Latest Posts:

Mostrando las entradas con la etiqueta electrones. Mostrar todas las entradas
Mostrando las entradas con la etiqueta electrones. Mostrar todas las entradas

9 de abril de 2013

La Relatividad está en las cosas que nos rodean...



Al hablar de la relatividad especial siempre nos da la impresión, al menos a mí me pasa, de que estamos tratando con una teoría que explica fenómenos que difícilmente tendrán una influencia directa en cosas tangibles para nosotros. Siempre tenemos a mano efectos chulos de partículas que “viven” más porque van a velocidades cercanas a la de la luz, los gemelos se hacen un lío con los años, las llaves no entran en las cerraduras, etc. Pero la pregunta es

¿Hay algo que nos rodee que manifieste características relativistas?
 
Y la respuesta está en la química.

En esta entrada no pretendo ser exhaustivo, tan solo quiero dar una lista de fenómenos, cotidianos, que no podrían darse de no verificarse las leyes de la relatividad especial. Como siempre, la naturaleza es maravillosa :)

Núcleos, electrones y orbitales

Generalmente nos dicen que las propiedades químicas de los elementos vienen determinadas por sus configuraciones electrónicas. Los átomos están compuestos por núcleos (con un número dado de protones y neutrones por allí) y electrones atraidos por este mediante la interacción eléctrica. Para entender estos hechos tenemos que recurrir a la mecánica cuántica. Muy brevemente (para una información más extensa: Orbitales Atómicos):
  1. Los electrones se disponen en orbitales.
  2. Estos orbitales vienen determinados por la energía del electrón (que solo puede tomar determinados valores), su momento angular, y su espín.
  3. En los orbitales encontramos la información de con qué probabilidad encontraremos al electrón con una determinada energía y momento angular a una distancia R del núcleo y en una determianda dirección.
Con esta información se pueden dar cuenta de las propiedades químicas y físicas de los elementos y se puede entender la organización de los mismos en la tabla periódica.



Si le preguntamos a un físico o un químico, nos dirán que esto viene descrito esencialmente por la ecuación de Schrödinger. Esto implica que los efectos relativistas (que serían necesarios si los electrones se movieran a fracciones apreciables de la velocidad de la luz) no se consideran necesarios para un buen entendimiento de la química. Y esta es la opinión más generalizada, de hecho, se estudia poco de esto en las carreras de física o química (por no decir nada).

Así pues, la relatividad especial parece algo que solo tiene importancia en cuestiones que involucran a partículas de alta energía que se mueven a muy alta velocidad. Pero no siempre es así.

Ahora presentaremos el argumento por el cual la relatividad influye en la química de algunos elementos muy usuales en nuestras vidas y hablaremos de algunos ejemplos.

La relatividad y su influencia en los átomos

Cuando uno estudia los orbitales atómicos puede calcular cual es la velocidad promedio de los mismos.  Según los cálculos esta velocidad media tiene la siguiente dependencia:

\langle v\rangle \approx Z

Es decir, la velocidad aumenta con el número atómico (número de protones en el núcleo). Esto implica que la química de los elementos pesados de la tabla periódica dependerá de características relativistas.
Uno de los principales efectos que tiene esto es lo siguiente:
  • Para núcleos con número atómico alrededor de 70 las velocidades de los electrones son superiores a 0.5c. A estas velocidades los efectos relativistas ya son apreciables.
  • Dado que a estas velocidades las energías de los electrones se pueden asociar a un incremento de su masa efectiva (y esto solo es un truco matemático, lo que se llama la masa relativista).  Ocurre que los orbitales de tipo s y p “disminuyen su tamaño” y bajan sus energías.
El radio promedio de un orbital se puede asociar a lo que se llama como radio de Bohr:

r_{Bohr}=\dfrac{Ze^2}{mv^2}

Así pues, se produce una contracción orbital si consideramos una masa relativista en vez de una masa no relativista.
  • Además se producen cambios en los niveles de energía:


En un mundo relativista, como el nuestro, los orbitales s y p tienen menor energía y los orbitales d y f tienen mayor energía que en los respectivos casos no-relativistas.

Mira tu anillo y verás la relatividad

Si la química está en lo cierto, todos los elementos de un grupo tienen que tener propiedades parecidas. Sin embargo, cuando uno mira la plata y el oro los podemos distinguir a simple vista sin más que ver su color.
¿Por qué la plata tiene color metálico plateado y el oro es amarillo?

Esta cuestión solo se puede responder en un contexto relativista. El color de estos metales es debido a una transición entre el nivel 5d y el 6s. Para la plata esta transición es muy poco probable porque la separación energética de estos niveles es grande. Pero el oro, con un Z=79 la relatividad obliga a que esos niveles estén más cercanos y la transición energética está en el rango óptico y es lo que explica su color característico.
En un mundo no relativista el oro tendría el color de la plata.

El mercurio



El mercurio es ese metal líquido. ¿Un metal líquido? ¿Un metal con un punto de fusión tan bajo que es líquido a temperaturas usuales?

Pues sí, este metal tiene las características que tiene por culpa de la relatividad.

La temperatura de fusión del oro es de unos 1000ºC y la del mercurio -39ºC. La diferencia no es poca, lo cual es sorprendente, porque están muy cerca el uno del otro en la tabla perdiódica, de hecho están al lado.

La diferencia entre el oro y el mercurio está en que el mercurio tiene su orbital 6s (contraido relativisticamente) lleno (el del oro tiene un hueco libre). Esto hace que las uniones Hg-Hg sean muy débiles y esencialmente sean uniones de Van der Walls. Eso le confiere las propiedades tan típicas a este elemento.

Abre tu coche



Las baterías que generalmente llevan los coches son las de Plomo/Ácido. Estas baterías producen corriente a través de unas reacciones de oxidación/reducción (mueven electrones de un átomo a otro). El caso es que las reacciones típicas involucran un ión del plomo, el Pb^{2+} y Pb^{4+}. Esto se consigue llevando electrones desde el orbital 6s contraido al 6p. Este proceso no es fácil de conseguir, está muy inhibido, y es lo que hace posible que estas baterías funcionen. Sin la relatividad no lo harían.

Lo obvio

Aparte de lo dicho, está claro que todas las características químicas de los elementos que involucran al espín, los acoplos espín-órbita, etc, son muestras de que vivimos en un universo donde operan las leyes dadas por la relatividad especial. El espín de las partículas es una consecuencia directa de la relatividad especial en la definición del concepto de partícula. Por lo tanto, cualquier fenómeno que dependa del espín es una muestra de la influencia de la relatividad, por poner un ejemplo, las resonancias magnéticas son una prueba palpable de que vivimos en un sitio relativista ;) .

Aquí solo hemos pretendido mostrar, muy por encima, que a veces las cosas que nos parecen más alejadas de nuestra experiencia en realidad tienen una influencia directa en nuestras vidas. Vivimos en el universo que vivimos y eso hace que podamos rastrear sus consecuencias hasta en las situaciones más insospechadas.

Desgraciadamente, no se suele puntualizar este hecho muy a menudo ni en las clases, ni en los libros de texto. Sin embargo, es interesante tener todo esto en mente, porque vivimos en un sitio sorprendente.
Nos seguimos leyendo…

Un artículo muy interesante sobre todos estos temas, para profundizar:

Fuente:

4 de abril de 2013

¿Por qué los relámpagos nunca viajan en línea recta?

