Latest Posts:

Mostrando las entradas con la etiqueta galileo. Mostrar todas las entradas
Mostrando las entradas con la etiqueta galileo. Mostrar todas las entradas

3 de marzo de 2015

Cuando los jesuitas rezaban y oraban contra los átomos


Rastro de un protón dejado en una cámara de burbujas de Fermilab

La idea de que el universo está compuesto de partículas indivisibles que se combinan entre sí se remonta al siglo V a.C. cuando los filósofos griegos Leucipo y Demócrito especulaban con que incluso las cosas inmateriales estaban compuestas por estos corpúsculos invisibles. Durante muchos siglos, y gracias entre otras cosas a la influencia de Aristóteles, la teoría fue desterrada y no sería hasta el Renacimiento cuando comenzara a estar de nuevo en el ambiente y contribuyera a fraguar un cambio que terminaría siendo una conmoción en el pensamiento de la época.

El escritor Stephen Greenblatt describe en su libro "El Giro" la influencia que tuvo en este cambio la obra del poeta romano Lucrecio "De rerum natura" en la que recogía las ideas de Epicuro y describía el mundo en términos físicos con un atomismo primitivo. Redescubierto en 1417, el texto comenzó a distribuirse a pesar su confrontación con la doctrina de la Iglesia y contribuyó a la aparición de nuevas ideas sobre la naturaleza del mundo. Según se descubrió hace unos años, al propio Galileo le trajeron casi tantos problemas sus ideas sobre el atomismo que su defensa del heliocentrismo, y fue acusado por sus adversarios de defender una teoría que atentaba contra una de las bases de la religión católica: el rito de la eucaristía.

Si el universo estaba compuesto de átomos, razonaban los jesuitas, la idea de la transubstanciación (la conversión del pan y el vino en el cuerpo y la sangre de Cristo) carecía de sentido, así que aquello era una herejía. La persecución de las ideas atomistas fue tal que se prohibió su enseñanza en las escuelas de la Compañía de Jesús y como relata Greenblatt en su libro se llegaron a recitar oraciones contra los átomos en algunos centros de enseñanza. Estaoración en latín se recomendaba recitar a diario a los jóvenes de la Universidad de Pisa:

"Nada sale de los átomos
Todos los cuerpos del mundo resplandecen con la hermosura de sus formas.
Sin ellas el orbe sería solo un caos inmenso.
Al principio creó Dios todas las cosas, para que ellas pudieran engendrar algo.
Ten en nada aquello de lo que no puede salir nada.
Tú, Demócrito, no formas nada nuevo a partir de los átomos.
Los átomos no producen nada, luego los átomos no son nada".
La idea era impedir que los jóvenes cayeran en la tentación de explicar las cosas por lo que veían sus sentidos. Todo era una obra de perfección de Dios y cuestionarlo era una herejía. El 1 de agosto de 1632 la Compañía de Jesús prohibió y condenó al doctrina de los átomos. En un documento del Santo Oficio encontrado a principios de los años 80 por el estudioso italiano Pietro Redondi se detallaban las herejías encontradas en la obra de Galileo "El ensayadora propósito del atomismo. Aquellas afirmaciones, según Redondi, ponían en peligro los dogmas católicos y pudieron ser uno de los detonantes por el que se abrió todo el proceso contra él. Aunque hay distintas visiones sobre el tema, parece fuera de duda que pensar en un mundo hecho de átomos también le trajo problemas.

Fuente

Fogonazos

3 de mayo de 2014

Conocer Ciencia: Experimentos con péndulos (I)

 1. El péndulo de Newton

¿No saben lo qué es un péndulo de Newton?


El péndulo de Newton o cuna de Newton es un dispositivo que demuestra la conservación de la energía y de la cantidad de movimiento. Está constituido por un conjunto de péndulos idénticos (normalmente 5) colocados de tal modo que las bolas se encuentran perfectamente alineadas horizontalmente y justamente en contacto con sus adyacentes cuando están en reposo. Cada bola está suspendida de un marco por medio de dos hilos de igual longitud, inclinados al mismo ángulo en sentido contrario el uno con el otro. Esta disposición de los hilos de suspensión permite restringir el movimiento de las bolas en un mismo plano vertical. Bueno, para los iniciados: basta con ver la imagen de la izquierda para tener una idea de este aparato.

Pues bien, en el programa Experimentores, de Frecuencia Latina (Perú), Ricardo Morán expone, de manera sencilla, cómo funciona este artilugio:




2. El péndulo que danza

Y, si quieren sorprenderse de a de varas, tienen que ver este péndulo de Newton, es ESPECTACULAR... ¡y al ritmo de la obertura de Guillermo Tell, de Rossini...




3. Galileo y el principio del péndulo

El principio del péndulo, que descubriera Galileo Galilei, allá por 1581, tiene mucha más trascendencia de lo que a simple vista aparenta, luego de estudiar el péndulo Galileo se interesó en el movimiento de los cuerpos, y gracias a los experimentos que realizó, creó la ciencia experimental en 1589. Y la ciencia, a partir de esta fecha, empezó a vanzar a pasos de gigante.

Para conocer más vea esta presentación:



4. Los relojes de péndulo

Una aplicación práctica del péndulo la encontramos en la elaboración de los primeros relojes mecánicos, usted puede hacer un reloj de péndulo siguiendo las indicaciones del siguiente video:
 



5. El péndulo artista

Pero, a mi parecer, lo mejor de todo, es que el péndulo puede hacer dibujos... ¡sí, el pénulo puede ser un artista! Vea como hacer un péndulo dibujante:



Aquí otra variedad donde el péndulo hace dibujos con arena y con cal, creo yo ¿o tal vez será sal?. Lo malo es que no dicen cómo elaborarlos...



