Latest Posts:

Mostrando las entradas con la etiqueta animales. Mostrar todas las entradas
Mostrando las entradas con la etiqueta animales. Mostrar todas las entradas

12 de septiembre de 2016

Los nacimientos de vacas aumentan en noches de Luna llena

Una investigación japonesa ha descubierto un incremento de los partos en las proximidades de la Luna llena, despues de registrar 428 alumbramientos.


Los científicos no han logrado ponerse de acuerdo a la hora de estudiar la influencia de la Luna llena sobre el ser humano. De momento se ha concluido que puede acortar el sueño de los niños en unos cinco minutos en comparación con la Luna nueva, pero los intentos que han intentado relacionarla con la frecuencia de asesinatos o de nacimientos han fracasado. Parece ser que el humano es una criatura complicada en la que la educación, los ingresos, los aspectos psicosociales o la simple luz de las ciudades tienen un papel más importante que la gravedad del satélite.

Pero las vacas parecen ajenas a ese jaleo. Según un estudio publicado este miércoles en «PLOS ONE» la Luna llena tiene la capacidad de influir en los nacimientos de las vacas, y aumentar el número de partos que se producen en las noches de Luna llena.

Tal como ha explicado Tomohiro Yonezawa, investigador de la Universidad de Tokio y coautor del estudio, mientras que «muchos factores, como la nutrición, el entorno social o el trasfondo genético pueden ocultar la influencia de la Luna en las mujeres», en las vacas no ocurre lo mismo. Por eso, en su opinión, «las vacas son un buen modelo para separar la influencia de la luna de otros factores que también influyen en los partos».

El artículo completo en:

ABC Ciencia

3 de septiembre de 2016

La ropa del 'hombre de los hielos' se hizo con cinco especies animales

El análisis mitocondrial de las pieles usadas para la ropa que llevaba Ötzi revela cómo se fabricaban las prendas de vestir hace 5.300 años.

Conoce los materiales del calzado y lo leggins de nuestros antepasados!!!


Oso pardo, corzo, oveja, vaca y cabra. Estas cinco especies animales fueron utilizadas para fabricar las prendas de vestir que llevaba la momia de Ötzi, el hombre que vivió hace 5.300 años y que fue encontrado en los Alpes en 1991 a más de 3.000 metros de altitud. Así lo asegura un estudio publicado esta semana en la revista Scientific Reports en el que se han analizado nueve fragmentos de las prendas que vestía este individuo, conocido popularmente como el hombre de los hielos.

El hallazgo de la momia de este europeo ha ofrecido a los investigadores una ventana a la que asomarse para averiguar cómo era la forma de vida de nuestros antepasados durante la Edad de Cobre. Su cuerpo fue momificado de forma natural y salió a la luz debido al deshielo de unos de los glaciares de la zona en la que fue hallado, en la frontera entre Austria e Italia, por lo que también se le conoce como el tirolés.

Las distintas investigaciones realizadas hasta ahora han aportado información sobre la dieta, las enfermedades que padecía o su genoma. Se sabe, por ejemplo, que murió de forma violenta y que tuvo una úlcera, como mostró recientemente otro equipo de investigadores al analizar las bacterias de su estómago. Y también sobre las herramientas que usaba, su vestimenta y el grado de desarrollo que tenían a la hora de fabricar ropas y utensilios. 

Y es que como demuestra esta nueva investigación, los habitantes de esa zona europea hace cinco milenios trataban las pieles de los animales. Los procesos de manufacturación empleados, de hecho, han dificultado la identificación de los animales de los que procedían los cueros y pieles empleadas, impidiendo que estudios anteriores llegaran a los mismos resultados que los que recoge esta nueva investigación. Para llevarla a cabo, secuenciaron los genomas mitocondriales de nueve fragmentos de cueros y pieles procedentes de las prendas de vestir de Ötzi y de su aljaba, la bolsa en la que guardaba las flechas.


La momia de O¨tzi fue encontrada en 1991


El artículo completo en:

El Mundo (España)

30 de abril de 2016

Tully, un extraño pez prehistórico





Es probable que nunca haya visto una imagen de la extraña criatura, ya extinguida, sobre la que trata este artículo. Pero Tullimonstrum gregarium, conocido popularmente como monstruo Tully, es toda una celebridad en Illinois (EEUU). En 1989 fue declarado fósil oficial de este estado donde se han encontrado todos los especímenes hallados hasta ahora. Hasta tal punto es famoso allí el monstruo Tully que sus dibujos decoran las caravanas y los camiones de la firma U-Haul.


Aunque fue descubierto por primera vez en 1958 y descrito científicamente en 1966, los paleontólogos todavía no sabían qué tipo de animal fue esta criatura de cuerpo blando y menos de 20 centímetros de longitud, que vivió hace unos 300 millones de años, durante el periodo Carbonífero, en aguas costeras poco profundas.

Habían reconstruido con mucha precisión qué aspecto tenía, pero no sabían qué era. Basándose en algunas de sus características, pensaban que podía tratarse de una especie invertebrada, pero un nuevo y detallado estudio publicado esta semana en la revista Nature contradice esa teoría y resuelve el misterio del monstruo Tully, denominado así por su extraño aspecto y en homenaje a su descubridor, Francis Tully, un coleccionista de fósiles.

El artículo completo en:

El Mundo Ciencia

14 de abril de 2016

¿En qué se parecen un calamar y una araña?

Las proteínas de los dientes succionadores del cefalópodo son similares a las de la resistente telaraña. Los científicos tratan de aprovecharlas para fabricar nuevos materiales.


