Latest Posts:

Mostrando las entradas con la etiqueta historia de la ciencia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta historia de la ciencia. Mostrar todas las entradas

3 de junio de 2019

El primer hacker de la comunicación... apareció en 1903

Nevil Maskelyne vs Marconi: un hacker en 1903

En 1900, cinco años después de estrenada la primera película de la historia, un mago británico fue un poco más lejos que los hermanos Lumière.

Grabó por primera vez un eclipse solar.

El Instituto del Filme Británico (BFI en inglés) ha restaurado en resolución 4K la filmación, hasta entonces conservada en los archivos de la Real Sociedad Astronómica en Reino Unido.

El video ya está disponible en la plataforma YouTube, dura poco más de un minuto y capta con asombrosa nitidez el fenómeno astronómico en movimiento.



"Esta es una historia sobre magia; magia, arte, ciencia, cine y los límites difusos entre los mismos," declaró Bryony Dixon, curadora de cine silente de la BFI.

Pero si había entonces alguien capaz de aunar dichas ramas en una, ese era Nevil Maskelyne, el mago británico que filmó el eclipse con la idea de incorporar novedades en su espectáculo.

Las imágenes fueron tomadas durante una expedición con la Asociación Astrónomica Británica en el estado estadounidense de Carolina del Norte en 1900.

Un mago revolucionario 

Ya en 1898 Maskelyne había viajado a la India para fotografiar el mismo fenómeno. La primera parte del viaje fue un éxito, pero no así la segunda. La cinta que contenía las imágenes fue robada en el viaje de vuelta a casa.

Para captar el eclipse, Maskelyne utilizó un adaptador telescópico en su cámara para captar con la máxima resolución posible algo que de lo que se desconocen precedentes.

El ilusionismo y la innovación le venían por tradición familiar. Su padre también fue mago e inventor científico

Maskelyne, como tantos otros magos durante la época victoriana, compartió su profesión con un profundo interés por la tecnología y el cine, una industria que entonces daba sus primeros pasos como fenómeno de entretenimiento universal.

Apasionado por la astronomía, se hizo miembro de la Real Sociedad Astronómica para poder demostrar que la cinematografía podía usarse en pos del desarrollo científico.

El primer hacker de la historia
 
Las hazañas de Maskelyne no se limitaron a la filmación del eclipse, que según la Real Sociedad Astronómica es el único documento fílmico suyo que ha sobrevivido al paso del tiempo.

En 1903 demostró sus habilidades para interceptar mensajes antes de que estos completaran su viaje desde el emisor al destinatario.

Durante una clase en el Real Instituto de Londres, el científico John Ambrose Fleming intentaba demostrar lo segura y efectiva que era la nueva forma de comunicación desarrollada por el italiano Guillermo Marconi, quien ganaría el Premio Nobel de Física en 1909. En concreto, se trataba de la transmisión de mensajes en código morse del nuevo telégrafo inalámbrico.

Por entonces, la Eastern Telegraph Company había apostado fuerte por la instalación de cables de transmisión y ante la amenaza a su negocio, encargó a Maskelyne la tarea de burlar la seguridad del nuevo invento de Marconi. Para ello, el mago solo necesitó construir una antena de 50 metros para realizar el primer hackeo de la historia.

Lo que recibiría Ambrose Fleming en su salón de clases durante su demostración no fue el mensaje esperado: "ratas, ratas, ratas", así firmó Maskelyne su burla y su intromisión en el sistema de seguridad del invento.

Lea el artículo completo en BBC Mundo

1 de mayo de 2019

Emmy Noether, la fundadora del álgebra moderna

La alemana fue en 1932 la primera conferenciante plenaria en un Congreso Internacional de Matemáticos. Sesenta años más tarde fue invitada la segunda, Karen Uhlenbeck, recientemente galardonada con el Premio Abel.


El álgebra es una de las áreas fundamentales de las matemáticas, junto con el análisis, la geometría, la topología o la probabilidad. Es la disciplina que se dedica al estudio de los conjuntos (es decir, colecciones de elementos), sus operaciones y sus propiedades, y hoy en día abarca numerosos enfoques. No obstante, hasta hace poco más de un siglo, el álgebra se limitaba básicamente a resolver ecuaciones polinómicas (como 7x³ +2x² - 3x + 8 = 0). Durante los últimos 150 años el álgebra ha experimentado un desarrollo espectacular, gracias al trabajo de un buen número de matemáticos como Evariste Galois, David Hilbert, Ernst Kummer, Bernhard Riemann, Felix Klein, Paul Gordan o Richard Dedekind. Sin embargo, el impulso definitivo vino de la mano o, mejor dicho, de la mente, de una mujer: Emmy Noether.

Noether nació en 1882 en Baviera (Alemania), en el seno de una familia en la que las matemáticas estaban muy presentes: su padre, Max Noether, era profesor de la materia en la Universidad de Erlangen-Nuremberg, y la visita a su domicilio de algunos de sus colegas era habitual. Pese a ello, durante su niñez y juventud, Emmy Noether no mostró un especial interés por las ciencias. En su lugar, se dedicó principalmente al estudio de idiomas, con la idea de ser maestra en alguna escuela femenina.

En 1900 se matriculó en estudios de historia e idiomas en la Universidad de Erlangen-Nuremberg. Era una de las dos únicas mujeres entre sus casi 1000 alumnos, y para asistir a cada una de las clases necesitaba un permiso especial previo del profesor a cargo de la misma. Sin embargo, Noether fue cambiando poco a poco sus intereses. Primero, comenzó a asistir a clases de astronomía y a partir de 1904 aparece matriculada oficialmente en estudios de Matemáticas.

En 1908 defendió su tesis bajo la dirección de Paul Gordan en la llamada teoría de invariantes, que estudia objetos que quedan fijos tras aplicarles una transformación algebraica. Rápidamente Noether se convirtió en una reputada experta en este campo que en aquellos años estaba en auge ya que servía para explicar algunos aspectos matemáticos de la teoría de la relatividad de Einstein. En ese sentido, cabe destacar el Teorema de Noether, que determina la relación entre leyes de conservación físicas y los invariantes del sistema.

28 de marzo de 2019

El Madrid en el que Cajal buscaba cadáveres de niños

El palacete del premio Nobel, troceado en apartamentos de lujo a la venta en una web inmobiliaria, es el símbolo del desinterés de España por el genio de la ciencia.