6. El péndulo humano

Y, por supuesto, no podríamos finalizar el post sin mencionar a Walter Levin (del MIT), y su ya legendaria clase donde él mismo se convierte en un péndulo humano y nos convence de las leyes de la física...




7. Un péndulo para tener mejores abdominales

Y alguién se inspiró para fortalecer los abdominales empleando un péndulo... ¿será cierto esto?



Conocer Ciencia: ciencia sencilla, ciencia divertida, ciencia fascinante...

Leonardo Sánchez Coello
leonardo.sanchez.coello@gmail.com

Pero eso no es todo, ¡tenemos más! Vaya a la segunda parte haciendo click AQUÍ.

14 de septiembre de 2013

¿Por qué si usted y una araña se caen del techo a ella no le pasa nada?


Experimento con gelatina

El gel balístico es gelatina como la que nos comemos pero más densa.

¿Por qué las arañas y moscas pueden caminar por las paredes?

La respuesta se encuentra en la física y quien la descifró fue Galileo Galieli, el mismo que insistió en que la Tierra giraba alrededor del Sol.
Se llama la Ley de la caída libre de cuerpos y, como suele suceder, es más fácil y divertido entenderla por medio de un experimento.

En éste, el científico Mark Miodownik muestra cómo hacer gel balístico, el que usa la policía para examinar el impacto de las armas de fuego pues se asemeja al tejido humano vivo.

Con la ayuda de ese gel, usted podrá comprobar que el tamaño importa cuando se trata de sobrevivir a una caída.

Qué se necesita

Dos jarras medidoras de 1 litro
Un tazón o balde grande
Un tazón pequeño, como los de comer cereal
Un tazón grande, como los de servir ensalada
200 gramos de gelatina
Aceite de cocinar
Cuchara
Nevera
Dónde hervir agua
Un lugar en el que se pueda tirar desde lo alto gel balístico sin causar problemas

Cómo se hace

Tenga mucho cuidado con el agua hirviendo y asegúrese de que la gelatina no le caiga a nadie ni nada cuando la suelte.

La gelatina toma 15 horas en cuajar.

Experimento con gelatina

Eche 900ml de agua caliente en una jarra medidora y agréguele 100g de gelatina. Repita el proceso en la otra jarra medidora.

Experimento con gelatina

Revuelva la mezcla en ambas jarras con cuidado, para que no le entren burbujas de aire.

Experimento con gelatina

Cuando la gelatina esté bien disuelta, meta las jarras en la nevera y déjelas ahí durante tres horas.

Experimento con gelatina

Sáque las jarras de la nevera y póngalas en un tazón con agua recién hervida durante 10 minutos. Revuelva con cuidado hasta que la gelatina esté completamente líquida.

Experimento con gelatina

Engrase los tazones que usará como moldes -el pequeño y el grande- para que no se les pegue la gelatina cuando se enfríe.

Experimento con gelatina

Vierta lentamente unos 450ml de la gelatina líquida en el molde pequeño y 1.350ml en el grande. Métalos en la nevera y déjelos 12 horas.

Experimento con gelatina

Cuando saque la gelatina de la nevera, deben estar elásticas pero firmes.

Experimento con gelatina

Desenmolde y...

Experimento con gelatina

...tras asegurarse de que no hay nada ni nadie abajo, deje caer las dos gelatinas desde un lugar alto a una superficie dura.

Experimento con gelatina

Si sale bien el experimento verá que mientras la gelatina pequeña está entera, la grande habrá sufrido por la caída.

Experimento con gelatina

El experimento ilustra la ley cuadrático-cúbica, un principio matemático que ayuda a entender desde por qué no se puede construir una escalera para llegar al cielo hasta por qué King Kong no habría podido caminar en tierra, mientras que las ballenas nadan graciosas en el mar.

Ahora sí: la ley de caída libre de los cuerpos

Animales relativamente grandes como nosotros son propensos a sufrir lesiones graves al caer desde una gran altura. Sin embargo, un animal más pequeño sale ileso.

Esto se debe a una relación fundamental en la naturaleza, descubierta por Galileo, que establece que cuando el ancho de un cuerpo se duplica, el área de superficie se multiplica al cuadrado y el volumen, al cubo.

Así, algo que es 10 veces más ancho, tiene 100 veces el área de superficie, pero 1.000 veces el volumen. Y a medida que el volumen aumenta, también lo hace la masa en proporción.

Esto significa que cuanto mayor sea el objeto, menor será es la relación de superficie a volumen.
Por lo tanto, los seres humanos se rigen por fuerzas gravitacionales, ya que nuestra superficie es relativamente pequeña en comparación con el volumen.

En el caso de los animales muy pequeños, la gravedad es insignificante, pues tienen una gran relación de superficie a volumen.

Viven en un mundo dominado por las fuerzas de superficie, como la fricción y la adhesión, que superan la fuerza relativamente débil de la gravedad.

Eso explica por qué las arañas y moscas pueden trepar por las paredes.

Fuente:

BBC Ciencia

30 de julio de 2013

El telescopio de Galileo y el declive del Imperio español


Un nuevo instrumento óptico empezó a recorrer los círculos eruditos europeos a comienzos del siglo XVII. Pronto lograría que la relación de nuestra especie con los astros cambiara para siempre. El telescopio, emblema de la revolución científica de la Edad Moderna, acercó los cielos a la mirada de los sabios, separó al hombre del centro del universo y destruyó para siempre el mito de que los cuerpos del firmamento son entes perfectos.

Todos podían comprobar con sus propios ojos las irregularidades geográficas del satélite terrestre, aunque aún se confundían con mares, océanos y volcanes. La Luna resultó no ser muy distinta a nuestro planeta, así que los imperios y naciones que luchaban por ampliar sus dominios en la Tierra encontraron un nuevo lugar en el firmamento sobre el que poder extender su influencia. Aún no era posible llegar hasta allí y clavar una bandera en el suelo, pero existían otras formas más sutiles de conquista.

