Latest Posts:

Mostrando las entradas con la etiqueta tabla periodica. Mostrar todas las entradas
Mostrando las entradas con la etiqueta tabla periodica. Mostrar todas las entradas

10 de febrero de 2019

La tabla periódica de las científicas

2019 ha sido declarado Año Internacional de la Tabla Periódica de los Elementos Químicos al conmemorarse el 150º aniversario de la publicación de Mendeléyev en la que colocaba los 63 elementos conocidos hasta el momento en función de sus propiedades periódicas, dejando huecos para elementos descubiertos con posterioridad y que poseían las propiedades esperadas. Al igual que pasa con otras conmemoraciones se están preparando numerosas actividades para el año 2019 relacionadas con la química, pues se pretende fortalecer la conciencia global sobre el papel clave que juega la química en el Desarrollo Sostenible al proporcionar importantes soluciones a desafíos globales tales como la energía, la alimentación, la salud o la educación.


Existe una amplísima colección de tablas periódicas de los elementos, una de las más recientes en la de la European Chemical Society lanzada con motivo de este año internacional y que representa la abundancia relativa de los elementos naturales (disponible en alta resolución aquí), las de la web Webelements que es una estupenda base de datos gratuita sobre las características y propiedades de los elementos (con tienda con productos de esos que les nos gustan a los frikis) y ¿existe alguien mayor de 40 que no haya tenido en sus manos una copia xerigrafiada de la Tabla Peryódica?
Tablas frikis existen multitud. Hace casi 10 años Eugenio recopilaba las 50 mejores y después han aparecido cosas como la Tabla periódica de la ortografía (que está bien pero pierde un poco la idea de periodicidad). Así que me puse a buscar la Tabla Periódica de las Científicas, ¡y no la encontré! así que he tenido que hacerla. Claro, es “mi” tabla periódica de las científicas, lo que quiere decir que excepto alguna consulta puntual solo me he puesto de acuerdo conmigo misma seguro que vosotros habríais elegido a otras científicas diferentes porque lo que os puedo asegurar es que me han quedado muchas fuera.
Comentarios. He intentado mantener la periodicidad con alguna trampa que otra, metiendo a científicas de doble afiliación (matemáticas y astrónomas, o químico-físicas por ejemplo) donde mejor me convenía. En algunas casillas he metido a más de una científica porque “me lo pedía” y he dejado el hueco de las Tierras Raras a las científicas españolas, raras por preciosas y desconocidas (o por lo menos más desconocidas de lo que debieran).

Las científicas que componen esta tabla (por orden alfabético de símbolos) son las siguientes:


Y aquí puedes encontrar más información sobre ellas:

Ag: Maria Agnessi, matemática
Al: Frances H. Arnold, ingeniera química y Premio Nobel de Química 2018
An: Mary Anning, paleontóloga
Ap: Virginia Apgar, médico
Av: Ángeles Alvariño, oceanógrafa
Ay: Hertha Ayrton, ingeniera e inventora
B: Linda Buck, médico y Premio Nobel de Fisiología o Medicina 2004
Ba: Florence Bascom, geóloga
Bb: Katharine Burr Blodgett, química
Bd: Lina Badimon, fisióloga, especialista en investigación cardiovascular, premio Rey Jaime I de Investigación Clínica 2014
Be: Jocelyn Bell Burnell, astrofísica
Bl: Alice Ball, química farmacéutica
Bc: María Blasco, bioquímica, Premio Rey Jaime I de Investigación Básica 2007
Bn: Dorotea Barnés y las químicas españolas de la edad de plata
Br: Elizabeth Blackburn, bioquímica y Premio Nobel de Fisiología o Medicina en 2009
Bs: Laura Bassi, matemática y física
Bt: Patricia Bath, oftalmóloga
Bu: Marietta Blau, física
Bw: Elizabeth Blackwell, médica
By: Pilar Bayer, matemática
C: Emilie du Châtelet, matemática
Ca: Rachel Carson, bióloga y ambientalista
Cb: Pilar Carbonero, ingeniera agrónoma
Ch: Emmanuelle Charpentier, bioquímica y Premio Princesa de Asturias de Investigación Científica y Técnica 2015
Ck: Barbara McClintock, bióloga
Cl: M. Antonia Canals, matemática
Cn: Annie Jump Cannon, astrónoma
Co: Gerty Cori, bioquímica y Premio Nobel de Fisiología o Medicina en 1947
Cr: Josephine Cochrane, inventora
Cs: M. Andrea Casamayor, matemática
Ct: M. Assumpció Català, astrónoma
Cu: Marie Curie, física y matemática
Cv: Josefina Castellví, oceanógrafa
Cw: Dorothy Crowfoot Hodgkin, química y Premio Nobel de Química en 1964
Do: Jennifer Doudna, bioquímica y Premio Princesa de Asturias de Investigación Científica y Técnica 2015
Dr: Mildred Dresselhaus, física
El: Gertrude B. Elion, química farmacéutica y Premio Nobel de Fisiología o Medicina en 1988
F: Fátima de Madrid, astrónoma
Fe: Antonia Ferrín, astrónoma
Fl: Williamina Fleming y las astrónomas de Harvard, astrónomas
Fr: Rosalind Franklin, química-física
Fu: Gertrudis de la Fuente, química
Fy: Joan Feynman, física y astrofísica
Gd: Jane Goodall, Dian Fossey & Biruté Galdikas, primatólogas
Ge: Sophie Germain, matemática
Gp: Maria Goeppert-Mayer, física y Premio Nobel de Física en 1963
Gr: Carol Greider, bioquímica y Premio Nobel de Fisiología o Medicina en 2009
Gv: Evelyn Boyd Granville, matemática
H: Hipatia de Alejandría, matemática y astrónoma
Ha: Margaret Hamilton, ingeniera de software
Hg: Hildegarda de Bingen, médica
Ho: Grace Hopper, informática
Hr: Caroline Herschel, astrónoma
Jc: Irène Joliot Curie, física y química, Premio Nobel de Química en 1935
Jh: Katherine Johnson, matemática
Jk: Shirley Ann Jackson, física
Ju: Manuela Juárez, química
K: Stephanie Kwolek, química e inventora
Kl: Frances Oldham Kelsey, farmacóloga
Ko: Sofia Kovalevskaya, matemática
La: Hedy Lamarr, inventora
Lh: Inge Lehman, sismóloga
Lk: Mary Leakey, paleontóloga
Lm: Rita Levi Montalcini, neuróloga y Premio Nobel de Fisiología o Medicina en 1986
Ln: Kathleen Lonsdale, química
Lo: Ada Lovelace, matemática
Lp: Nicole-Reine de Lepaute, matemática y astrónoma
Lv: Henrietta Swan Leavitt, astrónoma
Ma: María Martinón Torres, paleontóloga
Mh: Wangari Maathai, bióloga y defensora del medioambiente
Mb: Felisa Martín Bravo, física
Me: Marie Meurdrac & Jane Marcet, químicas y divulgadoras
Mg: Lynn Margulis, bióloga
Mi: Maria Mitchell, astrónoma
Mn: Rosa M. Menéndez, química
Mo: Gabriela Morreale, química dedicada a la endocrinología, Premio Rey Jaime I de Investigación Clínica 1998
Mr: Susana Marcos, física, Premio Rey Jaime I de Nuevas Tecnologías 2017
Ms: May Britt Moser, neurocientífica y Premio Nobel de Fisiología o Medicina 2014
Mt: Lise Meitner, física
Mz: Maryam Mirzajani, matemática
Nd: Ida Noddack, química
Ng: Florence Nightingale, enfermera
Ni: Ángela Nieto, bióloga y neurocientífica, Premio Rey Jaime I de Investigación Básica 2009
No: Emmy Noether, matemática
Nu: Christiane Nüsslein-Volhard, bióloga y Premio Nobel de Fisiología o Medicina 1995
Pc: Agnes Pockels, química
Pe: Margarite Perey, física
Py: Cecilia Payne-Gaposchkin, astrónoma
Pz: Marie Anne Paulze, química
Rc: Ellen Richards, química
Rd: Teresa Rodrigo, física
Rm: Nancy G. Roman, astrónoma
Rr: Ángela Ruiz Robles, inventora
Ru: Vera Rubin, astrónoma
Sc: Bodil Schmidt Nielsen, fisióloga
Si: Alicia Sintes, física
Sl: Margarita Salas, bioquímica, Premio Rey Jaime I de Investigación Básica 1994
Sm: Mary Sommerville, matemática
Sn: Françoise Barré-Sinoussi, viróloga y Premio Nobel de Fisiología o Medicina 2008
Sr: Donna Strickland, física y Premio Nobel de Física 2018
St: Marie Stopes, paleobotánica
Sv: Nettie Stevens, genetista
Sy: Maria Sybilla Merian, botánica y entomóloga
T: Trótula de Salerno, médico
Th: Marie Tharp y Sylvia Earle, oceanógrafas
Ti: Beatrice Tinsley, astrónoma
Tk: Mária Telkes, física e ingeniera
Vr: María Vallet Regí, química farmacéutica, Premio Rey Jaime I de Investigación Básica 2018
W: Chien Shiung Wu (y II), física
Wk: Maria Winkelmann, astrónoma
Wo:  María Wonenburger, matemática
Wt: Linda Watkins, bioquímica y Premio Príncipe de Asturias de Investigación Cient
Y: Tu Youyou, química farmacéutica y Premio Nobel de Medicina 2015
Yn: Ada Yonath, química y Premio Nobel de Química 2009
Yw: Rosalyn Yalow, biofísica y Premio Nobel de Medicina o Fisiología 1977
Yz: Josefa Yzuel, física
Z: Wang Zhenyi, astrónoma
Zn: Isabel Zendal, enfermera