Placa fotográfica tomada por Cajal en la Puerta del Sol de Madrid

Cajal, nacido en 1852 en la aldea navarra de Petilla de Aragón, llegó a la capital en 1892, tras ganar la cátedra de Histología de la Universidad Central, germen de la actual Complutense. En Madrid se lanzó a explorar “la fina anatomía del cerebro humano, con razón considerado como la obra maestra de la vida”. Para ello necesitaba “piezas nerviosas fresquísimas, casi palpitantes”, pero la ley no permitía diseccionar los cadáveres hasta 24 horas después de la muerte. “Mas por aquellos tiempos arredrábanme poco los obstáculos. Decidido a superarlos busqué material para mis trabajos en la Inclusa y Casa de Maternidad, dominios donde, por razones obvias, la tiranía de la ley y las preocupaciones de las familias actúan muy laxamente”, reconoció en sus memorias, Recuerdos de mi vida, publicadas en 1917.

Las monjas de la caridad, según relató, se convirtieron en sus ayudantes en las autopsias: “Puedo afirmar que durante una labor de dos años dispuse libremente de cientos de fetos y de niños de diversas edades, que disecaba dos o tres horas después de la muerte y hasta en caliente”. Ante los ojos de Cajal, “el cerebro humano comenzaba a balbucear algunos de sus secretos”. Descubrió y describió los tipos neuronales de cada región cerebral, su “urdimbre específica y absolutamente inconfundible”. Durante siglos, el cerebro había sido considerado una masa uniforme. Hasta que llegó Cajal.

El investigador se había criado entre labradores analfabetos en los campos de Aragón, había estudiado Medicina en Zaragoza y había dado clase en las universidades de Valencia y Barcelona, pero, a sus 40 años, Cajal se enamoró de su nuevo hogar. “Madrid es ciudad peligrosísima para el provinciano laborioso y ávido de ensanchar los horizontes de su inteligencia”, escribió en sus memorias. “La facilidad y agrado del trato social, la abundancia del talento, el atractivo de las sociedades, cenáculos y tertulias, donde ofician de continuo los grandes prestigios de la política, de la literatura y del arte; los variados espectáculos teatrales y otras mil distracciones seducen y cautivan al forastero, que se encuentra de repente como desimantado y aturdido”.

El artículo completo en: El País (España)

26 de marzo de 2019

G, el diminuto número sin el que la vida no existiría

Es un número que Newton descubrió, Cavendish valoró y Einstein entendió. 
 
6,67 x 10-¹¹ o 0,000000000067 es un número diminuto pero sin él, la vida, el Universo y todo simplemente no existiría. 

Eso es porque ese número dicta la fuerza de gravedad, esa atracción constante que toda materia ejerce sobre el resto de materia, que es sorprendentemente ubicua pero también increíblemente débil. 

Su potencia se cuantifica con la llamada constante gravitacional, un número conocido sencillamente como G

Y si quieres experimentar su debilidad sólo tienes que levantar los brazos horizontalmente.

Toda la fuerza de la masa de la Tierra hala tus brazos hacia abajo. No obstante, no te cuesta mucho esfuerzo vencerla. 

O piensa en esto.

Piensa que un pequeño imán puede pegarse a la puerta de tu nevera y hasta sostener otras cosas mientras que resiste la fuerza de la gravedad con sólo la del magnetismo.

Sin palabras

Fue debido a su extremada pequeñez que, tras descubrir la Ley de Gravitación Universal, Isaac Newton incluyó G en su ecuación pero no lo pudo calcular. 

Pero un siglo más tarde, un inglés llamado Henry Cavendish se planteó el reto de determinar el valor de G y, por ende, la fuerza de la gravedad. 

Cavendish era un hombre adinerado del Londres del siglo XVIII, un poco excéntrico y quizás triste, pues no tenía muchos amigos. 

No hablaba casi con nadie, ni siquiera con las doncellas que trabajaban en su casa, pues su timidez le impedía hablar con mujeres. Les tenía que dejar mensajes en la mesa del hall para comunicarles cosas como qué le apetecía almorzar.

Así que dedicó toda su vida a la ciencia, sin que ningún otro interés lo distrajera. 

Para encontrar el valor exacto de G, construyó un aparato.

"El aparato es muy simple. Consiste de un brazo de madera de 6 pies de longitud hecho de manera que sea fuerte pero liviano. El brazo está suspendido en posición horizontal con un delgado cable de seda de 40 pulgadas, y de cada extremo cuelga una esfera de plomo de unas dos pulgadas de diámetro.

"Todo está encerrado en una caja de madera, para defenderlo del viento". 


Cerca de las dos bolas que Cavendish menciona, puso otras dos esferas estacionarias, para que hubiera una atracción que retorciera el aparato y la fibra de seda. Añadió un espejo de manera que el movimiento se reflejara en la pared, para verlo mejor.

Esa desviación era proporcional a la fuerza de la atracción gravitacional entre las bolas grandes estacionarias y las pequeñas. 

El problema es que estas últimas se podían mover con cualquier vibración, algo que Cavendish tuvo en cuenta.

"Resuelto a prevenir errores, decidí poner el aparato en una habitación que permaneciera constantemente cerrada y observarlo desde afuera con un telescopio". 

Con todo ese cuidado, encontró la respuesta... ese diminuto número con el que empezamos:

G = 6,67 x 10-¹¹ Nm²/kg²

Al verlo escrito así, a quienes no somos expertos, ya no nos parece tan sencillo, así que le preguntamos al astrofísico y escritor de ciencia Marcus Chown cómo se define G.

"Su definición exacta es la fuerza gravitacional entre dos masas de 2 kilogramos que están a un metro de distancia". 

"Como es una fuerza tan fantásticamente pequeña sólo tiene un efecto apreciable a escala planetaria: cuando la masa es grande".

Lea el artículo completo en: BBC Mundo

12 de febrero de 2019

Rutherford y Soddy: auténticos alquimistas


Rutherford, ¡esto es transmutación!
Por Dios, Soddy, no le llames transmutación. Nos cortarán la cabeza por alquimistas.

Así reaccionaron el físico neozelandés Ernest Rutherford y su discípulo inglés Frederick Soddy ante el sorprendente resultado de una serie de cuidadosos experimentos que realizaron en 1901 en la Universidad McGill de Montreal (Canadá). Llevaban tiempo intentando entender el fenómeno de la radiactividad, descubierto por Becquerel y descrito por Marie y Pierre Curie. Y por fin habían conseguido demostrar que en los materiales radiactivos los átomos se desintegran, de modo que los átomos de un elemento radiactivo se transforman en otro elemento.