La cartografía estaba en pleno auge desde el descubrimiento de América, ya que se había demostrado una herramienta imprescindible para visitar, colonizar y reclamar nuevos territorios. Por primera vez en la historia, la humanidad podía crear mapas de la Luna, haciéndola así un poco más suya. La primera persona que estudió y dibujó la Luna con un telescopio fue el inglés Thomas Harriot, nacido en 1560 en el condado de Oxford.

Harriot. |Trinity College

Harriot. |Trinity College

Harriot cursó estudios superiores de cartografía y, con 25 años, se enroló con el pirata, explorador y poeta Walter Raleigh en una expedición a América. La reina Isabel quería evitar enfrentamientos con el Imperio español y había dado órdenes a Raleigh de que solo conquistara tierras que no estuvieran cristianizadas. Con el fin de curarse en salud y no enfadar a la monarca, los mapas que presentaba el conquistador inglés estaban repletos de tribus indígenas, algunas de ellas inexistentes, como los acéfalos y las amazonas.

El viaje de 1585 a Virginia, tierra que Raleigh llamó así en honor a la reina Isabel (conocida como reina virgen), no logró colonizar para Inglaterra este lugar, pero causó una profunda impresión en Harriot. El cartógrafo acompañó también a Raleigh en su misión a Irlanda para aplacar una rebelión contra los ingleses y publicó un libro llamado 'Un breve y genuino informe sobre la nueva tierra hallada en Virginia'. En él defendía, entre otras cosas, las bondades de la planta del tabaco, una sustancia que lo acabaría matando por medio de un cáncer de nariz.

Tras vivir varias aventuras y desventuras, e incluso pasar una temporada en prisión, Harriot se vio con los medios económicos necesarios para concentrarse en la ciencia y sus intereses se movieron hacia el creciente campo de la óptica, materia sobre la que llegaría a cartearse con el mismísimo Johannes Kepler, uno de los astrónomos más importantes de todos los tiempos.

Harriot adquirió uno de los primeros telescopios que circulaban por el continente y lo usó para dibujar el satélite de la Tierra en el verano de 1609. Sus esbozos de la superficie lunar eran muy rudimentarios, pero le permitieron bautizar algunos accidentes lunares, para los que usó términos familiares, como Britannia (el actual Mare Crisium).

El nuevo instrumento de observación no dejaba lugar a dudas de que aquello no era un mundo sobrenatural, ni el lugar donde habitan los espíritus, pese a todo lo que se había debatido sobre el tema en los siglos anteriores. Sir William Lowell, un amigo de Harriot a quien este envió un telescopio, exclamó al ver la Luna: "Se parece a una tarta que hizo mi cocinero la semana pasada". La expresión se hizo célebre porque es menos inocente de lo que parece: con ella se daba por cerrado un debate milenario en torno a la naturaleza física de los orbes celestes. Lo que no está tan claro es qué le ocurrió al denostado cocinero

Lea el artículo completo en:

El Mundo Ciencia

1 de julio de 2013

Galileo y el libro científico más polémico



En el año 1623, en plena eclosión de la ciencia moderna, llegó un nuevo Papa al Vaticano: Maffeo Barberini. O, como sería conocido desde entonces, Urbano VIII. Como Galileo, el nuevo Pontífice era florentino, y había elogiado públicamente al astrónomo por sus descubrimientos con el telescopio. Galileo había sido ya advertido, pero no aún censurado, tras publicar que la Tierra gira alrededor del Sol.

La elección de un Papa amigo animó a Galileo, quien se decidió a regalar al recién nombrado Urbano VIII una copia de su último libro, 'Il Saggiatore' (El ensayista). Al Pontífice le gustó el nuevo libro, por lo que Galileo fue un paso más allá y le pidió permiso para publicar su teoría sobre las mareas. Al no conocerse la ley de la gravedad, el científico toscano intentaba explicar las idas y venidas de los océanos como una consecuencia del movimiento de la Tierra. La teoría era errónea porque no tenía en cuenta el influjo de la Luna, pero el problema no era ese, sino que los argumentos presentados necesitaban que la Tierra se moviera alrededor del Sol.

Sólo el modelo cosmológico heliocéntrico de Copérnico avalaba la explicación que aventuró Galileo, lo que le llevó a presentar su obra como un 'Dialogus de systemate mundi' (Diálogo sobre los sistemas del mundo), nombre con el que fue publicada en Florencia en 1632. En ella se ridiculizaba el modelo geocéntrico ptolemaico y se ignoraba el más actual sistema geocentrista de Tycho Brahe, que había hecho algunas correcciones sobre el anterior para adaptarlo a los nuevos tiempos. El modelo de Brahe aunaba las recientes observaciones telescópicas con la vieja creencia en una Tierra estática, por lo que era el preferido de la Iglesia católica.

El libro de Galileo erraba en su intento de dar una explicación a las mareas y dejaba claro que el genial científico y astrónomo no había sido llamado por los caminos de la creación literaria. Aun así, la obra tenía un innegable acierto, que fue precisamente lo que más molestó a sus detractores: Galileo describía con precisión las cuidadas observaciones que había realizado con su telescopio, las cuales resultaban incompatibles con el sistema geocéntrico.

Lea el artículo completo en:

El Mundo Ciencia

28 de marzo de 2013

Bergoglio, el nuevo Papa, ¿más próximo a la ciencia que los anteriores?