Hemos colgado la tabla periódica en formato A3 listo para descargarse con los nombres de las científicas:PDF preparado para imprimir en A3 con el símbolo y el nombre de cada científica (enlaces directos desde cada celda a sus biografías)
Y también podéis descargaros una Presentación con la tabla periódica editable, las científicas agrupadas por categorías y los enlaces.

Tomado de:  Naukas

14 de enero de 2019

2019, Año Mundial de la Tabla Periódica

La Facultad de Química de la Universidad de Murcia (España) ha construido en su fachada principal una Tabla Periódica gigante.

La tabla periódica es una herramienta única que permite a los científicos predecir la apariencia y las propiedades de la materia que compone el universo. Sin embargo, la función de cada uno de los elementos resulta una incógnita para la mayoría de la población.

En 2019 se conmemorará el 150º aniversario de la creación de esta famosa tabla por el químico ruso Dmitri Mendeleev, que en 1869 ordenó los elementos conocidos según las características de sus átomos.

Por todo ello, la Asamblea General de la Organización de las Naciones Unidas ha proclamado 2019 como el Año Internacional de la Tabla Periódica. El objetivo principal de esta iniciativa es reconocer la función crucial que desempeñan los elementos y las ciencias fundamentales, especialmente la química y la física, en el desarrollo sostenible.

La celebración también rendirá homenaje a los últimos cuatro elementos superpesados añadidos a la tabla periódica: nihonio (Nh), moscovio (Mc), téneso (Ts) y oganesón (Og). El descubrimiento y denominación de todos ellos fue el resultado de una estrecha colaboración científica internacional.

Fuente: Agencia SINC 


23 de noviembre de 2016

BBC: La tabla periódica que te dice para qué sirve cada elemento

Tal vez recuerdes la tabla periódica de tus clases de química en la escuelas ecundaria.
¿Pero qué tanto asocias los símbolos en sus filas y columnas con el mundo que te rodea?
Más allá de los elementos más conocidos como el carbono o el calcio, ¿podrías nombrar algún uso del rutenio o el rubidio?

Keith Enevoldsen, un diseñador en Seattle, Estados Unidos, creó una versióninteractiva de la tabla periódica que muestra al menos un uso para cada elemento. Este artículo es una extensión de e4ste post
En ella puede verse por ejemplo que el tulio es esencial para cirugías con láser, el estroncio para los fuegos artificiales y el americio para los detectores de humo.
"Hice la tabla que me hubiera gustado tener cuando era niño", dijo Enevoldson a BBC Mundo.

Desde el hidrógeno hasta...

La tabla periódica de los elementos muestra los elementos químicos ordenados por su número atómico (número de protones), configuración de electrones y propiedades químicas.
Elementos con comportamiento similar se encuentran en la misma columna.
La tabla, cuya primera versión fue publicada por el químico ruso Dmitri Mendeleyev en 1869, permite inferir relaciones entre las propiedades de los elementos o incluso predecir elementos todavía no descubiertos.
El primer elemento es el hidrógeno y el último elemento, el 118, es el ununoctium, llamado ahora oganesón. La Unión Internacional de Química Pura y Aplicada (IUPAC por sus siglas en inglés) confirmó los elementos sintetizados más recientemente en diciembre de 2015.

