hagamos, el Titanic se irá a pique.
—¡Pero este barco no puede hundirse!
—Está hecho de hierro, señor. Le aseguro que sí puede. Y lo hará. Es una certeza matemática.
Titanic, James Cameron, 1997.
El profeta del fin
Lea el artículo completo en:
22 de marzo de 2012
¿A qué temperatura se congela el agua? No. No es a 0 °C
Especial: Día del Agua
| |
Un equipo de químicos de la Universidad de Utah (EE UU) acaba de demostrar que el agua no se congela totalmente hasta que alcanza los -13ºC, y no a 0ºC como solemos pensar. Es a esa temperatura extremadamente baja cuando el agua no solo se enfría sino que definitivamente su estructura molecular cambia y adquiere formas tetraédricas, en las que cada molécula de agua se une a otras cuatro, formando lo que conocemos como hielo. No obstante, incluso a estas temperaturas pueden quedar restos de agua líquida entre el agua sólida, aunque dura tan poco tiempo que resulta casi imposible de detectar o medir. Al margen del interés de la investigación desde el punto de vista de la física, los autores del estudio, que publican sus conclusiones en la revista Nature, aseguran que para las predicciones sobre el cambio climático puede ser realmente útil conocer “a qué temperatura exacta se enfría el agua y cristaliza en forma de hielo”. |
Fuente:
Muy Interesante
8 de marzo de 2012
Borrar información produce calor
“Cada vez que borres la información que almacena un dispositivo, como el disco duro de un ordenador, se liberará calor y el dispositivo se calentará”, explica a SINC Eric Lutz, investigador de la Universidad de Augsburg (Alemania) y coautor de un estudio en el que se valida experimentalmente el principio de Landauer.
Este principio, establecido en 1961 por el físico Rolf Landauer de IBM, afirma que cualquier transformación irreversible desde un punto de vista lógico, como suprimir un bit de información, disipa calor. Se denomina ‘límite de Landauer’ a la cantidad mínima de calor que se puede producir cuando se elimina un bit de información.
El nuevo estudio, que se publica esta semana en Nature, demuestra mediante un experimento que el calor disipado es siempre mayor que el límite de Landauer. Los investigadores lo han comprobado colocando una partícula de vidrio en una trampa óptica (un potencial de pozo doble modulable) para crear un modelo genérico de un bit de memoria, con dos estados: 0 y 1.
“Hemos medido el calor que se produce durante el borrado de ese bit de información y los datos revelan que el calor disipado se podía aproximar al límite de Landauer, pero que nunca lo excedía”, subraya Lutz.
Hasta ahora resultaba muy difícil validar el principio del físico de IBM por la dificultad de realizar experimentos con una sola partícula y medir la baja disipación de calor. De hecho, la energía que genera el borrado de un bit de información ha resultado ser de tan solo unos 3x10-21 julios a temperatura ambiente.
Los resultados del estudio también demuestran la “íntima conexión” –según señala el artículo– entre la teoría de la información y la termodinámica, dos ámbitos que ya relacionaba Landauer en sus propuestas.
Lutz recuerda que la generación de calor es “uno de los principales problemas que dificultan la miniaturización de los ordenadores”. La disipación de energía que realizan los circuitos de sílice actuales al realizar una operación lógica es del orden de 1.000 veces más que el límite de Landauer, pero los científicos esperan alcanzar esa meta en los próximos 20 o 30 años.
Referencia bibliográfica:
Antoine Bérut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul Dillenschneider, Eric Lutz. “Experimental verification of Landauer’s principle linking information and thermodynamics”. Nature 483, 8 de marzo de 2012. Doi:10.1038/nature10872.
Fuente:
5 de febrero de 2012
El lugar más frío del universo
Nebulosa Boomerang. En 1995, utilizando el telescopio Submilimétrico del Observatorio Europeo del Sur, se descubrió que su temperatura es de tan sólo 1 K la más fría fuera de un laboratorio. |
El récord de la temperatura más baja, se logró en el laboratorio del premio Nóbel Wolfgang Ketterle que tiene en el MIT. La temperatura alcanzada fue de 810 milmillonésimas de grado por encima del cero absoluto (273 grados centígrados bajo cero), lo mas cerca posible de la temperatura teórica más baja posible.