Relámpago

El fenómeno eléctrico que desencadena los relámpagos forma un camino en zigzag.

El recorrido en zigzag de los rayos tiene sus orígenes en procesos que aún no se comprenden del todo.

Comienza con fuertes corrientes de aire ascendentes que crean una carga eléctrica estática a través de un efecto de fricción, parecido al que se obtiene al restregar un globo sobre un tejido.

Esta carga genera un campo eléctrico que acelera a los electrones libres del aire circundante, haciéndolos chocar contra las moléculas cercanas, y, de esta forma, liberando aún más electrones.

Si son lo suficientemente violentas, estas colisiones hacen que el aire bajo la nube se convierta en conductor, lo que permite el paso de la corriente eléctrica.

Esto calienta el aire hasta alrededor de los 30.000º C, desencadenando el característico rayo de luz que sigue el zigzag que forman las colisiones.

Ese calor además causa una repentina expansión del aire, que suena como el trueno.

Fuente:

BBC Ciencia

25 de marzo de 2013

¿Por qué se hace la oscuridad al apagar la luz?


Estamos en un cuarto donde la luz rellena totalmente la habitación. Decidimos apagar. Pulsamos el interruptor. La luz desaparece del espacio que nos rodea, aunque se mantiene unos instantes cierta luminosidad en los tubos de las lámparas de bajo consumo.

¿Por qué? ¿Adónde se va esa luz cuando apagamos? La respuesta es sencilla. El catedrático de Física Aplicada Antonio Ruiz de Elvira lo explica desde una de las estancias más oscuras de Cosmocaixa, el museo de la ciencia de la Obra Social La Caixa de Alcobendas.

La luz no es más que una onda electromagnética de las muchísimas que nos rodean constantemente. Vivimos en un mar denso de radiaciones electromagnéticas. Solo vemos una parte minúscula de ellas a las que se han adaptado nuestros ojos; lo que llamamos 'luz visible'.

Cuando apagamos la luz, los electrones de los átomos que solo emiten luz visible dejan de excitarse, y solo emiten radiación en otras frecuencias. La luz que 'vemos', los colores, son re-radiaciones de esos electrones de los átomos que responden con unas frecuencias propias a la energía que reciben. Cuando apagamos, la energía que hemos dado a los objetos vuelve a salir de ellos, ahora como una especie de 'luz' (en realidad, otras frecuencias) que no vemos.

Fuente:

El Mundo Ciencia

27 de febrero de 2013

La NASA propone tener un reactor nuclear en cada hogar

Los científicos del Centro de Investigación Langley de la NASA estiman que en el futuro sería posible instalar un reactor nuclear en casa en lugar del calentador de agua ya que será suficientemente pequeño y seguro. 


Este tipo de reactor no usa fisión, proceso en el que un núcleo pesado se divide en dos o más núcleos pequeños liberando una enorme cantidad de energía, que se usa en las actuales plantas nucleares. Tampoco se basa en la fusión, proceso de la unión de varios núcleos atómicos de carga similar que forman un núcleo más pesado. Se trata de reactores de reacciones nucleares de baja energía (LENR, por sus siglas en inglés) también conocidos bajo el nombre de reactores de fusión fría. 

La fusión fría es un nombre genérico dado a cualquier reacción nuclear de fusión producida a temperaturas y presiones cercanas al ambiente, muy inferiores a las necesarias normalmente para la producción de reacciones termonucleares (millones de grados Celsius), utilizando equipamiento de relativamente bajo costo y un reducido consumo eléctrico para generarla. Los primeros intentos de conseguirla ascienden a finales de la década de los ochenta, pero a día de hoy no se ha probado definitivamente que la fusión fría sea un proceso físicamente posible. 

Sin embargo el jefe del grupo de investigación, Joseph Zawodny, asegura que su equipo tiene una solución innovadora para conseguir el resultado. Propone procesar el níquel para que pueda contener el hidrógeno de la misma forma que una esponja contiene agua. 

El hidrógeno se ioniza, es decir, cada átomo de hidrógeno se despoja de su electrón y se queda solo con el protón. Luego hacen que los electrones del metal oscilen todos juntos de tal manera que los miles de millones de electrones transfieren la energía electromagnética que tienen almacenada a unos cuantos de ellos. De este modo, el grupo 'privilegiado' de electrones recibe energía suficiente para fusionarse con los protones a su lado (con los iones de hidrógeno) y formar neutrones ultralentos. Los núcleos de los átomos del metal 'capturan' estos neutrones de inmediato (en otras palabras, los absorben) y, gracias a que esta absorción hace extremadamente inestable a los núcleos, se lanza una reacción en cadena que transforma el níquel en cobre y libra la energía útil. 

Los investigadores subrayan que este tipo de energía es más limpia que los combustibles tradicionales. Los reactores de LENR producen energía "sin los peligros de la ionización radioactiva y sin producir basura nuclear" y pueden usarse en los sistemas de transporte e infraestructura. El jefe científico del Centro de Investigación Langley de la NASA, Dennis Bushnell, estima que un 1% del níquel extraído cada año podría cumplir con los requisitos energéticos del mundo con tan solo una cuarta parte del costo del carbón.

Fuente:

Actualidad RT

26 de febrero de 2013

Mono en EE.UU. controla mentalmente a un robot en Japón

monobot1

El investigador de interfaces cerebro-máquina Miguel Nicolelis presentó un experimento bastante inusual en una charla TED, publicada recientemente por la organización: Una mona en Estados Unidos que puede controlar a un robot en Japón sólo con el pensamiento.

“Esta es la liberación completa del cerebro de las limitaciones físicas del cuerpo”, afirma Nicolelis, pionero en el campo de las neuroprótesis. Junto a su equipo en la Universidad de Duke desarrollaron una tecnología para “escuchar” al cerebro, que permite detectar cuando las neuronas están activas enviando una instrucción y encontrar patrones en “sinfonías cerebrales”, que luego se pueden conectar con máquinas para reproducir un movimiento. El resultado es que un animal como Aurora (la mona) puede aprender a controlar avatares virtuales y máquinas en el mundo real sin contacto físico.

Nicolelis entrenó a Aurora en 2003 para jugar un videojuego usando un joystick (con jugo de naranja como recompensa al hacerlo bien), mientras se registraban las señales enviadas por su cerebro con las instrucciones que enviaba a su brazo. Esas instrucciones eran luego procesadas por un computador, ya que la idea era que Aurora pudiera reproducirlas en un brazo robótico sólo con su pensamiento. Y eso es lo que se logró: Aurora luego podía jugar el videojuego sin tocar el joystick, sino que enviando instrucciones mentales al brazo robot para que hiciera los movimientos por ella. “El modelo de sí misma que Aurora tenía en su mente se expandió para obtener un brazo más”, dice Nicolelis – Aurora no perdió el uso de sus otros dos brazos, que podía seguir usando para hacer otras cosas mientras controlaba el tercer brazo robot.

El siguiente paso fue crear un avatar virtual de Aurora que ella pudiera controlar con la mente, y explorar objetos que aparecen en el mundo virtual. Cuando la mona tocaba algo en el mundo virtual, se enviaba una señal a su cerebro, provocando una sensación de tacto pero sin pasar por la piel. “El cerebro aprende a procesar esta nueva sensación y obtiene un nuevo camino sensorial, es como un nuevo sentido”, dice Nicolelis. De este modo el control del avatar se hace directamente con el cerebro, y el sistema envía feedback directo al cerebro, sin pasar por acciones en el mundo físico.