"Para mí y para mis hijos"


¿Cómo surgió la idea de la tabla con ilustraciones?
"Nací en 1956. Cuando era niño me gustaban las tablas periódicas con figuras, pero nunca había buenas imágenes de todos los elementos", señaló el diseñador.
"También leí un libro de Isaac Asimov, Building Blocks of the Universe, Bloques esenciales del Universo, que tenía relatos maravillosos sobre la historia y los usos de los elementos. Me gustaba descubrir, por ejemplo, que los químicos que tocaban telurio acababan con mal aliento".
Así que Enevoldson decidió crear lo que hubiera querido tener en la escuela, una tabla periódica con imágenes divertidas y significativas de todos los elementos hasta el 98.
"Quería que toda la tabla fuera colorida, de un diseño claro, y que no estuviera llena de números, como los pesos atómicos, que no le sirven de mucho a los niños".
La tabla puede descargarse de internet en este sitio*. Por ahora no hay una versión en español.
"Quiero que los niños sepan que aprender sobre los elementos puede ser divertido", dijo Enevoldsen a BBC Mundo.
"Hice la tabla para mí y para mis hijos, y la subí a internet para que otros la disfrutaran. Muchos estudiantes, maestros y padres dicen que les encanta".
"La próxima vez que vean por allí la palabra estroncio, por ejemplo, podrán decir:
"Ahhh, estroncio. Es lo que usan en los fuegos artificiales".
El artículo roginal en la BBC

15 de noviembre de 2016

Descubre para qué usamos cada elemento químico con esta tabla periódica interactiva

Esta es una de esas webs que me hubiera gustado tener a mano durante la secundaria. “¿Para qué quiero saber el número atómico del estroncio?”, me pregunté alguna vez. De haber sabido que se utiliza como colorante rojo en los fuegos artificiales, a lo mejor me habría interesado más el tema.
El físico Keith Enevoldsen —que al parecer es un amante de la tipografía Comic Sans— ha creado una tabla periódica interactiva que ilustra para qué usamos cada uno de los elementos químicos en el mundo real. Pasa el ratón por encima de algún elemento y descubre sus aplicaciones, una breve descripción y una explicación del grupo al que pertenece.
También puedes comprarla a tamaño póster o descargártela en PDF para imprimirla tú mismo. Será como volver a la secundaria, pero con algo más de contexto. Lástima que no esté en español. [elements.wlonk.com]
Fuente:

21 de septiembre de 2015

Así se veía la primera versión de la tabla periódica de los elementos

Aquellos que alguna vez pisaron un aula de química probablemente tuvieron que lidiar con la todopoderosa tabla periódica de los elementos. Aunque parezca mentira, y como tantos otras herramientas académicas, la tabla periódica no existe para desorientarnos y desesperar, sino para facilitarnos las cosas. Si no saben de lo que estoy hablando, la tabla periódica es un sistema genuino donde se listan, según sus propiedades químicas, los elementos que componen todo lo conocido.

Una sola persona no tuvo la inspiración de confeccionar este sistema, sino que fue más bien un descubrimiento progresivo, como suele pasar generalmente en la ciencia. En particular, la tabla periódica sufrió varios vaivenes. Los científicos no encontraban quórum a la hora de encontrar un criterio para ordenar los elementos. Además, en sus primeras etapas, era bastante común el descubrimiento de nuevos elementos y la presencia de gaps (baches) en la tabla, los cuales daban cuenta que faltaban eslabones en la cadena.

Hubo un científico ruso que fue clave para darle inicio a este sistema que condensa todos los elementos y sus principales propiedades químicas. Su nombre fue Dmitri Ivanovich Mendeleev y fue el creador de la primera tabla periódica de los elementos.

La primera tabla periódica

Asi-se-veia-la-primera-version-de-la-tabla-periodica-de-los-elementos-1.jpg 

Bastante más chica que la actual, ¿verdad? Esta tabla fue publicada por Mendeleev en el año 1871. A primera vista luce mucho más corta, escueta e incompleta. Sin embargo, si hacemos el ejercicio de remontarnos a la época, es asombroso pensar ya estaban caracterizados los elementos más importantes: el hidrógeno, el oxígeno y el carbono, entre otros.