Wolfgang Ketterle en su laboratorio del MIT. |
Tomado de:
Meridianos
21 de julio de 2011
Los límites del cerebro: por qué no podemos ser más inteligentes
¿Tiene nuestro cerebro un límite físico? Millones de años de evolución han refinado tanto los procesos y conexiones neuronales que, en opinión de algunos expertos, resultan difícilmente mejorables. En un artículo publicado en Scientific American, el periodista Douglas Fox se plantea cuáles serían los principales problemas si abordáramos la mejora de nuestra inteligencia desde el punto de vista de la física y la ingeniería.
Las leyes de la termodinámica no hacen excepciones, tampoco con nuestro cerebro. Éste es el punto de partida para los científicos consultados por Douglas Fox para su artículo en la revista Scientific American, en el que se plantea si estamos cerca de "los límites de la inteligencia". ¿Podríamos tener un cerebro más grande, rápido y eficiente? Una aproximación intuitiva nos lleva a pensar que necesitamos más neuronas, más conexiones y, por tanto un mayor tamaño. Lo que nos muestran la experiencia y los estudios sobre la materia es que un cerebro más grande no equivale necesariamente a más inteligencia. El cerebro de una vaca, por ejemplo, es considerablemente más grande que el de un ratón y las diferencias no son proporcionales.
Para medir la relación entre el encéfalo y la masa corporal, los científicos utilizan el denominado "cociente de encefalización". Partiendo de esta base, un cerebro más grande proporciona ventajas cognitivas siempre y cuando tengamos en cuenta su relación con el tamaño del cuerpo, y el ser humano está en la parte alta de la pirámide. Pero esto no significa que aumentar indefinidamente el tamaño proporcione ventajas sin límite, puesto que nos encontramos con otras barreras, como el consumo energético o el tamaño y distancia entre las conexiones.
A medida que el cerebro aumenta, por ejemplo, se producen una serie de cambios sutiles en la propia estructura del cerebro. Las neuronas aumentan de tamaño y pueden conectarse con más compañeras. Pero este crecimiento aumenta a su vez la distancia entre neuronas, lo que significa que las conexiones deben ser más largas y la señal tarda más tiempo en viajar de un lugar a otro. ¿Cómo hacer que la señal viaje más rápido entre neuronas? La única contrapartida es aumentar el grosor de las conexiones, pero en este caso multiplica el consumo de energía, con lo que el sistema vuelve a hacerse ineficiente. Por otro lado, cuando aumenta el tejido cortical, la materia blanca - los axones- crece muchísimo más que la materia gris - que contiene el núcleo de las neuronas -, de modo que el tamaño del cerebro crecería exponencialmente.
En el caso de los primates superiores, incluidos los humanos, determinadas estructuras cerebrales han alcanzado cierto grado de optimización. La densidad de neuronas en nuestra corteza cerebral es considerablemente mayor que el de otras especies de mamíferos. Si seguimos la escala en la que aumenta el cerebro en los roedores, por ejemplo, un ratón que tuviera que alcanzar la cifra de 100.000 millones de neuronas (nuestro kilo y medio de masa encefálica) desarrollaría un cerebro de 45 kilos de peso.
Si aumentar el número de neuronas y de conexiones consume más energía, la solución podría venir entonces de cierto grado de "miniaturización" de los procesos. Desarrollar cerebros más densos, neuronas y conexiones más finas que consuman menos energía. Pero en este terreno encontramos otro límite físico, el mismo que se encuentran los ingenieros en el desarrollo de transistores: los canales iónicos de las neuronas parecen haberse reducido tanto como es posible, a partir de cierta reducción los niveles de ruido en la señal son demasiado grandes y las neuronas se disparan cuando no deben.
"De alguna manera", asegura el neurocientífico computacional Jan Karbowski en SciAm, "los cerebros deben optimizar numerosos parámetros simultáneamente, y debe haber algunas contrapartidas. Si quieres mejorar algo, estás fastidiando cualquier otra cosa". Si el cerebro humano se hace más grande tendrá problemas de consumo de energía, disipación del calor y de eficiencia. Desde luego, a pesar de lo que apunta el artículo, pensar en el límite evolutivo de algo resulta un poco ingenuo en términos biológicos. Cualquier estructura es susceptible de mejoras y cambios desde el punto de vista evolutivo, aunque nuestros conocimientos sobre física nos hagan más difícil imaginar cómo va a suceder.
Más información: "The limits of intelligence", Douglas Fox (Scientific American)Fuente:
La Información