El argentino Jorge Mario Bergoglio fue elegido el 13 de marzo de 2013 por los miembros del Colegio Cardenalicio, tras la renuncia al cargo de Benedicto XV, para convertirse en Francisco, el nuevo Papa, el jefe de Estado de la Ciudad del Vaticano, el país más pequeño, el único que tiene el latín como lengua, y también la edad más baja para el consentimiento sexual de Europa, como podéis leer aquí (además de otras cosas que probablemente no conozcáis del Vaticano).


Algunos han querido ver en el nuevo Papa una faceta más científica: no en vano, es un jesuita que ha realizado estudios científicos (estudió y se diplomó como técnico químico, para después escoger el camino del sacerdocio), recordándonos quizá vagamente a Silvestre II, el “Papa Científico”, cuyo pontificado transcurrió entre los años 999 y 1003.

Tal vez sea esperar demasiado que la visión de la Iglesia a propósito de, por ejemplo, el avance en la investigación de células madre o la profilaxis en las relaciones sexuales cambie drásticamente. Podéis leer más sobre ello en Células madre y fe religiosa (I) y (II).

Al menos esperemos no volver a leer afirmaciones como la vertida el 15 de marzo de 1990 por Joseph Ratzinger, siendo aún cardenal, en un discurso que pronunció en la ciudad de Parma hizo suya una afirmación del filósofo Paul Feyerabend: “en la época de Galileo la Iglesia fue mucho más fiel a la razón que Galileo, y que el juicio que la Iglesia le hizo a Galileo fue razonable y justo”.

 Y en definitiva esperemos que el nuevo Papa preste más atención a las nuevas evidencias científicas y no trate de desdeñarlas como si fuera poseedor de la verdad absoluta: su opinión cuenta para muchos fieles, y ello tiene influencia tanto social como política.

A ese respecto, el 18 de julio de 1870, el primer Concilio Vaticano introdujo la doctrina de la infalibilidad papal. En esencia, tal doctrina determina que las afirmaciones del Papa son incuestionables porque, gracias al Espíritu Santo, están protegidas eternamente de toda posibilidad de error. Eso no significa que el Papa no pueda equivocarse. Por ejemplo, la prohibición de la anticoncepción, si bien es vinculante para todos los católicos, no está protegida por la doctrina de la infalibilidad papal. Para ello, el Papa debe hablar ‘ex cathedra’ (“desde su trono”) como pastor oficial de todos los cristianos. 

Afortunadamente, sólo en una ocasión se ha llevado a cabo una afirmación de esta índole: la declaró el papa Pío XII en 1950. En pocas palabras, decía tal cosa: que la Virgen María, al morir, había ascendido corpóreamente al Cielo. Es una afirmación que, aunque viole las leyes de la naturaleza, tampoco pisa demasiado el terreno de la ciencia. Tampoco pasa demasiado.

Aunque, naturalmente, puede ser objeto de crítica, como cualquier otra afirmación acerca de la realidad.
A nivel epistemológico, como imaginaréis, la ciencia opera de modo radicalmente distinto, parafraseando a Jorge Wagensberg: la ciencia exige la máxima objetividad (para ser universal), la máxima inteligibilidad (para que todos podamos entender y rebatir) y la máxima dialéctica con la realidad (para progresar y autocorregirse). 

La ciencia no se funda en verdades inmutables, como ya nos dijo Karl Popper, sino que se autorevisan continuamente. No hay forma de saber cuántas de las actuales teorías resultarán erróneas en el día de mañana. Así pues, ¿cuánta fe hemos de depositar en lo que nos diga la ciencia? Responde a ello Sam Harris en su libro El fin de la fe:
La ciencia es ciencia porque representa nuestro esfuerzo constante de verificar que nuestras afirmaciones sobre el mundo son certeras (o al menos no falsas). Hacemos eso observando y experimentando dentro del contexto de una teoría. Decir que una teoría científica concreta puede estar equivocada no implica decir que pueda estar equivocada en todos sus elementos, ni que cualquier otra teoría tenga las mismas posibilidades de ser acertada.
Fuente:

Xakata Ciencia

6 de enero de 2013

BBC: Los errores científicos de la ciencia ficción

The Big Bang Theory

Claramente no es una ciencia exacta, pero desde los inicios del cine el género de la ciencia ficción ha atraído una gran cantidad de público.

Si a eso se le suma el auge de las series de televisión sobre investigadores, como la premiada The Big Bang Theory, podría decirse que hoy los científicos viven sus 15 minutos de fama y popularidad.

Sin embargo, las series o películas aun están a años luz de mostrar fielmente cómo se trabaja en ciencia. 
 El programa científico de BBC, El club de ciencias de Dara O Brian, le pidió a cuatro expertos que dejaran al descubierto sus "errores favoritos" del cine o la televisión. Y estos fueron los resultados.

Curas y soluciones en medio segundo

"Algo que nunca deja de sorprenderme es cuando muestran a los científicos resolviendo un problema. ¡Se demoran cinco minutos!", asegura la física Janna Levin.

Galileo Galilei

¿Se habrá revolcado en su tumba Galileo al ver el tamaño de King Kong?

Sin embargo la ciencia real no funciona así. "Necesitamos analizar la idea, pensar, repensar. Hay errores, equivocaciones".

Según la profesora e investigadora, ni la televisión ni el cine reflejan la realidad del proceso científico. "Es increíble, porque de inmediato aparece una solución maravillosa en la pantalla de su computadora", agrega.

Las proporciones de King Kong

"Si vamos a hablar de errores, tenemos varias opciones", asegura el astrónomo Martin Rees, respecto de la acuciosidad hollywoodense.

Según el científico, uno de los más evidentes es la absoluta ignorancia sobre la ley cuadrático-cúbica de Galileo, que establece que cuando una forma crece en tamaño, su volumen crece más rápido que su superficie.