En aquel tiempo, grandes químicos como Cannizzaro ya habían calculado el peso relativo de las diferente sustancias conocidas. Por ejemplo, sabían que el oxígeno era 16 veces más pesado que el hidrógeno (aún hoy se sigue relativizando de esta manera). 

Mendeleev decidió ordenar los elementos en su tabla según sus pesos relativos, empezando por los más livianos y terminando por los más pesados. No obstante, como podemos apreciar en la figura, la tabla no es una mera línea horizontal que va desde el hidrógeno (H) hasta el uranio (U), sino que este criterio, al mismo tiempo, le permitió detectar patrones relacionados a propiedades químicas de los elementos.

Al igual que las tablas periódicas que podemos comprar hoy en las librerías, la de Mendeleev estaba dividida en grupos (columnas) y períodos (filas). Por ejemplo, se puede ver que los metales tienden a estar a la izquierda (potasio, magnesio) y los no metales a la derecha (oxígeno, fósforo).

Asi-se-veia-la-primera-version-de-la-tabla-periodica-de-los-elementos-2.jpg 

A su vez, otro rasgo sobresaliente en la obra del genio ruso es la presencia de gaps en la tabla. Cada espacio en blanco en la tabla representa un gap. Este recurso no resultó para nada menor: le permitió predecir elementos que científicos ulteriores descubrieron y caracterizaron. 

Tengamos en cuenta que por aquella época se comenzaba a poner en boga la noción del átomo. Todavía quedaba un largo trecho para el descubrimiento de los protones y electrones. Con el avance de la ciencia, en especial de la física, los científicos comprendieron que los elementos en la tabla debían ser ordenados acorde a su número atómico (cantidad de protones) y no su masa, como originalmente se hizo.

Finalmente, quiero aclarar que en realidad hubo un boceto de tabla periódica dos años antes que la presentada en este artículo. Fue publicada en 1869 por el mismo autor, en la revista Zeitschrift für Chemie. No la consideramos una tabla periódica propiamente dicha porque carecía de la estructura que derivó en las que hoy genera dolores de cabeza a los alumnos de química.

La tabla periódica hoy 

Asi-se-veia-la-primera-version-de-la-tabla-periodica-de-los-elementos-3.jpg 

Esta tabla probablemente te resulta más familiar. Si la comparamos con su antepasado de 150 años de edad, la esencia es la misma. Como se puede apreciar, los gaps de la antigua tabla fueron sistemáticamente descubiertos, además de nuevos elementos, varios de ellos generados en el laboratorio. 

La actual tabla periódica esta lejos de ser un sistema estático o terminado. Frecuentemente se la pone en jaque a raíz de diferentes inconsistencias encontradas en los elementos. Por ejemplo, hace sólo unos días se ponía en duda la ubicación del lawrencio (Lr) debido a anomalías en sus propiedades químicas, que lo asemeja más a otro grupo de elementos. 

A su vez, existen tablas periódicas alternativas que obedecen otros patrones o criterios a la hora de ubicar los elementos. Cada una de ellas tiene sus ventajas y desventajas. Mientras tanto, nosotros seguimos con la descendiente de lo que alguna vez fue un boceto de Mendeleev.

Fascinante, ¿no es así?

Fuente:

Ojo Científico

13 de agosto de 2014

Quìmica: ¿Tiene límite la tabla periódica de los elementos?





El elemento químico con el mayor número atómico (Z) que se ha sintetizado en laboratorio tiene Z=118. Según la electrodinámica cuántica (QED) el número atómico más grande posible es Z=172; la energía de enlace de un electrón en un átomo con Z=173 supera el doble de su masa, luego da lugar a un par electrón-positrón y el átomo se vuelve inestable por interacción con el vacío que le rodea.

El modelo atómico de Bohr predice que la velocidad de un electrón en un átomo es v=Zcα (donde c es la velocidad de la luz en el vacío y α ≈ 1/137 es la constante de estructura fina). Luego, según la mecánica cuántica no relativista, el valor máximo de Z es 137 (ya que para Z>137 se tiene v > c). El mismo límite se obtiene usando la ecuación de Dirac (mecánica cuántica relativista) si el núcleo del átomo se supone puntual. Sin embargo, si se tiene en cuenta el tamaño finito del núcleo, el límite crece hasta Z < 173 (el obtenido con QED).