El investigador decidió llevar esto al siguiente nivel tiempo después al hacer que Aurora corriera sobre una trotadora en la Universidad de Duke para controlar a un robot en Kioto, Japón.

“Lo que sucede aquí es que la actividad cerebral que genera el movimiento en el mono fue transmitida a Japón, y se hizo caminar a este robot, mientras se enviaba de vuelta a Duke el video del robot caminando, para que el mono pudiera ver las piernas de este robot caminando frente a ella, y pudiera ser recompensada no por lo que su cuerpo estaba haciendo, sino por cada paso correcto que diera el robot al otro lado del mundo”, afirma.

El tiempo en el que la señal viajó desde el cerebro de Aurora hasta Kioto, más el tiempo que le tomó al video llegar de vuelta a Duke fue 20 milisegundos menos que lo que le toma a una señal viajar desde nuestro cerebro hasta nuestras piernas, indica Nicolelis, lo que según el investigador implica que “nuestro concepto de nosotros mismos no termina en las células de nuestro cuerpo, sino que en la última capa de electrones de la herramientas que hemos estado comandando con nuestro cerebro”.

Si bien podemos pensar en varias aplicaciones de ciencia ficción a una tecnología como ésta, el objetivo de Nicolelis está en restaurar la habilidad de personas cuadrapléjicas y parapléjicas de controlar sus propios miembros de nuevo, saltándose el daño de la médula espinal y enviando las señales cerebrales a un “nuevo cuerpo” – un exoesqueleto robótico. El proyecto “Walk Again” reúne a científicos de Europa, Estados Unidos y Japón.



Fuente:

FayerWayer

8 de diciembre de 2012

Imágenes increibles: El ADN como nunca lo habíamos visto


La doble hélice. El modelo de ADN de Watson y Crick. Todos hemos crecido con esa imagen en la cabeza. Como cristalógrafa, una de las primeras cosas que aprendes es a valorar aquellas imágenes de difracción de rayos X que permitieron conocer la estructura del ácido nucleico y que abrieron también las puertas a la cristalografía de proteínas. Todos hemos visto alguna vez aquella imagen 51, en la que se puede observar como los puntos de difracción forman una cruz. Pero nos habíamos quedado ahí. EL ADN era eso, o bien una cruz en los patrones de difracción, o un modelo de bolitas.

Primera imagen (recíproca) de la doble hélice

Primera imagen (recíproca) de la doble hélice

Pues ahora ya no, ahora lo hemos visto de verdad. La pasada semana se ha publicado un artículo en ACS NanoLetters que presenta las primeras imágenes del ADN por microscopía electrónica. El equipo italiano que ha llevado a cabo el trabajo, ha conseguido desarrollar un sistema en el que depositar el ADN de forma que el medio que lo rodea no interfiera en la imagen, y se pueda recoger una imagen directa de la estructura sin interferencias. Tengamos en cuenta que ése es uno de los mayores problemas de la microscopía electrónica, ver lo que quieres ver sin ver todo lo que rodea lo que tú buscas. Este grupo ha conseguido la superficie ideal para eliminar todo el ruido de fondo, y además permitirá visualizar el ADN interaccionando con otras moléculas, abriendo las puertas a la visualización de la interacción ADN-proteína.

En este primer artículo en el que exponen la técnica, utilizan siete cadenas de ADN formando un nanofibras.

Para tomar las imágenes, han utilizado un microscopio electrónico de transmisión (TEM), que permite obtener imágenes con profundidad de campo a alta resolución, y no sólo las imágenes 2D a las que estamos acostumbrados. Pero la gran novedad es la superficie, la forma de depositar el ADN: han generado una superficie superhidrofóbica en la que al evaporarse el agua no se daña la molécula depositada. La superficie tiene una serie de pilares entre los que se deposita el DNA de forma que tras la evaporación queden en suspensión, permitiendo obtener imágenes de gran calidad.

La esperanza de los autores es mejorar la técnica lo suficiente para poder utilizan una única cadena, ya que en la actualidad, la fuerza ejercida por los electrones del microscopio la rompería.

Esta es una de las imágenes en las que se puede observar la periodicidad de la doble hélice (imagen del artículo).

Esta es una de las imágenes en las que se puede observar la periodicidad de la doble hélice (imagen del artículo).

Las imágenes que han obtenido son alucinantes e incluso ojos inexpertos pueden ver claramente la estructura helicoidal de las nanofibras. Esperemos que en el futuro, los avances en el campo permitan mejorar todavía más la resolución y podamos por fin ver (y no sólo imaginar) cómo funciona realmente la vida.

Para todos aquellos que queráis leer el artículo original y profundizar un poco más en el tema, os dejo el enlace al artículo:

Direct imaging of DNA fibers: the visage of double helix

Fuente:

La Ciencia y sus Demonios

5 de octubre de 2012

Fuerza protón-motriz: el poderoso aliento de la vida

En 1961 el destacado bioquímico británico Peter Mitchell publicó en Nature un artículo en el que dilucidaba uno de los últimos grandes misterios por resolver en el estudio de la respiración celular: el mecanismo gracias al cual la energía extraída a partir de los electrones arrancados a los combustibles orgánicos a lo largo de las cadenas respiratorias se gestiona en el interior de la mitocondria antes de ser almacenada en forma de ATP, cerrando un amplio capítulo de la investigación bioquímica iniciado siglos atrás.

Desde que Lavoisier estableciera la equivalencia de respiración y combustión hacia finales del siglo XVIII, el estudio de este asunto central de la fisiología había recorrido un largo camino plagado de escollos, afanosamente traspuestos gracias al empeño de destacadas figuras de la ciencia. Entre los hitos que lo jalonan, cabe señalar la identificación por Eduard Pflüger en 1870 de cada célula individual como el entorno en el que la respiración tiene lugar, aunque no fue hasta 1912 cuando B.F. Kingsbury precisó la mitocondria como el orgánulo concreto en el que se produce, afirmación que no obstante no fue ampliamente aceptada hasta que Eugene Kennedy y Albert Lehninger, en 1949, demostraron que efectivamente es en la mitocondria donde se encuentran las enzimas respiratorias. Para entonces ya era sabido que la respiración es el proceso, consistente básicamente en la oxidación de glucosa, del que procede la energía necesaria para sostener todas las funciones vitales, y la investigación se orientó a descifrar los mecanismos por los que esta energía es extraída y aprovechada en la realización de trabajo metabólico. Sobre el conocimiento de la hemoglobina y su capacidad para fijar oxígeno, se empezó a buscar un pigmento similar localizado en las células, en las que Charles MacMunn acabó por encontrar rastros de algo que llamó pigmento respiratorio que en realidad, como luego averiguó David Keilin, se trataba de una agregación de tres pigmentos diferentes que denominó citocromos, distinguiéndolos entre sí con las letras a, b y c, ninguno de los cuales fijaba directamente oxígeno como se esperaba. El propio Keilin ideó un primer modelo de cadena respiratoria en el que los átomos de hidrógeno, tras ser arrancados de la glucosa, eran escindidos, y cuyos electrones se hacían circular luego paso a paso por los eslabones de la susodicha cadena (los tres citocromos), extrayendo en cada uno una pequeña y manejable cantidad de energía, hasta que eran cedidos al oxígeno en el último paso para formar agua con la concurrencia del correspondiente protón.