"La escala desarrollada por Galileo no es tomada en cuenta en muchas de las películas de ciencia ficción. Por eso es que King Kong no podría haber existido, ya que necesitaría piernas mucho más gruesas que su propio cuerpo para sostenerse a sí mismo", explica el astrónomo.

En busca del tiempo y espacio perdido

Mister Spock

Hollywood no es la fuente más fidedigna para entender el desarrollo científico.

Para los arqueólogos o paleontólogos es aun más fácil reirse de la nula investigación que algunas películas parecieran tener.

"Un clásico de los errores es 'Un millón de años A.C.' en la que Raquel Welch se gasta un montón de tiempo huyendo de dinosaurios y otras criaturas que se habían extinguido 65 millones de años antes", explica el paleontólogo Richard Fortey.

Otro de los que piensan que Hollywood está lleno de falsedades es el ingeniero en sonido Trevor Cox.

Su falsedad favorita es la sonorización de la frase "El espacio es la frontera final", de Viaje a las estrellas. "Es una frase venerada. Yo creo que pensaron: '¿El espacio? Nadie sabe. Pongámosle sonido".

Con todo, errores de tiempo o espacio, cosas imposibles o, al menos, poco probables, no hay que olvidar que la ciencia ficción es eso: ficción.


Fuente:

BBC Ciencia

18 de octubre de 2012

Científicos que han sido perseguidos por la religión

La religión no suele pisar el jardín de la ciencia so pena de perder su estatus: cuando la religión afirma hechos y éstos entran en conflicto con la evidencia científica, entonces la religión empieza a perder adeptos.



Sin embargo, algunas veces en que la religión ha tomado partido en las afirmaciones científicas, sus maneras han sido, digámoslo suavemente, un tanto agresivas. Quemar, torturar, matar, esa clase de agresividad.

Por ejemplo, Miguel Servet las pasó canutas por poner en duda la trinidad (a la vez que fue el que hizo una descripción pormenorizada de la circulación de la sangre y de cómo se mezcla con el aire en los pulmones). Giordano Bruno más de lo mismo por creer (entre otras cosas) que la Tierra giraba alrededor del Sol y no a la inversa, como aseguraban determinados credos religiosos. Bruno estuvo 8 años preso mientras se desarrollaba el juicio en el que se le acusaba de traición y herejía. Muchas veces se le ofreció retractarse de sus opiniones pero él siempre se negó. Sabiendo que iba a ser quemado vivo, siguió con su firme apego a lo que él consideraba cierto.
Wiliiam Tyndale también lo pasó un poco mal por traducir la Biblia al inglés. Y también fueron perseguidos o prohibidos por la Iglesia científicos e investigadores como Copérnico, Kepler y Descartes.

La víctima más famosa de la Inquisición probablemente sea Galileo, aunque, al final, tuvo un final bastante “afortunado”: sólo le “enseñaron” los instrumentos de tortura (el potro, para más señas) y le concedieron la oportunidad de retractarse por “haber creído y defendido que el Sol es el centro del mundo y está inmóvil, y que la Tierra no es el centro y se mueve”.

Es natural que Galileo se retractara. Muchos de nosotros lo hubiera hecho ante la simple visión del potro. Por si os creéis muy valientes, prestad atención a la descripción que hace del potro el escritor y viajero William Lightgow, contemporáneo de Galileo:
Al accionar la palanca, la fuerza central de mis rodillas contra las dos tablas me partió por la mitad los tendones de los músculos, y las cápsulas de las rodillas acabaron aplastadas. Se me empezaron a salir los ojos de las órbitas, echaba espuma por la boca y me castañeaban los dientes como el redoble de un tambor. Me temblaban los labios, gemía con vehemencia, y la sangre me brotaba de los brazos, manos, rodillas y tendones rotos. Tras liberarme de esos pináculos del dolor, me dejaron en el suelo con las manos atadas y esa incesante imploración: “¡Confiensa! ¡Confiesa!”.
Esgrimir creencias con un sustento epistemológico débil y una carga sentimental añadida (como ocurre con el patriotismo, la lengua o el fútbol) tiene mucho de espinoso, porque las razones que las defienden no se pueden discutir racionalmente y porque resultan muy frágiles a los nuevos descubrimientos, de modo que, tal y como explica el psicólogo cognitivo Steven Pinker en su libro Los ángeles que llevamos dentro, no importa la creencia, al final el fundamentalismo puede alcanzar a cualquier individuo:
Aunque muchos protestantes eran víctimas de tales torturas, cuando gozaron de la posición dominante las infligieron con el mismo entusiasmo a otros, incluidas cien mil mujeres que, entre los siglos XV y XVIII, murieron quemadas en la hoguera acusadas de brujería. (…) La tortura institucionalizada en la cristiandad no era solo una costumbre irreflexiva; tenía fundamentos morales. Si uno cree de veras que no aceptar a Jesús como salvador supone un billete para el abrasador castigo eterno, torturar a una persona hasta que admita esta verdad equivale a hacerle el mayor favor de su vida: mejor unas horas ahora que la eternidad más adelante. Y acallar a una persona antes de que corrompa a otras, o convertirla en un ejemplo para disuadir a los demás, es una medida responsable de salud pública.
Afortunadamente, esos tiempos oscuros ya han pasado. La gente se siente ofendida en sus creencias, por supuesto (ofenderse es un efecto secundario de la libertad expresión), pero ya no decide torturar o matar a quienes afirman algo que no les parece oportuno (aunque aún existan algunas teocracias donde eso todavía no es así). La mayoría de los cristianos devotos en las sociedades modernas son personas completamente tolerantes.

Por eso tenéis los comentarios de aquí abajo para ciscaros todo lo que queráis en este artículo. Es vuestro derecho, como lo es el mío hacerlo posteriormente en vuestros argumentos.