Nos lo contaron Paul Indelicato, Alexander Karpov, “Theoretical physics: Sizing up atoms,” Nature 498: 40-41, 06 Jun 2013; y más recientemente Rick Marshall, “Can the periodic table be extended indefinitely?,” Physics Education 49: 365, 2014. Los cálculos en QED están detallados en P. Indelicato et al., “QED and relativistic corrections in superheavy elements,” The European Physical Journal D 45: 155-170, 2007; y Paul Indelicato et al., “Are MCDF calculations 101% correct in the super-heavy elements range?,” Theoretical Chemistry Accounts 129: 495-505, 2011.

La tabla periódica que abre esta entrada fue desarrollada por Theodor Benfey en 1960, mientras era editor de una revista de educación en química llamada Chemistry, para ilustrar los periodos de la tabla periódica. La he extraído del artículo de Michelle Francl, “Table manners,” Nature Chemistry 1: 97-98, 2009. Recomiendo ver la charla de César Tomé, “Deconstruyendo la tabla periódica,” Cuaderno de Cultura Científica, 16 Feb 2014.

Como no podía ser de otra manera, esta entrada participa en el XXXVII Carnaval de la Química – Edición Rb – alojado en el blog “ISQCH – Moléculas a reacción” (@ISQCH_Divulga).

Dibujo20140721 bismuth-209 atom structure - nature

Esta figura ilustra el modelo atómico de Bohr para el bismuto-209, el núcleo atómico más pesado que es estable. Con 83 protones y 126 neutrones, se desintegra por radioactividad alfa con una vida media de 1,9 ± 0,2 × 1019 años, cuando la edad del universo es de 13,8 × 109 años). Todos los elementos más pesados tienen vidas medias mucho más cortas y son radioactivos (aunque el torio y el uranio tienen una vida media tan grande que son metaestables, pudiéndose observar en la Naturaleza).

¿Tiene límite la masa atómica de un núcleo? No lo sabemos. Ciertos núcleos tienen un número “mágico” de protones y neutrones, lo que l0s hace mucho más estables que los núcleos con un nucleón más o menos. Los números mágicos para el número de protones (Z) son 2, 8, 20, 28, 50, 82 y 114, y para el número de neutrones (A−Z) son 2, 8, 20, 28, 50, 82, 126 y 184. No sabemos si hay números mágicos más altos.

La “isla” de estabilidad más pesada observada hasta el momento está asociada a Z=82 y A−Z=126. Se cree que existe una “isla” de estabilidad aún más pesada asociada al número “mágico” de 114 protones y 184 neutrones, pero aún no ha sido observada. Se pensaba que sería “fácil” observarla, pero se están encontrando grandes dificultades experimentales. No se sabe si hay alguna “isla” de estabilidad aún más pesada (los cálculos matemáticos para un sistema cuántico tan grande son extremadamente complicados).

¿Cuánto más grande es el elemento Z=172 respecto al átomo de hidrógeno? Los cálculos indican que el orbital más externo de dicho elemento tiene un radio ocho veces mayor que el radio de Bohr, aproximadamente el radio de la órbita del electrón en el hidrógeno. Hay que tener cuidado con este concepto, pues cada electrón ligado a un núcleo se comporta como una onda. La longitud de onda de De Broglie es λ=h/(mv), donde h es la constante de Planck, v es su velocidad y m es su masa. Para un electrón ligado a un átomo esta longitud de onda es comparable al tamaño del propio átomo.

PS 23 Jul 2014: Los cálculos nos los ha detallado (en inglés) Amarashiki (@riemannium), “LOG#113. Bohr’s legacy (I). A centenary model,” The Spectrum Of Riemannium, 30 Jun 2013. También recomiendo leer “LOG#114. Bohr’s legacy (II). Electron shells, Quantum Mechanics and The Periodic Table,” The Spectrum Of Riemannium, 10 Jul 2013. Y ya que estamos su tercera entrada “Dedicated to Niels Bohr and his atomic model (1913-2013)” titulada “LOG#115. Bohr’s legacy (III). From gravatoms to dark matter,” The Spectrum Of Riemannium, 10 Jul 2014.