El modelo de Keilin resultó clarividente, pero había que esclarecer un punto fundamental: ¿cómo se almacena esa energía para su posterior empleo en trabajo por todo el organismo?. La respuesta se había estado madurando en estudios paralelos sobre la fermentación, y fue brindada finalmente en 1929 por Karl Lohman con el descubrimiento del ATP, cuyo carácter de moneda energética universal fue paulatinamente estableciéndose en estudios posteriores, como por ejemplo los de Vladimir Engelhardt (quien demostró que la formación de ATP era el objetivo no sólo de los procesos de fermentación sino también de los de respiración), de Severo Ochoa (que cuantificó en hasta 38 las moléculas de ATP que pueden ser generadas a partir de una sola molécula de glucosa mediante la respiración), o los que concluyeron que también la energía cosechada de la luz por los organismos fotosintéticos se invertía en ATP.

El siguiente paso importante fue la caracterización de la ATPasa por parte de Efraim Racker. La ATPasa es un enorme complejo enzimático que canaliza la energía hacia la formación de ATP, y se encuentra embebido en la membrana interna de las mitocondrias junto a las cadenas respiratorias con las que, empero, no mantiene conexión física. Esto sugirió la existencia de algún intermediario desconocido que transfería la energía entre éstas y aquella, y cuya búsqueda se acometió de inmediato aunque resultó rotunda e insistentemente infructuosa. Es necesario advertir que además se habían puesto de manifiesto un par de aspectos curiosos del proceso respiratorio: Por un lado no se apreciaba una relación estequiométrica entre el número de electrones que circulaban por las cadenas y el de moléculas de ATP sintetizadas. Estas varían entre 28 y 38 por molécula de glucosa, empleándose para cada una entre 2 y 3 electrones. La ausencia de números redondos resultaba una característica realmente extraña en una disciplina, la química, en la que todo se expresa en números enteros. Por otro lado se había constatado la necesidad de una membrana, íntegra tanto física como funcionalmente, para que la circulación electrónica y la producción de ATP quedasen acopladas. En una membrana dañada el tránsito electrónico no cesa, pero queda desacoplado de la síntesis de ATP y éste no se produce, disipándose la energía extraída en forma de calor.

En este contexto irrumpió Mitchell, dedicado a la sazón al estudio del transporte activo de sustancias a través de membranas bacterianas. Había llegado a comprender que este transporte generaba un gradiente de concentración entre ambos lados de esas membranas, y la existencia de un gradiente supone el establecimiento de un potencial que eventualmente puede ser usado como fuerza motriz. A partir de estas ideas básicas Mitchell aventuró su teoría del acoplamiento quimiosmótico, una idea revolucionaria que conmocionó la bioquímica. Según su modelo, los átomos de hidrógeno extraídos de la glucosa en la matriz mitocondrial se descomponen en sus elementos, protones y electrones, entrando estos últimos en la cadena de transporte respiratorio. La energía que rinden en su “caída” hacia el aceptor final, el oxígeno, está acoplada a bombas que transportan los protones hacia el espacio intermembrana y que se localizan, como se averiguó posteriormente, en tres de los cuatro complejos que componen la cadena. Al ser la membrana impermeable a ellos, se crea un gradiente a su través que es de doble naturaleza: eléctrica (dada la carga positiva del protón) y química (gradiente de pH), constituyente de la llamada fuerza protón-motriz cuyo encauzamiento a través de la maquinaria ATPasa impulsa la síntesis de ATP.

Con este modelo quedaron explicadas la necesidad de una membrana íntegra, la relación no estequiométrica ni fija entre moléculas de glucosa procesada y de ATP obtenido y el fracaso en la identificación del fantasmal intermediario de enlace entre las cadenas respiratorias y el complejo ATPasa; el hecho es que sencillamente no existe tal; el espacio intermembrana es una represa en la que se almacenan protones contra gradiente de concentración aprovechando la energía que mueve los electrones hacia el oxígeno, y las ATPasas son las compuertas por las que se libera controladamente su fuerza contenida acoplándola a la producción de ATP, utilizado luego en cualquier lugar donde se precisa realizar trabajo. La aceptación general de esta brillante teoría no fue ni mucho menos inmediata. Muy al contrario, se recibió con sobrada incredulidad cuando no con abierta hostilidad en la comunidad científica, que tardó aún muchos años en asumirla como un descubrimiento; uno de los más importantes de la ciencia del pasado siglo para no pocos científicos hoy en día, y que acabó por granjearle a su genial autor el premio Nobel de 1978, además del reconocimiento final de sus colegas. Numerosos detalles del sistema quedaban por desvelar, así diversos aspectos del mecanismo de transporte electrónico de las bombas de protones o de la maquinaria ATPasa, muchos de los cuales se conocen ya al detalle. Esta última, por ejemplo, ha sido desentrañada pieza por pieza (se trata en definitiva de un portentoso nano-dispositivo mecánico-químico), y se ha medido con precisión la diferencia de potencial eléctrico a ambos lados de la membrana, que arroja un valor de 150 milivoltios a lo largo de un espacio de unos 5 nanómetros, que es el grosor de la membrana. Haciendo una simple conversión de escala, este potencial sería equivalente a 30 millones de voltios por metro; literalmente, disponemos de la energía del rayo en cada una de nuestras células.

Pero incluso ahora, la quimiosmosis plantea cuestiones de gran calado y trascendencia más allá de los límites de la bioquímica. A lo largo de los últimos años se ha puesto de manifiesto su carácter universal; toda vida conocida utiliza la quimiosmosis de una forma o de otra, hecho que ha llevado a algunos científicos a preguntarse por qué un mecanismo que, desde un punto de vista digamos convencional puede considerarse rocambolesco y contraintuitivo, parece ser inherente a la vida misma. Las posibles respuestas, serán materia de nuestra próxima entrega.

Tomado de:

E-Ciencia

4 de octubre de 2012

La NASA obtiene registros sonoros de “la canción de la tierra”

earth_song

Una nave de la NASA logró capturar lo que la agencia espacial denomina “La Canción de la Tierra” o “Coro” como prefieren decir los científicos.

Este coro al que la NASA le atribuye rango de canción hecha por nuestro propio planeta, es un fenómeno electromagnético provocado por las ondas de plasma en los cinturones de radiación de la Tierra, conocidos como Van Allen. Durante muchos años, los radioaficionados han estado escuchando estos coros pero nunca con la nitidez de este registro.

Pero ahora, gracias a dos sondas espaciales que cargan con un equipo llamado EMFISIS (Electric and Magnetic Field Instrument Suite and Integrated Science) construído por la Universidad de Iowa, se ha logrado escuchar este coro grabado en el mismo lugar donde se origina.

Craig Kletzing de la Universidad de Iowa explica: “este coro es lo que escucharía un ser humano ubicado en los cinturones de radiación de la Tierra si en lugar de oídos tuviera antenas”. Kletzing aclara que no son ondas acústicas que viajan a través del aire de nuestro planeta, sino ondas de radio que oscilan a frecuencias acústicas, entre 0 y 10 kHz y que las antenas de búsqueda de bobinas magnéticas de EMFISIS están diseñadas para detectar este tipo de ondas.