Fuente:

2 de agosto de 2011

El mito de Arquímedes y la corona de oro


La leyenda cuenta que el Rey Hierón II de Siracusa (aprox. 306-215 a. C.) había mandado a fabricar una corona de oro, para la cual entregó un lingote a un orfebre. Cuando el trabajo concluyó, le fue devuelta, y si bien pesaba exactamente lo mismo que el lingote que había entregado, Hierón comenzó a dudar de si el orfebre había sido deshonesto y había reemplazado parte del oro por algún material más económico.

(siempre con énfasis en la palabra leyenda)

Hierón encargó a Arquímedes (aprox. 287 – 212 a. C.), por ser un inventor, matemático, físico e ingeniero de la época a que resolviera el problema. Claramente la corona no podía ser cortada en trozos, fundida, ni nada parecido, por lo que había que buscar otra manera. Arquímedes sabía que el oro un metal extremadamente pesado (un litro de oro pesa 19,3 Kg), y que cualquier otro metal que hubiese utilizado debería ser más liviano (una misma medida de plata pesaría 10,49, y de plomo, 11,34 Kg). Esto significaba que si se hubiese utilizado otro material, la corona debería tener un volumen mayor. En ese momento se sabía calcular el volumen de un cuerpo geométrico, pero una corona es totalmente irregular como para realizar un cálculo preciso, y nuevamente, la posibilidad de fundir la corona dentro de un recipiente regular, no existía (si el genio en cuestión quería conservar su vida por lo menos).

Continuando con la leyenda, en una ocasión, Arquímedes se fue a tomar un baño en una bañadera que estaba llena hasta el borde. Comenzó a sumergirse de a poco, a la vez que notaba cómo el agua se volcaba. Y en una explosión de lucidez, notó que el volumen de agua que se volcaba tenía que ser similar al volumen de su cuerpo que se iba sumergiendo. Debido a la emoción, gritó el famoso y épico ¡Eureka! ("εὕρηκα", en griego antiguo, "¡Lo he encontrado!") y salió corriendo desnudo por las calles de Siracusa.

Finalmente, comprobó mediante otros experimentos que efectivamente el volumen de un cuerpo sumergido es similar al del líquido que desplaza (todo científico serio comprueba varias veces y de forma empírica sus ideas). Realizó el experimento con la corona y un lingote de oro de igual masa, y notó que la corona desplazaba más agua, por lo que el orfebre había reemplazado parte del oro por otro material, y eso le costó la cabeza.

Detrás de la Leyenda

Muy bien, esa es la famosa leyenda de Arquímedes que ilustra de manera extremadamente sencilla el surgimiento de las ideas y algo de método científico, y esboza el surgimiento del Principio de Arquímedes. Pero ¿qué problemas tiene esta historia?

Primero, esta anécdota no figura en ningún escrito conocido de Arquímedes. La primera referencia al mismo aparece unos 230 años después, en un relato del escritor romano Vitruvius (un libro arquitectura e ingeniería llamado De Arquitectura). Por lo que en este punto ya podemos desconfiar de que realmente haya sucedido todo esto.

Segundo, no explica mucho sobre el principio de Arquímedes, que se supone quiere explicar:

Un cuerpo total o parcialmente sumergido en un fluido en reposo, recibe un empuje de abajo hacia arriba igual al peso del volumen del fluido que desaloja.


La corona de oro más grande que se ha encontrado de los tiempos de Arquímedes, mide unos 18,5 centímetros y pesa 714 gramos. Y no era precisamente una corona, sino más bien un ramo de laureles. De todas formas, pensemos que mucho más peso para llevar sobre la cabeza resultaría incómodo, ridículo o peligroso, por lo que sería bastante improbable.

Aun así, y para simplificar los cálculos, asumamos que la corona pesaba 1000 gramos. Esa cantidad de oro, debido a su gran densidad sería de 51,8 centímetros cúbicos. El recipiente, por razones obvias, tiene que ser mayor que la corona. Supongamos que es redondo, y mide 20 centímetros. Esa corona, sumergida en este recipiente, desplazaría sólo 1,65 milímetros (algo que de por sí, está muy cerca del "ancho" de la "panza" que forma el agua por la tensión superficial).

En el hipotético caso de que el orfebre hubiese reemplazado un 30% del oro por plata (algo que ya es mucho), habría tenido una corona ligeramente más grande, de 64,8 centímetros cúbicos. Volumen que, sumergido en el mismo recipiente, habría desplazado 2,06 milímetros. Comparando a ojo, o incluso con instrumentos de precisión sería muy difícil notar una diferencia del nivel del agua de 0,41 milímetros. Además, estaríamos asumiendo que la corona es perfectamente sólida, y que no sólo no hubo salpicaduras de agua, sino que la fundición del oro no dejó ninguna burbuja de aire en su interior. (fuente) Considerando todo esto, se me ocurren cuatro posibilidades:

1) Arquímedes notó esa diferencia de medio milímetro del nivel del agua en un recipiente que ni siquiera era transparente, pero el orfebre fue honesto, y el oro tenía alguna burbuja en su interior, se salpicó agua, observó mal o algún error así.

2) Arquímedes notó esa diferencia, y el orfebre era un verdadero estafador (esta sería la versión oficial, y dadas las circunstancias, me parece la más improbable).

3) Arquímedes no notó la diferencia, pero estaba muy empeñado en comprobar su teoría frente al Rey.

4) Arquímedes nunca usó esta técnica para comparar las coronas.


Galileo tras el mito

En el siglo XVI, Galileo Galilei se hizo estas mismas preguntas, y se inclinó más por la idea de que si realmente sucedió, el experimento tiene que haber sido otra forma, aunque contradiga los únicos registros conocidos.

En 1586, a sus 22 años, publicó el artículo La Bilancetta, en el que describía lo que se puede resumir en la imagen de la derecha.