Imágenes con microscopio electrónico de barrido de un calamar y una araña - Foto James Weaver y Nadine Dupérré

El calamar tiene más cosas en común con la araña de lo que podríamos pensar, según los resultados presentador por el equipo de la investigadora Akshita Kumar, en la edición número 60 de la reunión anual de la Sociedad de Biofísica. Los dientes afilados como cuchillas que rodean las ventosas de algunos tentáculos de calamar, aseguran, están formados por proteínas muy similares – y en alguna forma incluso superiores – a las que se encuentran en las resistentes sedas que producen las arañas. Estas proteínas, que se llaman succionadoras (‘suckerins’), le dan a los dientes su fuerza y elasticidad, y en un futuro podrían utilizarse como base para biomateriales con muchísimas aplicaciones potenciales en biomedicina. 

Con la esperanza de poder utilizar la fuerza de las proteínas succionadoras, el equipo de Kumar está descifrando sus estructuras moleculares. En su último trabajo, el grupo ha descubierto que las proteínas succionadoras se componen de lo que se conoce como redes de beta-sábanas de polímeros, lo que hace que los dientes tengan tanta fuerza. Los investigadores también han descubierto que estas redes son termoplásticas, lo que significa que se derriten cuando se calientan y se endurecen cuando se enfrían. Esto hace que el material sea moldeable y reutilizable, como los polímeros sintéticos termoplásticos que se utilizan para hacer tuberías de PVC. 

“Las proteínas succionadoras son una combinación única de propiedades mecánicas y biofísicas que parecen hacerlas mejores que otros polímeros sintéticos o naturales”, afirma Kumar. “Y este material nos da un nuevo paradigma, ya que un biomaterial fuerte puede estar completamente hecho de proteínas, sin la necesidad de añadir una segunda fase rígida, por ejemplo un mineral como en el hueso, para fortalecerla”. 

El artículo completo en:

Vox Populi

6 de abril de 2016

Cuál es el animal que tiene más crías (por si acaso no es el conejo)


Entre los mamíferos, los conejos son famosos por su capacidad para reproducirse siendo considerados desde la antigüedad como símbolos de fertilidad.

Esa reputación se la ganaron por un par de adaptaciones: ya son sexualmente activos a los tres o cuatro meses y las hembras pueden volver a quedar preñadas apenas dan a luz.

Eso significa que, durante el período de celo, pueden tener múltiples camadas de hasta siete crías.

Pero esa temporada de celo es realmente clave. En Europa los conejos solo se reproducen en primavera y verano, lo que limita el número de crías.

Sin embargo, en partes de Australia y Nueva Zelanda, países donde los conejos europeos fueron introducidos, se pueden reproducir durante todo el año, llegando a tener hasta siete camadas.
Como no es de extrañar, en esos países los conejos son considerados como pestes.
De hecho, el estatus de plaga está muchas veces ligado a los hábitos de reproducción y puede ser un punto de partida útil para identificar a los animales más fecundos del mundo.
Por ejemplo, Australia también sufre una inmensa cantidad de plagas de ratones.

Al tener comida abundante y las condiciones ambientales adecuadas, las hembras pueden tener una camada promedio de seis crías cada mes y esos descendientes, a su vez, pueden comenzar a reproducirse al mes siguiente de nacer.
Y su densidad puede alcanzar los 2.700 ratones por hectárea en los graneros.

Decoloración del coral

Si esos números no son suficientemente extremos para ti, entonces piensa en el "mayor espectáculo sexual del planeta".

Cada primavera la Gran Barrera de Coral hace que las mareas se vuelvan rosadas en un desove masivo.

En vez de aparearse físicamente, los corales sincronizan la liberación de su esperma y huevos para aumentar las posibilidades de fecundación a lo largo de la extensión completa de un coral.

"Creo que nadie ha intentado realmente contar cuántos huevos produce un solo individuo", dice la Dra. Mary Hagedorn del Instituto de Biología de la Conservación Smithsonian (SCBI, por sus siglas en inglés).

"La mayoría de las personas lo describen como un gigantesco número de huevos producidos durante un desove y eso podría significar muchos millones producido por un solo coral".

Puede que millones de huevos suenen como mucho, pero el tiempo está en contra de los corales.

El artículo completo en:

BBC Ciencia

8 de octubre de 2015

La increíble pero real historia de los murciélago-bomba

Una de las más delirantes ideas que estuvieron a punto de ponerse en práctica durante la II Guerra Mundial.
 
Atacar Japón con un ejército de murciélagos equipados con bombas. Parece una idea disparatada, pero estuvo a punto de ponerse en práctica durante la II Guerra Mundial. Esta idea fue concebida por un dentista estadounidense llamado Lytle S. Adams, tras el ataque a Pearl Harbor, quien envió un proyecto detallado con su plan a la Casa Blanca. El presidente Roosevelt le dio el visto bueno y se asignó un presupuesto de dos millones de dólares para esta peculiar estratégica.

Pero, ¿por qué usar murciélagos y no otros animales? Básicamente, porque estos podían orientarse en la oscuridad y transportar un peso muy superior al de su propio cuerpo. Lo curioso es que las primeras pruebas dieron resultado, y los murciélagos se revelaron eficaces bombardeando una falsa ciudad japonesa construída en el desierto de Nevada.

Finalmente, esta estrategia se abandonó proque el Departamento de Defensa prefirió centrar sus esfuerzos y recursos en desarrolla rel Proyecto Manhattan y fabricar contra reloj una bomba atómica.