Así que la transmutación, que habían buscado durante tantos siglos los alquimistas, ocurría de manera espontánea y natural. La idea era tan rompedora que Rutherford y Soddy evitaron añadirle prejuicios y hablaron de transformación en lugar de transmutación cuando en 1902 publicaron “La causa y naturaleza de la radiactividad”, que condensaba sus experimentos en la teoría de la desintegración atómica. Con ella rompieron el dogma científico de que el átomo era indivisible (que es lo que significa átomo en griego).

Ernest Rutherford (1871–1937) identificó los tres tipos principales de radiactividad: rayos alfa, rayos beta y rayos gamma. Y siguió estudiando la transmutación. Vio cómo aparecían átomos estables de plomo en medio de un mineral radiactivo de uranio. No había manera de saber cuándo se iba a transformar un átomo en concreto, pero Rutherford se fijó en que cualquier muestra (más grande o más pequeña) de un mismo elemento radiactivo tardaba exactamente el mismo tiempo en quedar reducida a la mitad. Ese tiempo, llamado semivida, convertía a los elementos radiactivos en perfectos cronómetros.
Ernest Rutherford en su laboratorio en McGill University (1905). Créditos: Wellcome Images
Conociendo esa velocidad constante con la que el uranio se transforma en plomo y midiendo la cantidad de plomo que había en una roca de pechblenda (mineral de uranio), Rutherford y su colega Boltwood calcularon en 1907 que alguna de aquellas piedras tenía al menos 1.000 millones de años: ¡Era muchísimo más vieja de lo que entonces se pensaba que era la Tierra!

Además de entender a fondo la radiactividad, Rutherford le dio su primera utilidad práctica (mucho antes que las aplicaciones médicas, bélicas o energéticas): calcular la edad de la Tierra. Por todo ello recibió el premio Nobel de Química en 1908. Aunque bien podría haber recibido dos Nobel más por sus siguientes descubrimientos:
  • Rutherford usó la radiactividad para explorar el interior de los átomos. Junto con su alumno Geiger, disparó rayos alfa contra una finísima lámina de oro y observó atónito cómo alguna de esas partículas alfa rebotaban hacia atrás. Recuperado del impacto, en 1911 dedujo que aquello solo era posible si los átomos tenían un minúsculo núcleo, con carga positiva, que concentraba casi toda su masa. Había nacido el modelo atómico de Rutherford, perfeccionado luego por su alumno Bohr: esa imagen tan familiar del átomo, con los electrones girando alrededor de ese núcleo.
  • En su laboratorio él siguió bombardeando átomos con rayos alfa, hasta que en 1919 consiguió transformar átomos de nitrógeno en oxígeno: se convirtió así en “el primer alquimista con éxito de la historia”. Aquella transmutación de nitrógeno en oxígeno fue la primera reacción nuclear artificial; y, entre sus restos, Rutherford encontró el protón, una nueva partícula subatómica con carga positiva.
Mientras tanto, Frederick Soddy (1877–1956) había seguido estudiando la desintegración natural de los elementos radiactivos y descubrió en 1913, al mismo tiempo que Kazimierz Fajans, las reglas de la transmutación: cuando un átomo emite espontáneamente una partícula alfa, retrocede dos casillas en la tabla periódica (ej: el uranio–238 se transforma en torio); cuando un átomo emite una partícula beta, avanza una casilla (ej: el carbono–14 se transforma en nitrógeno).

Siguiendo esas reglas, conocidas como la ley de Fajans-Soddy, se producen las cadenas de desintegración naturales, como la que empieza en el radiactivo uranio–238 y termina en el estable plomo, pasando por productos intermedios como el radio o el uranio-234. Y estudiando paso a paso esas cadenas, Soddy descubrió por el camino los isótopos: distintas versiones de un mismo elemento, con átomos que pesan diferente pero que tienen las mismas propiedades químicas.
Frederick Soddy en su laboratorio en la Universidad de Glasgow. Créditos: Wellcome Images
El Nobel de Química de 1921 reconoció los descubrimientos de Soddy, en los que el escritor H.G. Wells se había inspirado para escribir su novela de ciencia-ficción “La liberación mundial” (1914). Ese libro, que Wells dedicó a Soddy, anticipaba el peligro de las armas nucleares, casi 20 años antes de que Leó Szilárd concibiera la idea de reacción en cadena.

A Soddy le preocupaba mucho el uso que se hacía de los descubrimientos científicos y eso le llevó a escribir en 1926 una crítica radical de la economía occidental, analizándola mediante leyes físicas de la termodinámica. Según Soddy, el sistema confunde la riqueza con la deuda, y también fue pionero criticando el crecimiento económico basado en el uso de combustibles fósiles para obtener energía. Sus propuestas para una reforma del sistema monetario, que hoy son prácticas comunes, fueron entonces despreciadas e ignoradas por excéntricas… como si Soddy fuera un alquimista económico en busca de una piedra filosofal para transformar la deuda en riqueza.

Tomado de: Open Mind

5 de agosto de 2018

Ada Lovelace, la mujer que ideó el primer algoritmo de la historia (100 años antes de que llegaran las computadoras)

La programación parece un arte de principios del siglo XX, pero no es del todo cierto. Casi un siglo antes de que Alan Turing sentara las las bases de la computación moderna, una mujer escribió el primer algoritmo de la historia, un programa tan avanzado que la tecnología de la época no pudo hacerlo realidad.


Esa mujer se llamaba Augusta Ada King-Noel, condesa de Lovelace, aunque el mundo la recuerda como Ada Lovelace, escritora, matemática y la primera programadora de la historia.

Interesada desde joven en las matemáticas, la frenología y la física, la carrera de Lovelace dio un giro radical cuando trabó amistad con el matemático e inventor Charles Babbage, que le mostró su más reciente creación: la máquina de diferencia. En esencia se trataba de una calculadora mecánica capaz de tabular funciones polinómicas.

En 1840, Babbage fue invitado a la Universidad de Turín para dar una conferencia sobre su último diseño, un dispositivo llamado La máquina analítica. Un joven ingeniero italiano llamado Luigi Menabrea transcribió el seminario al francés y su transcripción terminó en la Biblioteca Universal de Ginebra. Dos años más tarde, un amigo común de Lovelace y Babbage pidió a la científica que tradujera el documento del inventor al inglés.

Pero Ada fue mucho más allá de la traducción

La elección de Lovelace no fue casual. Era de los pocos matemáticos capaces de entender los trabajos de Babbage. Sin embargo, su aportación fue mucho más allá de una mera traducción. Ada se percató de algo en la máquina que se le había pasado por completo a su creador: podía programarse.