Algo que llama la atención desde hace años a los científicos son los llamados “electrones asesinos”, partículas de alta energía que pueden poner en peligro satélites y astronautas, de las cuales podría tener responsabilidad estas ondas captadas en forma de canción. En general, explica Dave Sibeck, responsable científico de la misión, la mayoría de los electrones en los cinturones de radiación son inofensivos y poseen muy poca energía para hacer daño a los sistemas humanos o electrónicos. Pero, a veces, estos electrones pueden “subirse a una ola” al estilo de un surfista, y generar suficiente energía como para poner en peligro instrumentos o dispositivos creados por el ser humano.

“La producción de electrones asesinos es un tema de mucho debate, y las olas del coro son sólo una posibilidad”, afirma Dave Sibeck.

Con respecto al registro sonoro, Kletzing se mostró sorprendido por la claridad de la grabación y le adjudica el logro al muestreo de 16 bits, “similar al de un CD”, que se configuró en el instrumental para captar el registro, algo que también esperan pueda servir para lanzar grabaciones inéditas estéreo de los coros de la Tierra (los que seguramente no recibirán ningún tipo de regalía…)

Este avance es sólo el comienzo de una misión que durará dos años y que buscará también determinar qué tan amplia es la región de los cinturones de Van Allen y qué zonas poseen la mayor concentración de “electrones asesinos” que podrían perjudicar a satélites y astronautas. 


Fuente:

20 de marzo de 2012

¿Por qué el papel de aluminio tiene dos caras diferentes?



En efecto: una es brillante y la otra mate.

¿Y es mejor un lado que otro para envolver el bocadillo?

La mayoría de los sólidos se rompen al ser sometidos a presión, pero esto no ocurre con los metales. El aluminio, como el resto de los metales, es maleable. Así podremos aplastarlo al aplicarle la suficiente presión y extenderlo en láminas o en planchas. Y enrollarlo en láminas muy delgadas.

Pero ¿qué quiere decir maleable?

Los metales son maleables porque sus átomos se mantienen unidos mediante una serie movible de electrones compartidos, en lugar de estar unidos por fuerzar rígidas entre los electrones de un átomo y los del siguiente, como pasa en la mayoría de los sólidos.

Como un átomo en concreto no tiene una posición fija, puede cambiar de lugar manteniendo su enlace con uno u otro electrón, dependiendo de la presión a la que se vea sometido el metal.

En la fábrica de papel de aluminio se somete al aluminio a una gran presión hasta que se obtiene una lámina delgada, lo suficiente para devanarlo haciéndolo pasar entre pares de rodillos, para ir obteniendo progresivamente láminas más y más finas. Hasta conseguir alcanzar grosores de menos de dos centésimas de milimetro.

Para que la lámina no se rompa en el laminado en frío y para ahorrar espacio en el laminado final, se hacen pasar dos láminas a la vez entre los rodillos.

Así, las superficies que están en contacto con los rodillos de acero pulido, salen lisas y brillantes. Pero las superficies interiores, de aluminio contra aluminio salen ligeramente rugosas y mates, ya que el aluminio es mucho más blando que el acero.

Aparte del aspecto, no hay ninguna diferencia entre una y otra cara, por lo que se puede usar cualquiera de ellas para envolver los alimentos.

A continuación un video explicativo del proceso:




Tomado de:

Saber Curioso

15 de marzo de 2012

Stanford “customiza” electrones con una fuerza jamás vista en la Tierra

Para que nos hagamos una idea de lo conseguido por los científicos de Stanford, los investigadores consiguieron un diseño de electrones que se comportaban como si estuvieran expuestos a un campo magnético de 0 a 60 Tesla, una fuerza de hasta un 30% más fuerte que cualquier cosa jamás sostenida en el planeta. Un trabajo que según indican, podría conducir a una revolución en los materiales que hacen desde una pantalla a un avión o un smartphone.

Hari Manoharan, profesor de física en Stanford y jefe de la investigación, explicaba lo conseguido:

El comportamiento de los electrones en los materiales se encuentra en el corazón de prácticamente la totalidad de las tecnologías de hoy. Ahora estamos en condiciones de ajustar las propiedades fundamentales de los electrones, de cómo se comportan en formas poco usuales en los materiales ordinarios.

Una de las cosas más salvajes que hicimos fue hacer que los electrones se encontraran en un campo magnético enorme cuando, en realidad, no había ningún campo real, se había aplicado.

Manoharan se refiere a las propiedades del grafeno, pilar del experimento y fuente de inspiración. El equipo calculó las posiciones en las que deberían estar los átomos de carbono y que los electrones creyeran estar siendo expuestos a campos magnéticos que iban de 0 a 60 Tesla.

Los científicos luego trasladaron las moléculas de monóxido de carbono sobre la superficie para dirigir los electrones en esas posiciones… y los electrones respondieron comportándose exactamente como habían creído, como si hubieran estado expuestos a un campo real.

A partir de aquí el experimento abre toda clase de nuevas posibilidades. Los investigadores dicen que el material es una prueba más del alcance de la física. Una nueva esperanza para poder crear otro tipo de estructuras de diseño o la identificación de nuevos materiales a nanoescala.

El propio Manoharan nos da las pistas de un futuro probable:

El grafeno molecular es sólo el primero de una serie de estructuras de diseño posibles. Esperamos que nuestra investigación pueda llevar a la identificación de nuevos materiales a nanoescala con interesantes propiedades electrónicas.



Fuente:

ALT1040

6 de marzo de 2012

Grafino, el hermano desconocido del grafeno


grafeno-iacEl grafeno, al que se ha apodado también como el "material milagroso" del siglo XXI por sus múltiples aplicaciones en el campo de la electrónica, podría tener un competidor: el grafino. Un trabajo publicado en la revista Physical Review Letters ha examinado mediante simulaciones informáticas las propiedades electrónicas de este material que aún debe ser sintetizado en el laboratorio.

El estudio muestra que, al igual que el grafeno, el grafino es capaz de conducir los electrones a gran velocidad, pero en una única dirección. Esta propiedad podría aprovecharse para diseñar transistores y otros componentes electrónicos mucho más rápidos que los actuales, afirma Andreas Görling, uno de los autores del trabajo, de la Universidad de Erlangen-Nuremberg (Alemania).

Ambos materiales consisten en una lámina plana de átomos de carbono unidos por enlaces. En el caso del grafeno, estos enlaces son sencillos o dobles, y se crea un patrón hexagonal que parece una malla gallinera en miniatura. Esta estructura forma lo que se llama cono de Dirac, que hace que los electrones que circulan a través del grafeno se comporten como si no tuvieran masa, por lo que pueden viajar a gran velocidad.

En el caso del grafino los enlaces son dobles o triples, y la estructura resultante no es siempre hexagonal, por lo que existen muchos tipos de grafino posibles. El equipo de Görling ha simulado por ordenador las propiedades electrónicas de distintas formas de grafino. En una de ellas, el 6,6,12-grafino, se han encontrado también los conos de Dirac, lo que sugiere que el material también puede conducir los electrones a gran velocidad, pero en una única dirección.