Fuente:

QUO

7 de agosto de 2015

Conoce el organismo que nunca envejece

Los seres humanos llevamos toda la vida intentando hallar la forma de luchar contra el proceso imparable del envejecimiento. Ahora, un equipo de investigadores de la Universidad de Duke (EEUU) ha encontrado un organismo, de apenas un milímetro de longitud, que es capaz de hacerlo: detener su envejecimiento y duplicar así su esperanza de vida. El descubrimiento ha sido publicado en la revista Plos Genetics.

El organismo en cuestión es Caenorhabditis Elegans, un nematodo como el conocido Anisakis y los científicos han descubierto que ante la falta de alimento, éste puede entrar en un estado que le permite detener su desarrollo. El organismo puede seguir moviéndose aunque sus células estén aparentemente congeladas, obstaculizando así el proceso del envejecimiento.

Este proceso se revierte cuando el organismo vuelve a disponer de alimento, ya que entonces, retoma su desarrollo normal, aunque con el añadido de haber aumentado su esperanza de vida. Este proceso puede llevarle a duplicar su esperanza de vida estipulado en un principio.

Los investigadores esperan encontrar alguna forma, en el futuro, de replicar esta técnica exitosa anti-envejecimiento, pero ante todo, afirman que podría ser una buena herramienta para el tratamiento del cáncer ya que, “uno de los grandes misterios del cáncer es cómo sus células pueden hibernar en el organismo durante años antes de volver a la vida. Creo que los procesos de los nematodos que inducen sus células a estados de hibernación y luego las despiertan podrían ser los mismos que en las metástasis”, afirma David Sherwood, líder del estudio.

Fuente:

Muy Interesante

Estigmergia y Wikipedia

El término «estigmergia» fue acuñado en 1959 por Pierre-Paul Grassé (1895-1985), un zoólogo francés experto en termitas. Grassé se refería con estigmergia al fenómeno de comunicación indirecta entre termitas, mediante la modificación del ambiente, como es por ejemplo un rastro de feromonas. Otros individuos de la especie pueden detectar este rastro, de forma que colaboran por un bien común: la supervivencia de la colonia. Ver a una hormiga o una termita deambulando sola es un espectáculo lamentable, parece una criatura torpe y despistada. Sin embargo, debemos observarlas en su conjunto, como un sistema de auto-organización descentralizado con el que se obtienen objetivos comunes. En un termitero miles de termitas cooperan en la construcción de una estructura que supera con creces su capacidad de comprensión. Se trata, en esencia, de una construcción destinada a la ventilación de la cámara donde se encuentra la reina, los huevos y un hongo que cultivan para su alimentación, para que la temperatura interior se mantenga constante. Y lo consiguen.

Fuente Wikicommons
Fuente Wikicommons
Estas estructuras físicas complejas son equivalentes a cualquier estructura social en distintas especies, como abejas o estorninos. Y los científicos no están muy alejados de las termitas, entre las cuales parece que hay una ley no escrita: «si tu compañera ha dejado un grano de arena, deja tú otro en el mismo sitio». A medida que han ido pasando los siglos, el conocimiento sobre la naturaleza se ha ido mejorando gracias a esos granos de arena que una cantidad incontable de estudiosos han ido dejando por multitud de vías. La cooperación puede llevar a buenos o malos resultados, tal es el caso observado por el biólogo T. C. Schneirla en relación a un grupo de hormigas sumido en una actividad extravagante: giraban describiendo circunferencias sin parar.
«Aquella tarde había caído un buen aguacero y eso posiblemente había interrumpido la incursión y eliminado el rastro químico que mantenía conectado al grupo con la colonia principal de hormigas. Cuando dejó de llover, los primeros individuos del grupo probablemente habían salido a explorar el área sin apartarse de la periferia del grupo, donde se sentían más seguros. Al hacerlo, dejaron un rastro circular de feromonas que las demás hormigas no tardaron en seguir. Al cabo de un rato el rastro era tan intenso que ninguna de ellas era capaz de escapar. […] Al final del día, las hormigas habían dado vueltas durante más de quince horas». A unique case of circular milling ants, considered in relation to trail following and the general problem of orientation, «American Museum Novitates», Schneirla.

El artículo completo en:

Cadernos de Cultura Científica

28 de julio de 2015

¿Cuál es el ser vivo con el olfato más poderoso?

Revelan que el genoma de los elefantes africanos contiene cerca de 2.000 genes receptores olfativos (OR), el mayor número registrado hasta la fecha.


Además de ser el animal terrestre más grande, el elefante africano también puede presumir de poseer el olfato más poderoso de todos los seres vivos.

Esa es la conclusión que se desprende de un estudio publicado en Genome Research por investigadores japoneses.

Para realizar este estudio, los científicos compararon los genes receptores olfativos (encargados de detectar los olores en el medio ambiente) de los elefantes con el de otros 13 mamíferos, entre ellos caballos, conejos, conejillos de indias, vacas y chimpancés.

Tras obtener los resultados, se comprobó que los elefantes (con 1948 receptores olfativos) disponen de un olfato cinco veces más desarrollado que el de los seres humanos (386), más del doble que el de los perros (811), y mucho más que el de los que ostentaban el anterior récord: las ratas (1.207).

"Las funciones de estos genes no se conocen bien, pero probablemente son importantes para las condiciones de vida de los elefantes africanos -asegura el investigador principal, Yoshihito Niimura.

Por el contrario, los seres humanos, junto con sus parientes primates, tienen muchos menos genes olfativos en comparación con el resto de especies examinadas. Posiblemente, esto se deba a la disminución de su dependencia del olfato a medida que mejoró su agudeza visual.

"Comparar los repertorios de los genes OR entre los mamíferos nos permite conocer las similitudes y diferencias en la percepción olfativa, ampliando nuestra comprensión sobre el sentido del olfato en los humanos", concluye Niimura.