Lovelace enriqueció el libro con sus propias notas entre las que se encuentra un completo diagrama que básicamente describe el primer algoritmo de la historia y que le valió ser considerada la primera programadora incluso cuando aún no existían los lenguajes de programación ni las computadoras.


Babbage ya esbozó algunos algoritmos propios, pero eran básicamente fórmulas. Ninguno de ellos tenía la complejidad que ideó Lovelace. El mérito de Ada Lovelace fue el darse cuenta de que la máquina analítica podía usarse para expresar entidades o símbolos con arreglo a unas normas y no solo números.

Pero la máquina no pudo ser construida

Nunca pudo ver en persona los resultados de su aportación. La máquina analítica de Babbage fue la primera computadora en términos de Turing. Tenía una unidad lógica aritmética y hasta un sistema de memoria integrado. En términos generales, compartía la misma estructura lógica que las computadoras actuales. Sin embargo, era tan compleja que Babbage no logró reunir el dinero necesario para fabricarla. El primer modelo completo de la máquina a partir de sus apuntes y siguiendo los mismos procesos de fabricación de la época no llegó hasta 1991 de la mano de los conservadores del Museo de la Ciencia de Londres.


Unos 100 años después de la creación de Babbage, el ingeniero alemán Konrad Zuse completaba la Z1, la primera computadora que se puede considerar como tal. El libro con la transcripción realizada por Lovelace con sus notas, su algoritmo y su nombre en la portada acaba de subastarse por la astronómica cifra de 125.000 dólares.

Fuente:

Gizmodo

6 de julio de 2018

Eratóstenes: Midiendo lo imposible

Unos 1700 años antes de la famosa expedición de Magallanes y Elcano, que tardó más de tres años en circunnavegar la Tierra para constatar que no es plana, sino redonda, el sabio griego Eratóstenes logró hacer esa misma comprobación y además estimar su diámetro con un sencillo razonamiento matemático y con una precisión sorprendente. La potencia de las matemáticas desarrolladas por los griegos clásicos fue la clave para realizar esta hazaña y conseguir medir lo imposible.


Eratóstenes nació en Cirene, ciudad ubicada en la actual Libia, hacia el 276 a. C. y en el año 236 a. C se convirtió en director de la prestigiosa Biblioteca de Alejandría. Hizo aportaciones en ámbitos tan aparentemente dispares como la poesía, la filosofía, las matemáticas, la astronomía, la historia o la geografía, entre otras. Como matemático es muy conocido por la llamada criba de Eratóstenes, que permite aislar y determinar todos los números primos hasta cierto número natural dado y que se sigue empleando hoy en día.

Además, supo aplicar conocimientos matemáticos básicos, como el cálculo de la longitud de un arco de circunferencia —que ahora se estudia en Secundaria— para aproximar de forma muy precisa el radio de la Tierra, solo con instrumentos rudimentarios. En concreto, Eratóstenes observó la sombra que producían los rayos del Sol durante en el solsticio de verano en dos lugares suficientemente alejados uno del otro: Siena (actualmente la ciudad egipcia de Asuán) y Alejandría, situada al norte de Siena siguiendo el mismo meridiano.

En el mediodía solar de ese día, en un profundo pozo de Siena se podía ver por un brevísimo instante el reflejo del agua contenida, lo que mostraba que los rayos caían perpendicularmente. Esto es así en el momento del solsticio de verano y en el trópico de Cáncer —en ese paralelo terrestre ubicó Eratóstenes a Siena—. Sin embargo, en el mismo momento, en Alejandría —situada unos 7 grados más al norte— incidían de forma ligeramente transversal, ya que los obeliscos o un simple bastón clavado en el suelo proyectaban una pequeña pero perceptible sombra. Esta ya es de por sí es una prueba sencilla de que la Tierra no puede ser plana, ya que si lo fuese, también en Alejandría, a esa misma hora, los rayos tendrían que haber caído perpendicularmente y no dar ninguna sombra.


Lea el artículo completo en:

Open Mind

4 de julio de 2018

Évariste Galois, el adolescente que revolucionó las matemáticas

Siempre que hablamos de una aportación esencial en cualquier campo, la calificamos de “revolucionaria”. Tal vez abusamos tanto de este término que llega a perder parte de su significado. Pero en la Francia de comienzos del siglo XIX, ser un revolucionario tenía un carácter más literal, y por tanto más arriesgado. Évariste Galois (25 de octubre de 1811 – 31 de mayo de 1832) lo fue en dos campos, la política y las matemáticas, y desde muy joven; tal vez demasiado para disfrutar de una larga vida. Falleció trágicamente a los 20 años, aunque no por la política ni las matemáticas, sino por el motivo que forja la leyenda de todo genio romántico.

La política le venía de familia. Su padre, el republicano Nicolas-Gabriel Galois, fue alcalde de la localidad de Bourg-la-Reine, cercana a París. Su madre, Adélaïde-Marie Demante, de amplia cultura clásica, se ocupó de educar a Évariste en casa durante su primera infancia. Cuando a los 12 años el niño comenzó a asistir al colegio, su carácter revolucionario afloró en una Francia de grandes tensiones políticas, regida por una monarquía constitucional de la que muchos recelaban.

En el colegio, Galois se enamoró de las matemáticas, ajenas a su tradición familiar. Su nivel era muy superior al de sus compañeros: devoró los Elementos de geometría de Legendre como si fuera una novela, y pronto dejó de lado los libros de texto para dedicarse a estudiar los trabajos originales de Lagrange. Su gran ambición le llevó en 1828 a intentar un ingreso prematuro en la École Polytechnique. Suspendió; pese a su inteligencia, aún no contaba con la formación necesaria.

Para Galois, la École Polytechnique no era sólo la mejor institución de matemáticas del país. La escuela era sede de un activo movimiento republicano que tendría un papel destacado en el derrocamiento en 1830 del rey Carlos X, el último Borbón de Francia. Cuando Galois suspendió el ingreso por segunda vez –según cuenta la leyenda, tras arrojar un borrador a un examinador incompetente–, tuvo que conformarse con la más modesta École Normale. Mientras la revolución prendía en las calles, Galois y el resto de alumnos de esta escuela quedaron encerrados bajo llave, y su queja posterior en una carta a la prensa motivó su expulsión.

Mientras, su carrera en matemáticas avanzaba a trompicones. Aunque publicó varios trabajos en vida, su mayor aportación se quedó bloqueada a las puertas de la Academia Francesa, primero por Cauchy y después por Fourier, cuya muerte resultó en la pérdida del manuscrito de Galois. Aquel trabajo resolvía un problema centenario, la demostración de las condiciones necesarias y suficientes para resolver ecuaciones polinómicas por raíces. Y sin embargo, su principal logro no vería la luz hasta después de su muerte.