Mientras que algunos físicos teóricos se muestran escépticos con el descubrimiento, otros lo aplauden y el equipo de Görling insiste en que ahora es necesario sintetizar el 6,6,12-grafino en laboratorio para probar en la práctica sus increíbles propiedades.

Fuente:

Muy Interesante

27 de febrero de 2012

La danza de los electrones en una molécula ya tiene foto


Distribución de la carga en una molécula

Los electrones bailan entre los extremos de la X.

Investigadores en Suiza lograron obtener las primeras imágenes de la "distribución de la carga" en una molécula, las que muestran la intrincada danza de electrones en una escala infinitesimal.

Las cargas en un átomo habían sido medidas con anterioridad, pero capturar esa danza en una molécula había resultado significativamente más difícil.

El experimento puede arrojar luz sobre el proceso de "transferencia de cargas" que es tan común en la naturaleza.

Y los científicos esperan que este avance permita saber más del "nanomundo", lo que no solo sería fundamental en términos científicos, sino también para el futuro de aplicaciones más prácticas en las pueda aprovecharse el comportamiento de la electricidad en esas mínimas dimensiones.

"Ahora será posible investigar cómo se redistribuye la carga a nivel de una simple molécula cuando se establecen vínculos químicos entre átomos y moléculas en la superfice", dijo el principal autor del estudio, Fabian Mohn.

"Esto es esencial para nuestra búsqueda de cómo construir aparatos a escala atómica y molecular", concluyó.

Gracias a Kelvin

El estudio fue elaborado por un grupo del IBM Research Zurich que se especializa en examinar el mundo en una escala infinitesimal.

El mismo equipo es responsable por haber medido la carga de un átomo así como de haber obtenido la primera imagen de una molécula, por lo que en cierto sentido, este nuevo hallazgo es una combinación de los dos trabajos anteriores.

Pero en este último trabajo utilizaron una técnica diferente: el microscopio exploratorio Kelvin, una variante del microscopio de fuerza atómica que permitió la primera imagen molecular en 2009.

Este método requiere una barra de un tamaño mínimo, unas millonésimas de metro, con una punta afilada que termina en una pequeña molécula.

Esta barra carga un pequeño voltaje mientras escanea la superficie de una molécula más grande, con forma de X, llamada naphthalocyanine.

Cuando la punta afilada, cargada con este voltaje, encuentra cargas dentro de la naphthalocyanine, la barra comienza a menearse de tal forma que muestra precisamente dónde están los electrones.

El truco con una naphthalocyanine es que, aplicando el voltaje directamente a la molécula, los dos átomos de hidrógeno en su centro cambian de lugar y los electrones se reorganizan en los lados opuestos de la X.

Con la técnica utilizada por los investigadores, ellos fueron capaces de observar este cambio en la distribución de la carga.

Los detalles de la investigación son publicados en la revista Nature Nantechnology.

Fuente:

BBC Ciencia

Contenido relacionado

Desvelan el misterio de los electrones que provocan las auroras boreales

Imagen de una aurora vista desde la Estación Espacial. | NASA

Imagen de una aurora vista desde la Estación Espacial. | NASA

Científicos del Massachusetts Institute of Technology (MIT) han logrado explicar, gracias a una simulación por ordenador, el misterio que rodea a los electrones de alta velocidad en el espacio que, además, son lo que causan las auroras. Según los resultados obtenidos por el equipo investigador, la clave está en el extremo de la magnetosfera terrestre (el más alejado del Sol), cuya parte activa es 1.000 veces más grande de lo que se pensaba hasta ahora.

Los expertos, han señalado que este hallazgo, publicado en 'Nature Physics', permitirá predecir mejor las corrientes de alta energía de electrones en el espacio que, además, podría dañar los satélites.

El autor principal del estudio, Jan Egedal, había propuesto inicialmente una teoría que explicaba la aceleración de los electrones a gran escala en el extremo de la magnetosfera de la Tierra -un campo magnético extenso e intenso que provoca un barrido hacia el exterior del planeta por el viento solar-, pero, finalmente, la nueva información se ha obtenido a través de la simulación por ordenador.

Acontecimientos magnéticos

Concretamente, la simulación muestra que la región activa en el extremo de la magnetosfera de la Tierra es aproximadamente 1.000 veces más grande de lo que se pensaba. Esto significa que el volumen del espacio energizado por estos acontecimientos magnéticos es suficiente para explicar el gran número de electrones de alta velocidad detectados en las diferentes misiones de naves espaciales, incluyendo la misión Cluster.

Los expertos han explicado que para resolver el problema se ha tenido que utilizar uno de los superordenadores más avanzados del mundo. El equipo informático, llamado Kraken, tiene 112.000 procesadores trabajando en paralelo y consume tanta electricidad tanto como una ciudad pequeña. Egedal ha señalado que en la investigación se han utilizado 25.000 de estos procesadores durante 11 días, para seguir los movimientos de las 180.000 millones de partículas en el espacio durante el transcurso de un evento de reconexión magnética.

Egedal ha explicado que "el viento solar se extiende hacia la Tierra como líneas de campo magnético, de manera que la energía se almacena como una banda elástica que se estira" y que cuando "las líneas de campo paralelas se reconectan, liberan la energía una sola vez".

Físicos desconcertados

"Esa liberación de energía es lo que impulsa a los electrones de gran energía (decenas de miles de voltios) de nuevo hacia la Tierra, donde impactan en la atmósfera", ha señalado el científico, quien apunta que "se cree que este impacto, directa o indirectamente, genera las auroras.Enlace

Lo que había desconcertado a los físicos es el número de electrones de alta energía generados en dichos eventos. Según la teoría, debería ser imposible de mantener un campo eléctrico a lo largo de la dirección de las líneas de campo magnético, porque el plasma (gas eléctricamente cargado) en el extremo de la magnetosfera debería ser un conductor casi perfecto.

Sin embargo, "dicho campo es justo lo que se necesita para acelerar los electrones", ha apuntado Egedal. "La gente ha estado pensando que la región activa del extremo de la magnetosfera era muy pequeña. Pero ahora, se ha demostrado que puede ser muy grande, y puede acelerar muchos electrones", ha indicado el investigador.

Fuente:

El Mundo Ciencia

6 de febrero de 2012

¿A dónde se va la luz cuando apagamos el interruptor?

Bombillo

La luz no es como una nube de niebla que cuelga del aire, es una corriente contínua de fotones emitidos por un bombillo en el medio de una habitación. Cada fotón viaja en una línea recta y, un par de nanosegundos después, alcanza una pared.

Allí, puede que sea absorbidos por uno de los electrones de un átomo de la pared, lo cual hace que el átomo vibre un poco más rápido y caliente levemente la pared. O, puede ser rebotado. Cuando la luz está encendida este proceso tiene lugar de forma constante. Una pequeña fracción de estos fotones rebotados va a parar al ojo humano, donde son absorbidos por la retina, que hace que veamos la habitación iluminada.

Cuando se apaga la luz, no se emiten nuevos fotones y los que ya fueron emitidos rebotan alrededor un par de veces hasta que todos son absorbidos.

Fuente:

BBC en español

Contenido relacionado


31 de enero de 2012

¿Pesa más la antimateria que la materia?

Artículo publicado por Iqbal Pittalwala el 26 de enero de 2012 en UCR Today

Físicos de la UC en Riverside han iniciado un experimento de laboratorio para encontrar la respuesta.