Básicamente, si tenemos la corona de un lado de una varilla y el bloque de oro del otro, haciendo equilibrio (y despreciando la influencia del aire), cuando lo sumerjamos en un líquido (agua), los dos objetos desplazarán un volumen de agua diferente, por lo que recibirán un empuje desde abajo con diferentes valores, haciendo que la corona "flote más".

Teniendo en cuenta que comparar la cantidad de líquido desplazado es casi imposible con este tipo de instrumentos, y para tan poca diferencia, lo más probable es que Vitruvius haya recogido un rumor erróneo. Incluso, tendría más sentido que Arquímedes haya realizado este otro experimento ya que aquí se aplica la idea de empuje hidrostático, que se explica en el principio que lleva su nombre.

Es posible que hayan tenido que pasar unos diesiciete siglos para poner aquella anécdota en orden. Y aun así, resulta un tanto decepcionante que nunca sabremos realmente qué pasó, o si pasó.

Fuente:

Proyecto Sandía


PD. Si desea conocer más sobre Arquímedes y sobre la famosa "leyenda" del ¡Eureka! puede revisar esta presentación (en power point) que realizamos en la producción de un programa de Conocer Ciencia:





Y también realizamos un programa especial sobre Arquímedes y sus obras, muchas de las cuales quedaron solo en bocetos y proyectos, recordemos que en la antigua Grecia un "noble" no podía trabajar con sus manos pues sería considerado "indigno", y Arquímedes no pudo sustraerse completamente a su época. Pero nos dejo un gran legado: la ciencia puede ser teoría, pero también puede ser practica (ciencia aplicada o tecnología).





Conocer Ciencia: Ciencia sencilla, ciencia divertida, ciencia fascinante...

conocerciencia@yahoo.es
conocerciencia@gmail.com

2 de diciembre de 2009

La construcción de telescopios gigantes


Miércoles, 02 de diciembre de 2009

La construcción de telescopios gigantes

Lea en los archivos de Conocer Ciencia:

20 cosas que no sabías sobre los telescopios.

Galileo no fue el primero en mirar por un telescopio.

Galileo y la experimentación científica.

Construye tu propio telescopio casero

Hágalo usted mismo: Telescopio (dos propuestas)



Proyecto para el telescopio Europeo Extremadamente Grande. | ESO

Proyecto para el telescopio Europeo Extremadamente Grande. | ESO

En el año 2009, simultáneamente con el lanzamiento de tres potentes telescopios espaciales, Kepler, Herschel y Planck, se están definiendo las características esenciales de tres Telescopios Extremadamente Grandes (ELT), dos norteamericanos y uno europeo. Se espera que estos telescopios entren en operación en la segunda mitad de la década de los 2010.

En Radioastronomía hay que destacar dos proyectos colosales: la construcción del Atacama Millimeter Array (ALMA) que deberá finalizar hacia 2013, y el diseño del Square Kilometer Array (SKA) que está previsto hacia 2022. La observación con estos instrumentos revolucionará completamente la Astronomía en tan sólo dos décadas. La apasionante aventura del telescopio que comenzó con el anteojo de Galileo no sólo no ha llegado a su fin, sino que se encuentra en una auténtica edad de oro.

Espejos monolíticos

Tres telescopios VLT en Chile. | ESO

Tres telescopios VLT en Chile. | ESO

A lo largo del siglo XX el desarrollo de las tecnologías del pulido del vidrio y del aluminizado llegaron a hacer posible la construcción de espejos realmente grandes, de varios metros de diámetro. Al telescopio Hale de 5 metros de Monte Palomar (en California), que fue instalado en 1948, le siguió en 1976 el telescopio BTA-6, equipado con un espejo de 6 metros, en Zelenchukskaya (en el Cáucaso).

Fue la introducción de los ordenadores lo que permitió lograr una gran precisión en el control tanto del apuntado como del seguimiento de estos enormes telescopios. Hoy, los mayores espejos (monolíticos) del mundo son los de los dos telescopios Gemini (uno en Chile y otro en Hawai), los cuatro VLT (Very Large Telescope) construidos por el Observatorio Austral Europeo (ESO) en el Monte Paranal (Chile), y el Gran Telescopio Binocular de Monte Graham (Arizona). Todos estos telescopios están equipados con espejos de diámetros entre 8,1 y 8,4 metros. Es en estos valores en los que se encuentra el límite impuesto por la tecnología actual de construcción y pulido de grandes espejos.

Espejos fragmentados

El tamaño máximo de unos 8 metros que limita a los espejos ha podido ser superado mediante el desarrollo de espejos fragmentados que están constituidos por múltiples paneles. El pionero telescopio norteamericano MMT (Multiple Mirror Telescope) que se instaló en el Monte Hopkins, Arizona, en 1979, estaba equipado con un pequeño mosaico de seis paneles de 1,8 metros de diámetro que era equivalente a un espejo de 4,5 metros. Este instrumento también incluía otra importante innovación: su montura alt-azimutal que, aunque utilizada mucho en radioastronomía, tan sólo había sido utilizada en contadas ocasiones en astronomía óptica.

El Gran Telescopio de Canarias. | H. Raab

El Gran Telescopio de Canarias. | H. Raab

Sin embargo, en contraste con la montura ecuatorial (organizada en torno a un eje paralelo al terrestre), la montura alt-azimutal permite la construcción de estructuras de mayor envergadura y mayor peso manteniendo una gran estabilidad. Los ordenadores hacen posible el fino control para que un telescopio sobre una montura de este estilo pueda apuntar a un astro y compensar el movimiento de rotación de la Tierra con la altísima precisión que es indispensable.