El artículo completo en:

Open Mind

24 de junio de 2018

Linneo y la hazaña de ordenar la naturaleza

Este gráfico muestra cómo se usa la clasificación taxonómica para designar animales relacionados. El ejemplo usado es el del zorro rojo.

El pescado más consumido en el mundo es la merluza, también conocida como pijota o carioca. Los portugueses la llaman pescada, los ingleses hake, los franceses colin; una multitud de nombres comunes para designar una misma especie animal, con idénticas características en todos los lugares, sin importar el idioma en que hablen sus habitantes. Esta anarquía de nombres era un auténtico obstáculo para que los científicos pudiesen compartir con facilidad sus trabajos antes del siglo XVIII, cuando Linneo tuvo la idea genial de diseñar un nuevo sistema para nombrar a cualquier ser vivo. Este botánico sueco concibió la nomenclatura binomial para animales y plantas, por la que cada especie tiene un nombre científico único y universal, un nombre formado por dos palabras en latín: el de la merluza es Merluccius merluccius.

Antes de la clasificación de Carlos Linneo (1707-1778), por ejemplo, unos botánicos llamaban a la rosa silvestre Rosa sylvestris inodora seu canina y otros, Rosa sylvestris alba cum rubores, folio glabro. Él zanjó la discusión dejándola en Rosa canina. La primera palabra para el género, que agrupa a especies similares, y la segunda para describir la especie concreta: algo así como el nombre y apellido de una persona, pero colocados en orden inverso. Por aquel entonces, las especies se clasificaban de forma relativamente caprichosa en salvajes o domésticas, terrestres o acuáticas, nobles o vulgares. Había que basarse en algo más preciso, como sus parecidos anatómicos y fisiológicos.

El catálogo botánico

El método de Linneo salvó del caos a los naturalistas en la época en que comenzaban a explorar Oceanía y África, donde descubrían continuamente nuevas especies. El catálogo botánico de Linneo, Systema naturae (1735), fue todo un éxito que llegó a alcanzar la edición 12, con 2.300 páginas que recogían más de 13.000 especies de plantas y animales. Allí clasificó meticulosamente esa colección, como en carpetas y cajones: géneros similares en un mismo orden y órdenes similares en una clase. Con el acierto de incluir en la clase de los mamíferos a ballenas y murciélagos, hasta entonces considerados peces y aves, respectivamente.

El artículo completo en: Open Mind

Systema naturae recogía más de 13.000 especies de plantas y animales. Fuente: Wikimedia

4 de marzo de 2018

Las leyes que sanaron a soldados en la guerra y pueden salvar la Tierra

El biólogo Sean B. Carroll narra en su libro 'Las leyes del Serengeti' la historia de los pioneros que descubrieron los códigos que regulan la salud humana y la de los ecosistemas naturales.
 
En mayo de 1917, el científico estadounidense Walter Cannon fue enviado a Europa para participar en la guerra más sangrienta de la historia. Allí pudo ver cómo muchos combatientes heridos morían al entrar en shock ante la impotencia de los médicos. Pero Cannon iba a cambiar la situación aplicando métodos de medición novedosos y un enfoque diferente. Entonces se empezaba a tomar la presión arterial de los soldados y la prueba mostró en los sanos presiones de entre 120 y 140 milímetros de mercurio, mientras los afectados por el shock no alcanzaban los 90. La bajada de presión dejaba sin combustible a órganos vitales que se volvían incapaces de eliminar los desechos. Tratando de comprender lo que sucedía, Cannon midió la concentración de iones de bicarbonato en la sangre de sus pacientes y observó que tenían unos niveles inferiores a los normales. Eso significaba que la sangre, que normalmente es ligeramente alcalina, se había vuelto ácida. Y cuanto más ácida era la sangre, menor era la presión arterial y más grave el shock. La solución del investigador fue sencilla: administrar bicarbonato. Así salvó la vida de miles de soldados,

La experiencia, relatada por el biólogo Sean B. Carroll en su libro Las leyes del Serengeti (Debate), convenció a Cannon del delicado equilibrio entre todos los elementos que componen la maquinaria humana y supo que conocer bien esos componentes ofrecería potentes herramientas para curar. Suya es la idea de la homeostasis, el concepto que se refiere a los procesos fisiológicos de regulación que mantienen el organismo dentro de unos márgenes apropiados. Ahora, buena parte de la población ha asimilado algunas de las cifras que delimitan estos márgenes, como los niveles de colesterol o las transaminasas, y muchos tratamientos para mantener esos niveles han salvado millones de vidas.

Cannon es solo uno de los protagonistas de la obra de Carroll, un libro en el que trata de explicar a través de las historias de los científicos que las descubrieron algunas de las reglas que gobiernan la vida, desde el nivel de los procesos fisiológicos hasta los grandes ecosistemas como el parque nacional del Serengueti, en Tanzania. El biólogo estadounidense alterna la narración de las hazañas de Charles Elton, uno de los padres de la ecología, con las de científicos como Joe Goldstein o Akira Endo, que diseñaron los tratamientos para controlar los niveles de colesterol y reducir los problemas cardiacos.

En todas estas historias, Carroll trata de mostrar la similitud entre el equilibrio que mantiene la salud de un cuerpo y la de un ecosistema, y la importancia de conocer a los protagonistas de cada sistema y el papel que desempeñan en su buen funcionamiento.

El artículo completo en:

El País (España)

27 de diciembre de 2017

Así apareció la rueda por primera vez en la historia

La rueda está considerada uno de los mejores inventos de la humanidad. De hecho, es casi imposible imaginarse el mundo sin ella. Pero, ¿qué sabemos de ella? La Real Academia Española de la lengua la define así:

1. f. Pieza mecánica en forma de disco que gira alrededor de un eje.

La más antigua de la que se había encontrado evidencia era la que usaban los ceramistas en la antigua Mesopotamia por los años 3.500 a.C.