¿Se comportan materia y antimateria de forma distinta respecto a la gravedad? Los físicos de la Universidad de California en Riverside se han propuesto determinar la respuesta. De encontrarla, podría explicar por qué el universo parece no tener antimateria y por qué se expande a un ritmo cada vez mayor.

En el laboratorio, los investigadores dieron los primeros pasos hacia la medida de la caída libre del “positronio” – un estado ligado de un positrón y un electrón. El positrón es la versión en antimateria del electrón. Tiene una masa idéntica a la del electrón, pero una carga positiva. Si un positrón y un electrón se encuentran entre sí, se aniquilan produciendo dos rayos gamma.

Equilibrio de materia y antimateria


Los físicos David Cassidy y Allen Mills separaron inicialmente el positrón del electrón en el positronio, de forma que este sistema inestable resistiera a la aniquilación lo suficiente como para que los físicos midieran el efecto de la gravedad en él.

“Usando láseres, excitamos el positronio hasta lo que se conoce como estado de Rydberg, que deja al átomo con unos enlaces muy débiles, con el electrón y el positrón muy alejados entre sí”, señala Cassidy, científico ayudante en el proyecto en el Departamento de Física y Astronomía, que trabaja en el laboratorio de Mills. “Esto evita por un tiempo que se destruyan entre sí, lo que significa que puedes experimentar con ellos”.

Los átomos de Rydberg son átomos muy excitados. Son interesantes para los físicos debido a que muchas de las propiedades de los átomos quedan exageradas.

En el caso del positronio, Cassidy y Mills, Profesor de Física y Astronomía, estaban interesados en lograr un tiempo de vida largo para el átomo de su experimento. En el nivel de Rydberg, el tiempo de vida del positronio se incrementa en un factor de 10 a 100.

“Pero eso no es suficiente para lo que intentamos hacer”, señala Cassidy. “En el futuro próximo usaremos una técnica que imparte un gran momento angular a los átomos de Rydberg”, comenta Cassidy. “Esto hace que se más difícil la desintegración de los átomos, y podrían vivir hasta 10 milisegundos – un incremento en un factor de 100 000 – y ofrecerse para un estudio más detallado”.

Cassidy y Mills ya han creado grandes cantidades de positronio Rydberg en el laboratorio. Luego, lo excitarán más para lograr tiempos de vida de unos pocos milisegundos. Entonces crearán un haz de estos átomos superexcitados para estudiar cómo se desvían por efecto de la gravedad.

“Observaremos el desvío del haz como una función del tiempo de vuelo para ver si la gravedad lo curva”, explica Cassidy. “Si encontramos que materia y antimateria no se comportan de la misma manera, sería un gran impacto para el mundo de la física. Actualmente tenemos la suposición de que materia y antimateria son exactamente lo mismo – aparte de unas pocas propiedades como la carga. Esta suposición lleva a esperar que se hayan creado en cantidades iguales en el Big Bang. Pero no vemos tanta antimateria en el universo, por lo que los físicos están buscando diferencias entre materia y antimateria para explicar esto”.

Los resultados del estudio aparecen en el ejemplar del 27 de enero de la revista Physical Review Letters.

Cassidy y Mills esperan intentar el siguiente paso en sus experimentos con gravedad este verano.

Se unieron a esta investigación Harry Tom, Profesor de Física y Astronomía, y Tomu H. Hisakado, estudiante graduado en el laboratorio de Mills.

La investigación está patrocinada con becas de la Fundación Nacional de Ciencias y la Oficina de Investigación de las Fuerzas Aéreas de los Estados Unidos.

Tomado de:

Ciencia Kanija

10 de enero de 2012

¿Qué hay en un femtosegundo de luz láser?

Iluminar una pieza de metal, como el cobre o la plata, y los electrones excitados. Estas partículas excitables a su vez alteran los campos electromagnéticos que dan lugar a explotar muchas de sus propiedades tecnológicas, como el excelente desempeño del cobre como conductor de electricidad.


Los esfuerzos por observar los electrones se han vuelto algo más fácil en los últimos años, gracias a los avances con los pulsos láser cortos, pese a los principios fundamentales de la mecánica cuántica que dominan esta escala. La mecánica cuántica y sus funciones de onda sugieren que se puede observar el movimiento de un electrón, pero no sin introducir la incertidumbre sobre su posición, por ejemplo. Y, es mucho más frecuente observar la pérdida de energía de los electrones que observar la ganancia. No obstante, para una mejor comprensión de lo que ocurre con los electrones excitados por la luz incidente, se facilita un mejor diseño fotovoltaico de los sistemas electrónicos que emplean la luz, así como algunos chips avanzados de informática.

Ahora, un equipo de investigadores del Instituto de Tecnología de California ha observado a los electrones en acción, y han crado mapas que muestran los campos de energía de los electrones excitados a través del tiempo, sobre la plata y las superficies de cobre. Utilizando un microscopio de electrones, centraron el haz de una nanopartícula de plata con un respaldo más grande de grafeno durante un femtosegundo (una millonésima de una mil millonésima de segundo, ¿hace falta insistir en que es muy corto?). La ganancia de energía (o la pérdida) se calcula a partir del tiempo de retardo entre los pulsos de luz láser y los electrones. Los investigadores llaman a esta técnica "imagen ultrarrápida del espectro", que en realidad no logra llevar al lenguaje lo rápido que es.

La idea es crear un mapa con la ganancia o pérdida de energía de los electrones de un compuesto específico elemental. Dicho mapa muestra la posición probable de los electrones excitados (incluso la cantidad de energía ganada), sin revelar otras propiedades (de esta manera se mantiene la búsqueda de línea con el principio de incertidumbre de Heisenberg). Por ejemplo, esta nueva investigación muestra que las nanopartículas triangulares de plata ganan la mayoría de su energía a lo largo de su margen izquierda y la esquina inferior derecha (debido al grosor de la partícula y al tamaño del borde, los cuales son más pequeños que las longitudes de onda de los fotones incidentes). La técnica ultrarrápida podría permitir a los científicos ver las interacciones de las moléculas, las propiedades de las partículas y, en última instancia, el funcionamiento interno de las células. No está nada mal para tan súper corto pulso de luz láser.

Fuente:

Bit Navegantes

Nanotubos de carbono para la electrónica del futuro

Nanotubo de carbono.| Wikipedia.

Nanotubo de carbono.| Wikipedia.

Los nanotubos de carbono son nanoestructuras compuestas exclusivamente por átomos de carbono que presentan propiedades inusuales, muy valiosas para diseñar nuevos dispositivos electrónicos, ópticos o fabricar nuevos materiales. Ramón Aguado (http://www.icmm.csic.es/raguado) investiga en el Instituto de Ciencias de Materiales de Madrid (CSIC) las propiedades cuánticas de nanoestructuras tales como estos sorprendentes nanotubos de carbono, utilizando modelos matemáticos.

Ramón Aguado. | (ICMM-CSIC)

Ramón Aguado. | (ICMM-CSIC)

Mónica Luna.- ¿Qué es un nanotubo de carbono?