Otro dato curioso que se extrae del estudio es que las 13 especies estudiadas sólo tienen tres genes olfativos en común.

Fuente:

QUO

19 de julio de 2015

La inteligencia artificial desvela los secretos de la planaria: gusano ‘inmortal’

Un algoritmo descubre por sí solo detalles de la regeneración de las planarias.



Si a una planaria se le corta la cola, como una lagartija, a las pocas semanas tendrá una nueva. Pero lo que no pueden las lagartijas es regenerarse si le cortas la cabeza como consiguen estos gusanos planos. Si los troceamos en 100 partes, tendrás no un gusano sino 100. Ahora, un sistema de inteligencia artificial ha descubierto el modelo que siguen estos seres para ser inmortales.
Las planarias (de la clase de las Turbellaria) son unos gusanos que se pueden encontrar en agua dulce, los mares y en terrenos húmedos. Por su increíble capacidad de regenerarse, el naturalista escocés John Dalyell las definió como ese "gusano inmortal bajo la hoja de un cuchillo" a comienzos del siglo XIX. Desde entonces, los científicos le han hecho toda clase de perrerías a las planarias: le han cortado la cabeza, la cola, la han diseccionado tanto longitudinalmente como en trocitos. Siempre sobrevive.
Más recientemente, le han inyectado todo tipo de fármacos y han jugado con sus genes obteniendo planarias de múltiples colas o, como la Hidra de Lerna, con varias cabezas. Incluso, al inyectarle cadenas de ARN se pueden crear quimeras o planarias siamesas. Detrás de esta capacidad de regeneración puede estar el hecho de que al menos el 25% de su tejido celular está formado por células madre. A pesar de todos esos experimentos, los científicos siguen sin un modelo claro de cómo se regeneran.
"Nuestro sistema ha descubierto el primer conjunto de normas, una red, el que que cuando cada célula sigue esas normas, los resultados son exactamente iguales a los publicados en la literatura científica", dice el director del Centro de Biología Regenerativa y del Desarrollo de la Universidad Tufts (EE UU), Michael Levin. "Puede explicar por qué las distintas partes del gusano toman la correcta identidad cabeza/cola y muestra por qué los diversos experimentos previamente publicados tienen los resultados que tienen", añade.
Lo particular de este modelo es que no lo ha descubierto Levin o su colega, el español Daniel Lobo. Lo sorprendente es que ha sido un sistema de inteligencia artificial. Diseñaron un algoritmo matemático que alimentaron con lo que se sabe de las planarias: genética, expresión de los genes, patrones de división celular...
"Creamos una base de datos con más de un centenar de experimentos sobre la regeneración de las planarias", explica Lobo, principal autor del estudio publicado en PLoS Computational Biology. "Para esta investigación, seleccionamos los más importantes, incluyendo manipulaciones quirúrgicas, genéticas y farmacológicas de la regeneración de la cola y la cabeza en las planarias, 16 experimentos en total. Hay que tener en cuenta que ningún modelo previo podía explicar más de uno o dos experimentos a la vez. Aquí, mostramos por primera vez un modelo que puede explicarlos casi todos", añade.
Pero su algoritmo no solo ha replicado con éxito lo que ya han hecho los humanos. En uno de los primeros ejemplos de ciencia hecha por robot (no confundir con la robótica), este sistema de inteligencia artificial descubrió al menos dos elementos nuevos en el puzle de la regeneración de estos gusanos. "Predijo la existencia de dos proteínas que deben formar parte de la red", comenta Levin.


La imagen muestra cómo de una planaria cortada en tres, surgen tres planarias. / TUFTS CENTER FOR REGENERATIVE AND DEVELOPMENTAL BIOLOGY
Para el planariólogo del departamento de genética la Universitat de Barcelona, Emili Saló, el algoritmo no solo viene a poner orden en la investigación sobre estos gusanos. "Hace una predicción de que, para que la red funcione correctamente, ahí debe de haber algo. Los modelos teóricos hacen predicciones que iluminan al investigador de que falta algo", comenta. De hecho, los investigadores compararon con los genes humanos para hacer su predicción. Eso sí, como aclara Saló, que no está relacionado con este estudio, "es un descubrimiento que habrá que confirmar con posteriores experimentos".
Saló, que lleva 40 años estudiando a las planarias, considera que este modelo generado por una inteligencia artificial permite ir más allá. "Los científicos analizaban hasta ahora en una sola dimensión, el algoritmo lo hace en dos dimensiones", reconoce. Sin embargo, aún quedan muchas cosas por descubrir de este organismo antes de que, como algunos sueñan, muestre todos sus secretos y la medicina regenerativa aprenda a fabricar órganos humanos en el laboratorio como hace la planaria.
El artículo completo en:

6 de abril de 2015

Las esponjas no tienen neuronas (¡Mil disculpas Bob!)