Según estos datos, la rueda es un invento bastante reciente, y digo esto porque por aquel entonces llevábamos miles de años cultivando y habíamos creado grandes sistemas económicos, religiosos, sociales y grandes sociedades complejas. Pero, ¿por qué tardó tanto en aparecer la rueda? La mayoría de los expertos coinciden en que se debe a que en la naturaleza no encontramos ruedas; es por ello por lo que se considera uno de los grandes inventos del ser humano.
Las primeras ruedas se usaron para la cerámica, eran los conocidos tornos que se movían con las manos o los pies de los alfareros.
No tardaron mucho en utilizar los tornos de los alfareros como volante de inercia, de manera que la energía que se acumulaba al trabajar la masa en el torno era apoyada por una piedra para acelerar el proceso. Pero aún faltaban años para poder mejorar esa idea y terminar extrapolándola a un vehículo.
El siguiente paso era dejar las ruedas lo más lisas posible para que pudieran rotar sin fricción. Además, el eje tenía que ajustarse bien para evitar que las ruedas se tambalearan. Otras de las cosas a tener en cuenta era el tamaño del eje: no podía ser muy grueso porque generaba mucha fricción, ni muy delgado ya que se partía.

El primer vehículo estaba preparado para transportar cargas pesadas en apenas un metro de ancho. El sistema era tan delicado que los expertos señalan que la estructura se hizo toda de una vez, sin fases. No sabemos (ni sabremos) quién la hizo por primera vez, pero lo que sí tienen claro los arqueólogos es que se comenzó a usar en Eurasia y Oriente Medio.

 La fecha de aparición de la primera rueda se basa en evidencias arqueológicas que datan del año 3400 a.C., con imágenes bidimensionales de carrozas y carretas, modelos tridimensionales de carretas y partes de ruedas y ejes de madera preservados. En concreto, las imágenes decoran un recipiente de cerámica que data del año 3500-3350 a.C. y que proviene de la cultura Trichterbecker, situada en la zona de Polonia, Alemania oriental y el sur de Dinamarca. Las imágenes encontradas en la zona europea se juegan el título de cuna de la rueda con la antigua Mesopotamia, ubicada en la región de Irak.

Fuente:

27 de noviembre de 2017

Isaac Newton perdió millones en la bolsa apostando por ganar una fortuna en América Latina

"Puedo calcular el movimiento de las estrellas, pero no la locura de los hombres", dijo Sir Isaac Newton tras perder su fortuna en la burbuja de la Compañía de los Mares del Sur, una manía de especulación que arruinó a muchos inversores británicos en 1720.


Fue esa especulación financiera la que originó el término "burbuja" y, a pesar de los siglos que han pasado, sigue muy presente y ha adquirido dimensiones mitológicas.

La Compañía de los Mares del Sur (South Sea Company o SSC) había sido fundada en 1711 bajo la suposición de que la Guerra de Sucesión española, que estaba por finalizar, terminaría con un tratado que permitiría intercambios comerciales con las colonias españolas en el Nuevo Mundo. 

A la reina británica Ana se le asignó el 22,5% de las acciones de SSC. 

Las acciones de la firma, con un interés garantizado del 6%, se vendieron muy bien, gracias a la promesa de las inmensas riquezas que albergaba Sudamérica

Todo el mundo había oído hablar de las minas de oro y plata de Perú y México, consideradas inagotables. 

Circuló, incluso, un informe que aseguraba que España estaba dispuesta a conceder cuatro puertos en las costas de Chile y Perú, que incrementó la confianza en el negocio. 

No obstante, Felipe V de España nunca tuvo la intención de admitir a los ingleses en sus puertos americanos y el Tratado de Utrecht de 1713 fue menos favorable de lo esperado.

Lea el artículo completo en: la web de la BBC

10 de julio de 2017

¿En qué consistió el 'juicio del mono'?

Hace 75 años un maestro fue juzgado por enseñar la teoría de la evolución de Darwin. Esto iba en contra de una ley que establecía que el hombre fue creado por Dios, como dice la Biblia. Fue en los Estados Unidos y despertó la atención del mundo.

El Juicio del Mono: con este nombre se conoce el más sonado caso legal en la Historia de la batalla ideológica entre creacionismo y evolucionismo a cuenta de El origen de las especies, de Charles Darwin. También llamado Juicio de Scopes, tuvo lugar en Tennessee (Estados Unidos) en mayo de 1925. En él, el profesor de escuela secundaria John T. Scopes fue acusado de haber enseñado la teoría de la evolución darwinista en sus clases, lo cual era ilegal entonces en aquel Estado sureño en virtud de una disposición educativa denominada Butler Act.

Esta norma prohibía expresamente en Tennessee "la enseñanza de cualquier teoría que niegue la historia de la Divina Creación del hombre tal como se encuentra explicada en la Biblia, y reemplazarla por la enseñanza de que el hombre desciende de un orden de animales inferiores". En realidad, Darwin sostiene la ascendencia común del ser humano y de los restantes primates, no que descendamos del mono, pero la creencia popular en la época, convenientemente manipulada por la Iglesia y los sectores más conservadores, era que el evolucionismo afirmaba lo segundo.

El proceso atrajo una enorme atención de la prensa –que fue la que lo bautizó enseguida como "juicio del mono"– y de la opinión pública estadounidense, máxime cuando aceptó defender al acusado el famoso abogado Clarence Darrow. Pese al brillante alegato final de éste, Scopes fue condenado por el Tribunal, si bien sólo a una multa simbólica y no a pena de prisión como pedía el fiscal. El juicio inspiró una célebre obra de teatro, La herencia del viento, que fue llevada al cine en 1960 con Spencer Tracy, Fredric March y Gene Kelly en el reparto.


El diario El Clarín (de Argentina) escribibió, la respectol asiguiente crónica:

John Thomas Scopes, de 24 años, enseñaba biología en el secundario de Dayton, un pueblito de Tennessee. A principios de julio de 1925, mientras daba clase, dos policías entraron al aula y se pusieron contra la pared del fondo. Scopes, perturbado, despidió a sus alumnos y los policías lo invitaron a ir hasta la droguería del pueblo.

Allí estaba el metodista George Rappalyea, entre otros líderes locales.

—Estuvimos discutiendo y yo dije que nadie podía enseñar biología sin enseñar la evolución —comenzó Rappalyea.

—Así es —asintió Scopes.

Rappalyea sacó un libro de los estantes de la droguería, que también funcionaba como almacén de ramos generales. Era el tomo Biología Cívica, de Hunter.

—¿Les estuvo enseñando este libro? Scopes volvió a asentir.

—Entonces cometió un delito —le dijeron. Scopes se quedó atónito cuando los policías lo llevaron hasta la prisión local.

A principios de 1925, los parlamentarios de Tennessee sancionaron una ley que prohibía la enseñanza de la evolución natural, teoría desarrollada por Charles Darwin en su libro El origen de las especies.