Ramón Aguado.- A partir de un mismo elemento químico es posible tener sistemas muy diferentes dependiendo de cómo se unan los átomos. En el caso del carbono, se pueden formar varios tipos de estructuras con propiedades radicalmente distintas; pensemos en lo poco que se parecen entre sí un trozo de carbón amorfo y un diamante. Pues bien, en los últimos años hemos aprendido que es posible tener una nueva estructura estable, denominada grafeno, en la que los átomos de carbono forman una lámina que tiene un solo átomo de grosor. Un nanotubo es una lámina de grafeno que se enrolla sobre sí misma para formar un tubo. El diámetro de estos tubos es de apenas 1 nanómetro (un millón de veces más pequeño que un milímetro), pero, sin embargo, su longitud puede ser de varios centímetros. Nunca antes se había conseguido fabricar un tubo molecular con una proporción tan alta entre longitud y diámetro.

Nanotubo de carbono.| Wikipedia

Nanotubo de carbono.| Wikipedia

M. L.- ¿Por qué han despertando tanto entusiasmo estas nanoestructuras?

R. A.- Lo realmente excepcional de los nanotubos de carbono son sus propiedades mecánicas y eléctricas. Es el material más duro que se conoce, más incluso que el diamante. Un cable de un cm cuadrado de sección de este material soportaría un peso de más de mil toneladas. El equivalente de un cable de acero estaría en torno a las 10 toneladas. Además, por si fuera poco, tienen propiedades electrónicas excepcionales. La resistencia eléctrica es extremadamente baja, debido a que los electrones apenas colisionan en su camino. Esto hace que los nanotubos tengan altísimas movilidades electrónicas y soporten densidades de corriente eléctrica miles de veces más grandes que los mejores cables de cobre.

M. L.- ¿Cómo se pueden aprovechar estas propiedades tan ventajosas?

Nanotubos de carbono crecidos de forma alineada.| Wikipedia.

Nanotubos de carbono crecidos de forma alineada.| Wikipedia.

R. A.- Al ser un conductor eléctrico tan excelente podría ser una solución a uno de los problemas actuales de la industria de la microelectrónica, que es la generación de calor. A medida que se reduce el tamaño de los componentes electrónicos y éstos son más rápidos, se genera más calor por lo que hay que buscar otros materiales para construir estos nuevos transistores cada vez más pequeños.

M. L.- Aparte de la generación del calor, otro problema de la miniaturización es la aparición de efectos cuánticos.

R. A.- Efectivamente, el último transistor que acaba de anunciar INTEL tiene un tamaño de puerta de 22 nanómetros y anuncian tamaños de 10 nanómetros para el 2015. Esto significa que la industria está al límite miniaturizar sus transistores a tamaños cercanos al de un átomo. A estas escalas, los efectos cuánticos aparecen de manera natural. Para explicarlo de manera sencilla, los electrones dejan de comportarse simplemente como cargas eléctricas y se comportan cuánticamente, como ondas que pueden atravesar obstáculos e interferir. Cuando esto ocurre las leyes clásicas que rigen un circuito eléctrico dejan de ser válidas. Mi trabajo consiste en estudiar estos efectos cuánticos y entenderlos, de manera que podamos llegar a utilizar estas nuevas propiedades en nuestro beneficio diseñando nuevos transistores y dispositivos cuánticos, en vez de verlas como un contratiempo. Este campo de investigación se denomina nanoelectrónica cuántica. Uno de sus objetivos más ambiciosos es la creación de bits cuánticos (qubits) que son el equivalente de los ceros y unos de la electrónica actual pero en versión cuántica. Una opción muy prometedora para conseguirlo se basa en utilizar los electrones en un nanotubo o, en general, en nanoestructuras denominadas puntos cuánticos en las que los electrones están confinados.

M. L.- ¿Qué ventajas tendríamos al utilizar estos bits cuánticos?

R. A.- Los qubits permiten realizar operaciones que son imposibles o extremadamente lentas con un ordenador actual como, por ejemplo, factorizar un número muy grande en sus factores primos. Gran parte de los algoritmos de encriptación en las tarjetas de crédito se basan en estas factorizaciones. Esto es sólo un ejemplo, se estudian también memorias cuánticas, puertas lógicas cuánticas, etc.

Nanotubo entre electrodos. L. Kouwenhoven,| Universidad de Delft (Holanda)

Nanotubo entre electrodos. L. Kouwenhoven,| Universidad de Delft (Holanda)

M. L.- ¿Nos puede explicar de manera sencilla cómo se consigue un bit cuántico en un nanotubo?

R. A.- Hay varias formas de construir qubits en nanotubos. Una opción es usar el espín de los electrones. El espín es una propiedad física que tienen las partículas relacionada con la rotación de la partícula en torno a sí misma. En el caso de los electrones, este espín puede tener dos valores, que tendrían un papel semejante al 0 y al 1 de los bits actuales.

M. L.- ¿Estamos cerca de conseguir realizar bits cuánticos en un circuito?

R. A.- Me agrada particularmente esta pregunta ya que es importante destacar que esto no es algo abstracto que sólo existe en nuestras ecuaciones. Hay muchos laboratorios en el mundo que ya son capaces de construir y manipular de manera controlada estos qubits. También creo que es importante recalcar que ya hay muchísimas tecnologías que se basan en la física cuántica. Su impacto en nuestras vidas cotidianas es altísimo. Pensemos, por ejemplo, en el láser o en la resonancia magnética nuclear. Volviendo a la pregunta, estamos en un momento en el que hemos pasado de utilizar propiedades cuánticas en sistemas de muchos átomos, como en los dos ejemplos que acabo de mencionar, a ser capaces de manipular a voluntad las propiedades de electrones individuales. Algo, sin lugar a duda, fascinante.

M. L.- ¿Qué utilidad puede tener el poder manipular electrones individualmente?

Electrones girando alrededor de un nanotubo.| R. Aguado.

Electrones girando alrededor de un nanotubo.| R. Aguado.

R. A.- Puedo darle, como ejemplo, los resultados de una reciente investigación que acabamos de publicar. La combinación de las propiedades del espín del electrón con las propiedades generadas al girar ese electrón alrededor del nanotubo resulta en una interacción capaz de producir importantes cambios en dispositivos formados por materiales superconductores. ¡El giro de un solo electrón en le nanotubo es capaz de cambiar el signo de las supercorrientes de billones de electrones en un superconductor!

M. L.- ¿Nos puede avanzar algo de sus investigaciones actuales?

R. A.- Los electrones en el grafeno que forma el tubo se comportan siguiendo las mismas leyes relativistas que rigen en un acelerador de partículas como el del CERN. Esto es algo sorprendente si uno lo piensa detenidamente. Usando este tipo de analogías en sistemas similares formados por nanohilos superconductores se ha predicho teóricamente que se podrían crear partículas iguales a sus antipartículas, estas partículas se denominan fermiones de EnlaceMajorana. Esto ha desencadenado una gran actividad en laboratorios punteros tales como los de Delft (Holanda) o Harvard (Estados Unidos) para detectar estas partículas en nanohilos y ganar así la carrera a los expertos en neutrinos (los neutrinos son probablemente fermiones de Majorana pero todavía nadie lo ha podido probar experimentalmente). Este es, en mi opinión, uno de los aspectos más fascinantes de estos sistemas de los que hemos hablado: no sólo pueden tener aplicaciones prácticas revolucionarias sino que, además, sirven como sistemas ideales en donde se puede estudiar física a nivel muy fundamental.

Fuente:

El Mundo Ciencia

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0