En esta oportunidad hablaremos sobre el sistema nervioso de las esponjas de mar.
Bueno, en realidad las esponjas aunque son animales no tienen sistema nervioso, ni neuronas, ni músculos, ni órganos, ni tejidos especializados. Son pacíficos sacos de células que viven anclados en su mundo marino. El animal más simple que uno se pudiera imaginar.
La sorpresa vino cuando Kenneth Kosik, buscando el origen evolutivo del sistema nervioso en los animales comenzó a estudiar las esponjas, que precisamente carecen de él. Y uno de los estudiantes de su laboratorio, Onur Sakarya, descubrió que la esponja Amphimedon queenslandica poseía prácticamente todos los genes necesarios para fabricar sinapsis (conexiones neuronales).
Citando a Pere:
“En las sinapsis encontramos una maquinaria muy especializada, llamada “densidad postsináptica”, hecha de centenares de diferentes proteínas, cada una colocada en un lugar muy concreto, cada una con un trabajo muy definido que hacer. Forman un andamiaje fuerte pero maleable, que cambia constantemente a medida que aprendemos. Siempre había pensado que debe de haber costado muchos millones de años de dura selección natural para llegar a este diseño tan inteligente y tan eficaz.
Pero resulta que toda esa maquinaria ya ha estado allí desde los mismos orígenes del reino animal. Las esponjas, de las que los humanos nos desviamos evolutivamente hace unos 600 millones de años, ya tienen y tenían entonces la gran mayoría de estos ladrillos moleculares (en azul en la siguiente figura) que constituyen una típica densidad postsináptica humana. Únicamente les faltan unas pocas piezas, como los receptores de glutamato -las “orejas” que reciben los mensajes- (en amarillo en la figura), que no surgirán hasta unos millones de años más tarde con las medusas y las anémonas, y unos pocos elementos proteicos aún más modernos (en verde y rojo) que actúan como pegamento final para unir todas las piezas del puzzle.”

mik-1-5

El homínido del cladograma simplificado que refleja la secuencia de adquisición de las proteínas sinápticas (y nuestro parentesco con las esponjas) es el propio Pere, por supuesto. 

:)

719721bob%20esponja
No, no. No te entusiasmes tanto, Bob. Aunque seamos parientes, en realidad es muy poco probable que las esponjas sean nuestros antepasados. Los Ctenóforos son animales bastante más complejos que según los últimos estudios moleculares se desramifican del tronco evolutivo común algo antes que las esponjas. Así que el primer antepasado común de los animales actuales debió de ser bastante más parecido a un Ctenóforo que a una esponja. ;)
Ctenophore
Aquí hay que hilar un poco más fino, pero en mi opinión, lo que nos están diciendo esas proteínas sinápticas de los poríferos actuales es que las esponjas de mar han evolucionado a partir de un antepasado algo más complejo que poseía algún tipo de proto-sistema nervioso (como el que poseen los Ctenóforos). Las esponjas de mar habrían evolucionado hacia la sencillez perdiendo ese sistema nervioso (aunque conservando los genes que lo hacían posible), y con bastante éxito a juzgar por su superviviencia a lo largo de las eras geológicas.
Si así fuera, sería toda una lección de humildad, y otra prueba más en contra de las escalas evolutivas que suponen que los animales van evolucionando en busca de una mayor “perfección”. ¿quién necesita neuronas para sobrevivir en el Cámbrico… o ahora? ;)
La alternativa sería pensar que las conexiones neuronales estaban siendo construidas antes que las propias neuronas , con algún fin que ahora mismo se nos escapa (Pere habla de una posible utilidad en el estado larvario) y que finalmente en el resto de los animales se alcanzara el estado actual por exaptación, siendo las esponjas una reliquia de esa fase previa. Pero personalmente me parece una explicación demasiado rebuscada. En cualquier caso, la increíble perviviencia de esos genes a través de las eras nos hace suponer que alguna función concreta deben cumplir.
Algún día las esponjas nos revelarán para qué necesitan ese conjunto de proteínas sinápticas, y a partir de ello podremos deducir muchas más cosas, pero por el momento, parece que sólo siguen “soñando” en su pacífico fondo oceánico…
20070417klpcnavid_130_Ies_SCO
Fuentes y más información en: Apuntes científicos desde el MIT
Tomado de:

10 de marzo de 2015

¿Cuál es el material biológico más fuerte del mundo?

Un equipo de ingenieros británicos descubrió que los dientes de la lapa están hechos del material biológico más duro del que se tenga conocimiento.
Las lapas tienen unos minúsculos dientes en su lengua que utilizan para raspar la comida de las rocas.
Según los autores del estudio, estos dientes están compuestos de un material que es incluso más fuerte que la tela de araña.
Estos moluscos de concha abierta son muy comunes en los litorales rocosos, siempre pegados a las piedras.


El secreto de su dureza es la delgadez de las fibras minerales que hay en su interior.
La investigación, publicada en la revista Royal Society Journal Interface, afirma que se trata de algo tan duro como algunos de los mejores materiales hechos por el ser humano, como el kevlar o la fibra de carbono.
El descubrimiento podría servir para mejorar algunos materiales artificiales para la industria automotriz y también en el campo de la aviación. También podría resultar útil para arreglos dentales.
"La biología es una gran fuente de inspiración para un ingeniero", señaló Asa Barber, autor principal del estudio, de la Universidad de Portsmouth.
"Estos dientes se componen de fibras muy pequeñas, acomodadas de una manera particular. Deberíamos pensar en hacer nuestras propias estructuras siguiendo los mismos principios de diseño".
Fuente:

26 de noviembre de 2014

La (gran) historia evolutiva de los insectos

Por difícil de creer que parezca, la historia de los insectos y la forma en que se multiplicaron en variedad y formas por nuestro planeta estaba por explicar. El trabajo de Bernhard Misof y su equipo, publicado este jueves en la revista Science, es una primera reconstrucción de este largo camino gracias al análisis de los datos genéticos.