En otras palabras, era delito decir que el hombre (varón y mujer) evolucionó de especies inferiores y que el chimpancé era su pariente más cercano en la escala zoológica. Esto, se decía, podía llevar a "perversiones morales". La enseñanza oficial debía ser que el hombre fue creado por Dios, como dice la Biblia.

John Scopes no podía entender su situación. Estaba preso por enseñar ciencia, que era su trabajo. Tampoco entendía que, con su arresto, los líderes locales buscaran atraer la atención sobre Dayton y tentar a algún empresario a invertir en un pueblo que cada vez tenía menos habitantes.

La Asociación de Libertades Civiles Norteamericanas (ACLU) ofreció pagar los honorarios del defensor y eligió a H.G. Wells, el escritor de ciencia ficción autor de La máquina del tiempo y otros relatos fascinantes. Pero a Wells no le interesó.

En realidad, el defensor surgió después de que se conociera quién iba a ser el fiscal. Las autoridades del pueblo consiguieron que William Jennings Bryan, un fundamentalista religioso, tres veces candida to a la presidencia de los Estados Unidos, asumiera la acusación a pesar de que no ejercía el derecho desde hacía 30 años.

Cuando se supo de que actuaría Bryan, hubo un abogado que se propuso para la defensa. Era Clarence Darrow, de 70 años, el abogado más famoso del país.

William Jennings Bryan calificó al juicio de una "contienda entre la evolución y la cristiandad", y a Darrow, como "el mayor ateo" del país. Darrow se unió a la mesa de la defensa, según dijo, porque quería demostrar que Bryan era un intolerante.

El 10 de julio por la mañana, una joven de unos 20 años estaba parada en la puerta de la Corte con un bebé en su brazo derecho y un cartel en el izquierdo que decía: "Scopes, arderás en el infierno". Había más carteles, algunos con la figura de un mono y la cara de Darrow. Uno de ellos permaneció siempre en la puerta del tribunal: "Lea su Biblia todos los días".

Una señora vestida con una camisa de volados blancos, abotonada hasta el cuello, y una pollera larga y negra, cantaba una canción religiosa al frente de otras 50 mujeres. Hacía un calor insufrible y casi todos se apantallaban con diarios, cartón o abanicos. Había puestos de limonada y comida y un olor envolvente a cebollas fritas.

Vinieron periodistas hasta de Hong Kong. Fue la prensa la que bautizó el caso con el nombre que lo identificaría para siempre: "El juicio del mono".

Durante la mañana, unas 1.000 personas fueron entrando a la sala del tribunal para ver cómo enjuciaban a Scopes. Alrededor de 300 se quedaron de pie.

El juez John Raulston golpeó con su martillo para acallar los murmullos. El calor era tan insoportable adentro que se permitió a los hombres estar en camisa. Los procedimientos empezaron con una oración, bajo la firme protesta de Darrow.

La presentación de Bryan, de inflamada aunque aburrida oratoria, era rubricada a cada pausa por un sonoro "amén" del público. Darrow volvió a protestar y el juez debió pedir mesura.

El caso para la fiscalía era muy claro. Con el testimonio de los alumnos probó que Scopes enseñaba la teoría de Charles Darwin, y que esto constituía una violación a la ley de Tennessee. En este tramo, Darrow sólo le preguntó a un alumno si le parecía que su profesor enseñaba cosas perversas o malas. El chico dijo que no.

Los científicos que la defensa propuso como testigos dirían que la ley era injusta pues no se podía tomar a la Biblia, que es un texto religioso, como si fuese un libro de ciencias. Pero Darrow tuvo serios problemas cuando el juez rechazó esos testimonios por impertinentes.

Darrow decidió entonces dar batalla en el terreno de sus oponentes y llamó como testigo al mayor experto en la Biblia que se encontraba presente, es decir al propio fiscal. Bryan, confiado, aceptó.

—¿Todo en la Biblia debe ser interpretado literalmente? —empezó Darrow.

—Así es.

Darrow le mostró una piedra.

—¿Qué edad cree que tiene esta piedra? La ciencia dice que millones de años.

—Tiene menos de 6.000 porque el obispo de Usher fijó la fecha de la Creación: el 23 de octubre del 4004 a.C., a las 9.

—¿Hora del este o del oeste? —Darrow sonrió y al ver la perplejidad de Bryan siguió:

—Déjelo, déjelo... Pero sí dígame, ¿el primer día tuvo 24 horas?

—La Biblia dice que fue un día.

—¿Un día de 24 horas, de 30 horas, de un mes, de un año, de millones de años?

—No lo sé... Mi impresión es que fueron períodos.

—Bueno, si los llama períodos, ¿podría haber abarcado mucho tiempo?

—Tal vez... Podría haber continuado millones de años —Bryan bajó los ojos y sus seguidores quedaron con la boca abierta.

Darrow pidió un veredicto inmediato. El final fue transmitido por radio a todo el país. En 8 minutos, el jurado declaró a Scopes culpable, lo multó con 100 dólares y quedó libre. Era el martes 25 de julio de 1925, hace 75 años.

Darrow apeló, pues buscaba que un tribunal superior dijera que la ley antievolución era inconstitucional.

Cinco días después, el fiscal Bryan se recostó a dormir una siesta de domingo y murió. La diabetes lo había vencido.

El 14 de enero de 1927, la Corte del estado redujo la multa a un dólar y evitó pensar el asunto en profundidad. Dijo: "No es conveniente prolongar este caso tan extraño". La ley no se aplicó más.

Es válido especular que tanto a Scopes como a Darrow les habría encantado saber lo que reveló el 21 de julio de 2000 el científico Craig Venter, del proyecto Genoma humano. Dijo que la evolución ya es una certeza porque probaron que en el hombre hay vestigios de estructuras genéticas de especies anteriores.

Darrow murió en 1938, a los 83 años. Scopes enseñó ciencia toda su vida. Murió en 1970 y fue enterrado en Louisiana según el rito católico por voluntad de su esposa y de sus dos hijos.


Fuente:

Clarín

Muy Interesante

3 de julio de 2016

Las leyes de la Termodinámica... ¡en cinco minutos!

Saludos

Nuevamente les dejo un video de Quantum Fracture, esta vez nos explican, en tan solo cinco minutos, las leyes de la termodinámica.

¿Qué es la termodinámica?

En la web de Profesor en Línea encontramos la siguiente definición: La termodinámica (del griego  termo, que significa "calor"dinámico, que significa "fuerza") es una rama de la física que estudia los fenómenos relacionados con el calor.

Específicamente, la termodinámica se ocupa de las propiedades macroscópicas (grandes, en oposición a lo microscópico o pequeño) de la materia, especialmente las que son afectadas por el calor y la temperatura, así como de la transformación de unas formas de energía en otras. 