Las innovaciones del MMT fueron aprovechadas por muchos otros telescopios ópticos. En 1993 y 1996 se pusieron en marcha los dos grandes telescopios Keck. Cada uno de estos telescopios está dotado con un espejo de 9,8 metros constituido por 36 paneles individuales. Nuevamente han sido los ordenadores los que han permitido el desarrollo de dos técnicas revolucionarias conocidas como 'óptica adaptativa' y 'óptica activa' que permiten, por un lado, neutralizar diferentes deformaciones de los grandes espejos y, además, burlar a la atmósfera terrestre compensando las distorsiones que ésta introduce sobre el débil rayo luminoso que nos llega desde un astro lejano.

Cúpula del Gran Telescopio de Canarias. | Ion Ortega

Cúpula del Gran Telescopio de Canarias. | Ion Ortega

El Gran Telescopio de Canarias que ha entrado en operación en el año 2009 en el Observatorio del Roque de los Muchachos (Instituto de Astrofísica de Canarias) posee el récord actual con un espejo de 10,4 metros que está compuesto por 26 segmentos hexagonales de 1,9 metros de tamaño cada uno.

Extremadamente Grandes

El Giant Magellan Telescope. | GMTO

El Giant Magellan Telescope. | GMTO

Pero la historia de los telescopios terrestres no acaba aquí y ya hay varios proyectos para construir varios 'Telescopios Extremadamente Grandes' (ELT por sus siglas en inglés). Con espejos segmentados cuyos diámetros efectivos superan los 20 metros, estos telescopios deberán servirse de técnicas avanzadas de óptica adaptativa para escudriñar los límites del universo. Los sistemas de óptica adaptativa utilizan una combinación de estrellas reales y artificiales (producidas mediante un láser) para medir la turbulencia atmosférica y compensar sus efectos perniciosos.

El primero de estos grandes proyectos es el Giant Magellan Telescope (GMT) que estará ubicado en el Observatorio de Las Campanas (Chile). Se trata de siete segmentos de 8,4 cada uno para conformar un espejo equivalente de unos 24 metros.

El Thirty Meter Telescope. | TMT

El Thirty Meter Telescope. | TMT

El Thirty Meter Telescope (TMT) es otro proyecto norteamericano que, como su nombre indica, está siendo diseñado para proporcionar un espejo fragmentado de 30 metros de diámetro que estará instalado en el gran observatorio de Mauna Kea (Hawai). Tanto el GMT como el TMT deberían entrar en operación hacia el año 2018.

Finalmente hay que destacar que el Observatorio Austral Europeo (ESO), organización en la que participa España, ya tiene muy avanzado el diseño de un telescopio de 42 metros de diámetro (denominado E-ELT, European Extremely Large Telescope) que estará constituido por un millar de espejos de 1,5 metros. La localización de este gigante aún no está decidida, pero su construcción podría comenzar hacia el año 2011 y extenderse durante al menos unos 5 años, por lo que no cabe esperar que entre en operación antes del año 2016.

Radioastronomía colosal

El radiotelescopio ALMA. | ESO

El radiotelescopio ALMA. | ESO

La Radioastronomía tiene dos proyectos colosales. De hecho, el proyecto más ambicioso actualmente en construcción en Astronomía es el Atacama Large Millimeter Array (ALMA), un interferómetro constituido por 66 antenas de altísima precisión que está siendo instalado a 5000 metros de altitud en el Llano de Chajanantor (Atacama, Chile). Con un coste en torno a mil millones de euros, la construcción de este observatorio ha aunado los esfuerzos de Norteamérica, Europa, Japón, Taiwan y Chile. Este radiotelescopio gigante incorpora la vanguardia de la tecnología de microondas en unos receptores que cubren la práctica totalidad del espectro de ondas milimétricas y submilimétricas (frecuencias desde 30 hasta 1000 GHz). La construcción de ALMA no se completará antes del año 2013, pero las primeras observaciones de interés astronómico están previstas para el 2011.

[foto de la noticia]

Como complemento de ALMA para las ondas más largas, el Square Kilometer Array (SKA), está siendo diseñado para que un área efectiva de un millón de metros cuadrados cubra frecuencias de unos 70 MHz hasta unos 10 GHz. El diseño de este interferómetro es completamente revolucionario pues incluye la combinación de millares de pequeñas antenas parabólicas móviles con antenas fijas de tipo 'aperture array' que estarán repartidas por varios miles de kilómetros. La construcción de este telescopio, que se ubicará en Australia o en Sudáfrica, no se completará antes del año 2022

1609-2009… y la aventura continúa

La aventura del telescopio que comenzó en 1609 con aquella primera observación realizada por Galileo está lejos de llegar a su fin. Los telescopios espaciales y los telescopios gigantes (tanto los ya construidos como los proyectados) poseen concepciones que parecen muy alejadas del sencillo anteojo de Galileo. Sin embargo, exactamente igual que aquel rudimentario instrumento, todos estos alardes tecnológicos siguen llevando impresa, como principal característica, la curiosidad de sus creadores. Y tal curiosidad está lejos de ser saciada.

Ver más allá, emplazar nuestro planeta en el cosmos, tratar de comprender nuestros orígenes, desentrañar la compleja trayectoria evolutiva que nos condujo a hasta este determinado punto del espacio-tiempo, son algunas de las ambiciones que van depositadas en todos estos imaginativos instrumentos. Ya sea un mero par de toscas lentes, un sofisticado y enorme radiotelescopio, o un telescopio espacial orbitando a un millón y medio de kilómetros desde la Tierra, su misión siempre consiste en responder a nuestros insistentes interrogantes, en tratar de revelar estos esquivos misterios: cuál es nuestro lugar en el Universo, cuál es nuestro origen cósmico, cuál nuestro destino.

Fuente:

El Mundo Ciencia


Más momentos:

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0