WEl trabajo ha requerido los esfuerzos de más de un centenar de  investigadores especialistas en biología molecular, paleontología, taxonomía, embriología y procesamiento de datos. Juntos, y dentro del proyecto 1KITE (para analizar el transcriptoma de cientos de insectos) han analizado 1.487 genes codificadores de proteínas de todos los grandes órdenes de insectos que existen hoy en día y los han comparado con el registro fósil. El laborioso trabajo les ha permitido concluir que estos artrópodos aparecieron sobre la faz de la Tierra hace unos 479 millones de años, en los albores del período Ordovícico, una época en la que el oxígeno aún escaseaba en la atmósfera y los mares estaban plagados de trilobites.

 

Así era la Tierra cuando aparecieron los insectos. (Imagen: Ron Blakey, NAU Geology)

La capacidad para volar, aseguran los científicos, no apareció en estas criaturas hasta hace aproximadamente 406 millones de años y la mayoría de las especies que conocemos hoy en día se originaron hace unos 345 millones de años. Los trabajos sugieren que los insectos y las plantas moldearon los ecosistemas primitivos de la Tierra juntos y que estos desarrollaron el vuelo mucho antes que otras criaturas al tiempo que las plantas iban creciendo y abriéndose paso. Un poco más tarde, afirman los autores del trabajo, la aparición de plantas capaces de florecer generó una explosión de formas entre los insectos voladores, desde las abejas a las mariposas.

Otro interesante resultado del análisis genético es que la aparición de los primeros insectos parásitos parece remontarse al momento en que progresaron las aves y los primeros mamíferos y no vivieron en las plumas de los primeros dinosaurios, como pensaban algunos autores.  Otra de las conclusiones interesantes es que la variedad de cucarachas y termitas que conocemos hoy apareció después de la extinción masiva del Pérmico, la única en la que estuvieron implicados los insectos, que han seguido evolucionando y multiplicando sus colores, formas y variedades hasta hoy. 

"Cuando imaginas un gigantesco mapa de la evolución de la vida en la Tierra, los insectos ocupan de lejos la mayor parte de la foto", asegura Michelle Trautwein, coautora del trabajo e investigadora de la Academia de ciencias de California. "las nuevas técnicas nos han permitido comparar enormes cantidades de datos genéticos y, por primera vez en la historia, podemos rellenar los huecos en nuestro conocimiento. La ciencia está más cerca que nunca de revelarnos los misterios de la evolución".

Referencia:  Phylogenomics resolves the timing and pattern of insect evolution (Science)

Tomado de:

NEXT

1 de noviembre de 2014

¡La población de vertebrados se ha reducido a la mitad desde 1970!

Es la conclusión del estudio Living Planet Index, que ha analizado 10.380 poblaciones de 3.038 especies entre mamíferos, aves, reptiles, peces y anfibios.
La población de vertebrados se ha reducido a la mitad desde 1970.

La población de vertebrados se ha reducido a la mitad desde 1970./ WIKIMEDIA

Un estudio en más de 3.000 especies indica que la población de vertebrados silvestres a nivel mundial se ha reducido a la mitad desde los años 70. Investigadores del World Wildlife Fund (WWF) y la Sociedad Zoológica de Londres (ZSL) analizaron 10.380 poblaciones de 3.038 especies en un índice de la salud de los cinco grupos principales de vertebrados - mamíferos, aves, reptiles, peces y anfibios. Asignando el 1 a 1970, este índice ha disminuido en un 52 por ciento (a 0,48) desde entonces.

La décima edición del Living Planet Index modifica las variables a tener en cuenta para ponderar la composición de la biodiversidad en diferentes áreas. Intenta corregir el tamaño de cada grupo taxonómico en una región, en lugar de considerar todas las especies sobre las que se disponen de datos por igual. El último índice - publicado en 2012 - mostró una disminución del 28% entre 1970 y 2008. El resultado más negativo que arroja la nueva edición viene tanto de la disminución real en los datos más recientes como de la nueva ponderación.

Situación crítica, pero hay esperanza

"La magnitud de la pérdida de biodiversidad y daños a los mismos ecosistemas que son esenciales para nuestra existencia es alarmante", dijo en un comunicado Ken Norris, director científico en el ZSL. "A pesar de que el informe muestra la situación es crítica, todavía hay esperanza. La protección de la naturaleza necesita una acción centrada en la conservación, la voluntad política y el apoyo de las empresas".

Ha habido algunos éxitos, especialmente en áreas protegidas. El estudio menciona el ejemplo del tigre de Nepal (Panthera tigris), cuya población aumentó un 63% entre 2009 y 2013, pero la mayoría de las poblaciones de vertebrados están en declive, y algunas drásticamente, como rinocerontes y elefantes amenazados por la caza furtiva en África y tiburones afectadas por la sobrepesca, informa Nature.
Fuente:

16 de octubre de 2014

¿Por qué los patos tienen las patas naranja?



De hecho, muchas especies de patos tienen las patas de color verde azulado o gris. Pero por lo que respecta a los patos que se pavonean con las patas naranjas es simplemente para atraer a las hembras

Un color naranja vivo sugiere a las "chicas" que el pato macho tiene todas las vitaminas necesarias. Según Kevin Omland, biólogo evolucionista de la Universidad de Maryland, "esto indica que sus genes y su comportamiento son lo bastante buenos para reconocer y comer los alimentos adecuados, o que su sistema inmunitario es lo bastante fuerte para producir patas color naranja y vivo. La hembra considera que este es un rasgo muy atractivo para transmitirlo a su descendencia".

Fuente:

QUO

19 de agosto de 2014

Los animales crean arte...

Pergolero pardo

Los pergoleros pardos son originarios de Nueva Guinea y célebres por sus elaboradas construcciones.

A primera vista, el pájaro pergolero pardo es bastante aburrido. Su monótono plumaje marrón oliva no se distingue mucho de la tierra en la que vive.