Se considera a Nicolas Léonard Sadi Carnot, que aparece en la imagen de ariba, (París, 1 de junio de 1796 - 24 de agosto de 1832), como el padre de la Termodinámica. 



Ahora veamos el video para conocer más de cerca las Leyes de la Termodinámica: 


Visiten siempre nuestro blog para más ciencia y más experimentos!!!

Un fuerte abrazo


Leonardo Sánchez Coello


Archivos de Conocer Ciencia:






Las leyes de Newton... ¡en dos minutos!


Quantum Fracture es un canal en YouTube que explica diversas nociones y conceptos de manera sencilla, es decir cumple los requisitos que también posee el Proyecto "Conocer Ciencia", es decir la ciencia se vuelve sencilla, divertida y fascinante. 

En esta ocasion comparto con Ustedes un video de tan solo dos minutos en los que los de Quantum nos explican las tres leyes de Newton:





En Conocer Ciencia TV le dedicamos varios videos a Newton, aquí les dejo uno de ellos:



Y aquí una presentación en power point con apuntes de la vida de Newton, los apuntes fueron tomados de libros de Isaac Asimov:



Conocer Ciencia, hágalo, pero hágalo Con Ciencia...

Prof. Leonardo Sánchez Coello

29 de mayo de 2016

El mago que humilló a Marconi (y el nacimiento de la piratería)


La estación de Marconi en Poldu, Cornualles, a finales de 1901. 
 
Atardecía en Cornualles, la esquina suroccidental de la isla británica, ese día de junio de 1903. El renombrado ingeniero, inventor y empresario signor Guglielmo Marconi sabía que sus señales viajaban mejor cuando se ocultaba el Sol.

Lo había comprobado gracias a sus intentos de enviar mensajes transatlánticos inalámbricos desde ese lugar, su estación en Poldhu, hasta isla Terranova, que hoy es parte de Canadá, que estaba precisamente al frente aunque mucho más allá del horizonte.

Lo había logrado, aseguraba, pero había escépticos.

Se preparaba para dar una función pública que le serviría, como le habían servido otras anteriores, para acallar dudas, cimentar su reputación y hasta maravillar a los curiosos.

Iba a demostrar que sus mensajes no sólo viajaban largas distancias, sino que podía "sintonizar sus instrumentos para que ningún otro que no esté sintonizado de la misma manera pueda interferir con mis mensajes", como le había dicho al diario St James Gazette.

A unos 500 kilómetros de distancia

En el famoso auditorio de la prestigiosa Real Institución de Gran Bretaña en Lond
res, un distinguido público se había reunido para presenciar la gran hazaña: la recepción de un mensaje enviado por Marconi desde la estación en Poldhu.

El físico e ingeniero eléctrico británico John Ambrose Fleming, considerado como uno de los padres de la electrónica, era el presentador y estaba casi listo para iniciar el evento.

Gracias a su magnífica reputación, la sola presencia de Fleming le daba un manto de credibilidad a la ocasión. No por nada, Marconi lo había reclutado como asesor científico de su firma desde 1899.
Cuando Fleming terminó de ajustar el aparato con el que demostrarían la nueva maravilla tecnológica, se hizo un expectante silencio en la sala.

De pronto, se empezaron a escuchar unos golpeteos.

Tap, tap, tap

Fleming no se percató de nada, pues no sabía descifrar código morse y tampoco oía muy bien.


Pero su asistente, Arthur Blok, sí, y le extraño notar que se trataba de la misma palabra repetida. Más aún, que la palabra era "rats" (ratas: expresión de desilusión y disgusto).

El artículo completo en:

BBC Ciencia

30 de abril de 2016

La nevera diseñada por Albert Einstein

¿Qué se pone a hacer uno después de que describe la naturaleza del Universo por primera vez en la historia?

En los años 20, Albert Einstein ya había puesto en marcha la teoría cuántica y había resuelto lo de la relatividad. Se embarcó entonces en su última gran expedición a los misterios más profundos de la física, una que pasaría a ser su sueño incumplido: la búsqueda de una teoría unificada que vinculara todas las fuerzas de la naturaleza en una sola ecuación maestra.

Ese es el Einstein que más conocemos, el que trataba de resolver los más oscuros y obstinados enigmas del mundo.

Pero al mismo tiempo, estaba trabajando en otra cosa.

Estaba inventando un nuevo tipo de nevera.

¿Por qué -uno se podría preguntar- cuando se estaba convirtiendo en una celebridad internacional por haber remodelado el Universo y transformado nuestra idea del tiempo, decidió ponerse a crear un electrodoméstico?


Hasta los años veinte las neveras, en los hogares de EE.UU., eran artefactos raros, voluminosos y tenían cuatro patas.

Lo que nos dice el refrigerador

Sí, Einstein también era un inventor. Nunca fue una parte principal de su trabajo pero se lo tomaban en serio.

Sin embargo, sigue sonando un poco estrafalario que el hombre que nos dio E=mc2 y encorvó el espacio-tiempo se estuviera preocupando por mantener la leche fría.

No concuerda mucho con las imágenes que generalmente tenemos del ícono científico: el joven genio incubándose en la oficina de patentes suiza o el sabio de cabellos blancos montando bicicleta, sacando la lengua y charlando con celebridades en Princeton.

¿Qué pasó con Einstein durante los años intermedios?, le preguntamos a Katy Price, catedrática de la Universidad Queen Mary de Londres, quien ha investigado su celebridad emergente en los años 20.
"Realmente no pensamos mucho en cómo llegamos del Einstein joven al de más tarde, y ese es el período en el que todo está cambiando", señala.

"En todo el mundo se reportaba sobre la sensacional nueva teoría del Universo. El titular en New York Times, por ejemplo, fue 'Jazz en el mundo científico'... durante su visita a Inglaterra dio conferencias en alemán sobre la teoría de la relatividad y a pesar de ello causó sensación".

"En la prensa describían mucho su apariencia: la ropa que usaba, su pelo, sus ojos... 'parece un hombre cálido, es bueno con los niños, toca violín'... Deseaban humanizar a la persona que nos dio esa teoría matemática intensamente abstracta".

Pero todo esto contrastaba marcadamente con lo que estaba pasando entretanto en su nativa Alemania.

Uno se imaginaría que Einstein estaba pasando por su mejor momento, disfrutando de su éxito y fama.

Pero de hecho, ese período de su vida fue difícil, tanto en la ciencia como en el hogar y en Alemania.

El artículo completo en:

BBC Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0