Sin embargo, si lo miramos más de cerca veremos que guarda un secreto: los machos construyen algunos de los objetos más elaborados y estéticos del mundo de las aves.
Son estructuras decoradas que los machos construyen para cortejar a las hembras.

Algunas son torres altas hechas de palos que se levantan sobre una alfombrilla de musgo muerto, adornadas con cáscaras de caracol, bellotas y piedras.

Otras se levantan sobre musgo verde, decoradas con frutas, flores y alas de mariposas.
Cada pergolero tiene sus propios gustos y colores preferidos.

Los machos colocan cada elemento en sus refugios con gran precisión; si los objetos se mueven, los pájaros los vuelven a colocar en su lugar original.

Chimpancé pintando

¿Puede considerarse arte una pintura hecha por un chimpancé?

"Las decisiones de decoración no son automáticas, sino que incluyen pruebas y cambios de opinión", escribió el fisiólogo de la UCLA Jared Diamond, uno de los primeros investigadores en estudiar los complejos refugios de estas aves.

Diamond descubrió que la construcción de las estructuras no es innata, al menos no del todo.

Los pájaros más jóvenes tienen que aprender cómo construir los mejores refugios, ya sea intentándolo y equivocándose, mirando a los pájaros más experimentados, o ambos.

El investigador concluyó que este era un proceso transmitido culturalmente en el que cada ave tiene sus propios gustos y referencias individuales, y en el que cada decisión se toma con intención y cuidado.

Los pergoleros, dicho de otra forma, son animales artistas, al menos en el sentido de que producen obras únicas que tanto los pájaros como los humanos encuentran estéticamente agradables.

Pero estos pájaros no son los únicos artistas no humanos.

Congo, el primate pintor

Congo fue un chimpancé nacido en 1954 en el Zoo de Londres. Cuando tenía dos años, el zoólogo y artista británico Desmond Morris le dio un lápiz.

Desmond Morris y Congo (BBC)

El zoólogo Desmond Morris alentó a Congo desde pequeño para que pintara.


"Lo agarró y puse una cartulina delante de él", dijo Morris al diario The Telegraph en 2005.

"Algo extraño estaba saliendo de la punta del lápiz. Fue la primera línea de Congo. Se movió un poco y luego se paró. ¿Lo repetiría? Sí, una y otra vez".

Congo finalmente pasó de los lápices a los pinceles. Él y su arte salieron en el programa de la televisión británica Zoo Time, y en 1957 el Instituto de Arte Contemporáneo exhibió su trabajo en una exposición.
Aunque nunca pintó imágenes identificables – ni retratos, ni paisajes, ni bodegones – el estilo de Congo fue descrito sin ninguna ironía por algunos como "impresionismo lírico abstracto". Parecía tener una intención en sus pinturas y un sentido de coherencia.

Si le quitaban los pinceles antes de que él sintiera que había acabado, se quejaba hasta que se los devolvieran. Si había terminado su pintura, se negaba a seguir pintando incluso cuando Morris lo animaba.

Chimpancé Congo

Congo decidía cuándo sus cuadros estaban terminados.

En 2005, un conjunto de tres pinturas de Congo, que creó más de 400 trabajos durante su vida, se vendieron en una subasta por unos US$24.500.

En la misma subasta, se quedaron sin vender una pintura de Andy Warhol y una escultura de Renoir.

Quizá Congo fue una curiosidad zoológica, un extraño primate que tuvo la oportunidad única de expresar sus deseos artísticos, o al menos de frotar grafito y pintura en una superficie lisa.

Pero durante décadas, desde que produjo su primera pintura, los zoos han dado pinceles a los animales como una práctica común.

La esperanza es que estos intentos de expresión creativa ayuden a mantener a los animales felices.

Arte en cautiverio

Aunque poner un pincel en un lienzo no es de ningún modo una actividad natural para un chimpancé, o para cualquier otro ser no humano, se piensa que sirve para ayudar a introducir alguna novedad en las vidas de esos animales.

Pintar es una actividad con la que el animal puede ejercitar su mente, en vez de solamente su cuerpo, "enriqueciendo" así el aburrido entorno de la cautividad. La idea es revertir los comportamientos repetitivos y compulsivos de los animales. ¿Pero funciona?

Obra de Untitled by Baka (Sumatran Orangutan, Cheyenne Mountain Zoo, Colorado)

Obra del orangután de Sumatra Baka, del zoológico Cheyenne Mountain, en Colorado.


Obra de un chimpancé

Pintura hecha por el chimpancé Bakhari, del zoo de Saint Louis, en Missouri.


No hay consenso todavía, y los beneficios de crear arte como un ejercicio mental probablemente varían de individuo a individuo. Pero al menos un estudio científico se ha llevado a cabo sobre la pintura de elefantes de zoológico, y los resultados son desalentadores para los defensores del arte animal.

Elefante

El elefante Boon Mee pintó su maceta de flores en 2011 en el zoológico de Samutprakarn, Tailandia.

Los investigadores se centraron en cuatro elefantes asiáticos del Zoo de Melbourne, Australia.

Descubrieron que la pintura no reducía los comportamientos relacionados con el estrés en los elefantes, ni disminuían los comportamientos anormales o repetitivos antes o después de las sesiones de pintura.

Lo que esto significa, según los investigadores, es que la pintura "no incrementa el bienestar de los elefantes".

Teniendo en cuenta esto, sugieren que "su principal beneficio es el atractivo estético de estas pinturas para el público y su consiguiente venta, de la cual un porcentaje de los fondos se dona a la conservación de las especies".

Obra de un elefante

"Maceta de flores", de Boon Mee.

Sin embargo, como el estudio sólo estuvo limitado a cuatro individuos, es difícil ofrecer unas conclusiones generales.

Perspectiva

Si dibujar o pintar es útil o no en el zoológico, al menos parece claro que los humanos no son los únicos animales capaces de crear piezas de arte, ni los únicos que disfrutan de ello.

Aun así, el simple hecho de transferir pigmento a un lienzo no es necesariamente una expresión de creatividad para los animales, más de lo que es para nuestra especie.

La cuestión de qué constituye el arte, de qué se considera creatividad, es algo que la cultura humana ha debatido durante generaciones.

Después de todo, en muestras individuales, algunos podrían confundir el trabajo de Jackson Pollock con el de Congo; esto podría reflejar un respeto tremendo por el trabajo del chimpancé, o desprecio por el expresionismo abstracto.

O quizá algunos nunca apreciarán el arte animal. Un estudio de 2011 desveló, sin mucha sorpresa, que a la gente se le daba especialmente bien diferenciar entre el arte profesional y los trabajos hechos por chimpancés y elefantes, y que prefería las pinturas hechas por humanos.

¿Entonces no es bueno el arte animal? Eso depende de tu perspectiva individual.

Fuente:

BBC Ciencia

11 de agosto de 2014

Por qué los perros se huelen el trasero



Hocico de perro


Todos los perros lo hacen: olfatear el trasero de otro can es lo más normal del mundo.

Pero, ¿por qué lo hacen?
Aunque parezca una pregunta muy simple, la respuesta no lo es tanto, y es, incluso, más interesante de lo que parece.

El secreto, tal como asegura la Sociedad Química de Estados Unidos (ACR, por sus siglas en inglés) en un video educativo, está en la química.

Los perros tienen, como es sabido, un olfato muy desarrollado. Tanto, que se estima que es entre 10.000 y 100.000 veces más sensible que el olfato humano.

Y cuando dirigen sus hocicos al trasero de otro perro, lo que hacen es recolectar un montón de información sobre el otro animal, desde lo que come hasta su género o su estado emocional.

Es algo así como conversar a través de la química. De hecho, este es solo un ejemplo entre muchos de comunicación química en el reino animal.


Perros oliéndose el trasero

Una forma de compleja comunicación química.

Diálogo de secreciones

En 1975, el científico George Preti, experto en feromonas y olores humanos del Centro Monell de Química de los Sentidos, estudió las secreciones anales de perros y coyotes e identificó los componentes principales de las secreciones que producen las glándulas alojadas en dos pequeñas bolsas llamadas sacos anales.

Este lenguaje químico, observó Preti, está compuesto de trimetilamina y varios ácidos grasos volátiles, y el aroma puede cambiar de acuerdo a la genética y el sistema inmunológico del animal.

Pero además, lo interesante es saber cómo hacen los perros para percibir y procesar este "mensaje" químico.

Los canes, explican los expertos de la ACR, tienen un sistema olfativo auxiliar llamado órgano de Jacobson o vomeronasal.

Diseñado específicamente para la comunicación química, este órgano tiene sus propios nervios que se comunican directamente con el cerebro.

Por lo tanto, no hay interferencias de otros olores y el órgano de Jacobson puede dedicarse sin distracciones a leer las "tarjetas de presentación" químicas de sus amigos perros.

Otros expertos en mensajes olorosos

Los canes no son los únicos que se comunican con olores. La naturaleza ofrece numerosos ejemplos, aquí te contamos una selección de los más curiosos:

El perfumista:


Murciélago de sacos

El murciélago de sacos combina secreciones para crear aromas. 

El murciélago de sacos es un experto en el arte de la comunicación química que no solo segrega sino que mezcla aromas para atraer hembras.

Estos animales viven en colonias divididas en harenes, cada uno con un macho y varias hembras. Los machos marcan su dominio territorial con secreciones de una pequeña glándula llamada gular ubicada debajo de la barbilla.

Pero para cortejar a las damas, no basta con un solo olor: hace falta una mezcla de esta secreción con otras producidas por sus genitales y orina, que los machos preparan cuidadosamente cada día dentro de unos sacos especiales que tienen en sus alas, tal como explica Jason Goldman, de BBC Future.

Aunque el resultado puede resultar hediondo para el olfato humano, el "perfume" de estos murciélagos requiere un complejo proceso que luego, gracias a un oportuno batir de alas frente a la hembra, emanará para seducirla.

El antílope negro y su poderoso afrodisíaco:


Antílope negro

Los antílopes se comunican con el olor de sus lágrimas y excrementos.

Este mamífero que habita en la India, Pakistán y Nepal, tiene un método curioso, y sin duda oloroso, para atraer la atención de las hembras.

Además del aroma segregado por sus glándulas lagrimales en época de celo, los machos comunican sus intenciones con sus excrementos.

En lugar de perseguir a las hembras, los antílopes producen un buen montón de heces y las esperan rodeados de este peculiar olor afrodisíaco, una estrategia que fue registrada por BBC Nature.

El arma aromática del lémur de cola anillada:


Lémur de cola anillada

Los lémures de cola anillada se baten en "combates" de olores.

Estos primates de la isla de Madagascar tienen una extraña forma de pelear por el territorio: los machos se restriegan la cola con unas pequeñas glándulas que tienen en las muñecas y luego la agitan para desparramar el aroma.

Es despliegue suele bastar para marcar la jerarquía, aunque a veces no se puede evitar el combate cuerpo a cuerpo.

Además, sacudir la cola "perfumada" también sirve para atraer hembras, según explica BBC Nature.

Fuente:

BBC Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0