Fuente:

La Ciencia de la Mula Francis

31 de diciembre de 2013

BBC: Los números inesperados que destacaron en 2013

Números

Si tuviera que definir el año que acaba con un número, ¿cuál elegiría? A esta pregunta responden cuatro expertos con afinidad por las matemáticas y explican por qué.

22

Por Simon Singh, físico y escritor británico:

Panqueques

¿Ya sabe cómo calcular un "número panqueque"?
Mi número del año es el 22 y está relacionado con un problema conocido como el orden de los panqueques, creado por Jacob Goodman, quien cumplió 80 este año.

Imagina que tienes una pila de tortitas de diferentes tamaños desordenadas y que quieres ponerlas en orden: la más pequeña arriba y la más grande debajo de todo.

Puedes meter una espátula en cualquier punto de la pila y dar vuelta todos los panqueques que estén por encima.

Si sólo tienes dos panqueques que no están en orden entonces el "número panqueque" es uno, porque sólo necesitas dar una vuelta con la espátula. Para tres panqueques, el máximo número de vueltas necesarias es tres.

De esta forma puedes calcular el "número panqueque" para pilas de distintas cantidades, y el número para 19 panqueques es 22.

Ese es mi número elegido porque los matemáticos aún no han sido capaces de calcular la cifra para 20 panqueques.

Por cierto, el único trabajo de investigación que Bill Gates escribió en su vida fue sobre los números panqueques.

95

Por Linda Yueh, especialista en economía de la BBC:

Mi número del año es el 95 porque es la notable cifra de la recuperación económica, a cinco años de la peor crisis en un siglo.
"Los ingresos del 1% que más gana crecieron un 31,4% mientras que los del 99% restante sólo aumentaron un 0,4%."
Linda Yueh, especialista en economía de la BBC

La desigualdad del ingreso ha aumentado considerablemente durante la recuperación. En Estados Unidos, los que más ganan –el 1% de la gente que tiene ingresos– se quedaron con el 95% de las ganancias desde 2009.

Un estudio de la Universidad de California en Berkeley observó que los ingresos del 1% que más gana crecieron un 31,4% mientras que los del 99% restante sólo aumentaron un 0,4%.

Por lo tanto, sólo se incrementaron los ingresos de muy poca gente y es difícil ver una base amplia para la recuperación.

Este fue el punto esencial del desacuerdo entre dos economistas premiados con el Nobel.

Joseph Stiglitz ve en esta desigualdad la razón por la cual la recuperación es tan lenta. Paul Krugman, por otro lado, opina que es una explicación demasiado simple.

Esta recuperación se basa en montones de dinero fácil en lugar de más gasto público, y ese dinero ha ayudado a que los mercados de valores alcanzaran cifras récord.

Si esa es la mayor fuente de crecimiento –como la subida de los precios de las acciones– entonces no es tan sorprendente que aumenten los ingresos de los más ricos, que tienen más acciones que los menos pudientes.

Y eso no es suficiente para apoyar al resto de la economía. Es una de las razones por las que muchos países no se han recuperado a los niveles anteriores a la crisis.

33,86

Por Paul Lewis, experto en finanzas de la BBC:

Super computadora

La Tianhe-2 fue desarrollada por la Universidad de Tecnología de Defensa china.

Mi número es 33,86: esa es la cantidad de petaflops conseguidos en 2013 por la nueva merecedora del título "computadora más veloz del mundo". 

Peta son mil billones, es decir 10 a la 15ª potencia. Un flop es una operación de coma flotante por segundo, una medida del rendimiento de una computadora. 

Para entenderlo, pensemos en la multiplicación de dos números realmente grandes en un segundo: eso es un flop

Por lo tanto, una computadora de petaflops puede hacer multiplicaciones de miles de billones por segundo, y hacerlas bien. 

Cuando se publicó la lista de los ordenadores más veloces en junio pasado, la nueva computadora china Tihane-2 fue directamente al número uno. Alcanzó los 33,86 petaflops, que es casi dos veces más rápido que Titán, la otra finalista, del Departamento de Energía de EE.UU. 

Aún era la más rápida en noviembre, cuando se publicó la última lista.

Tihane-2 está haciendo 33.860 billones de cálculos cada segundo. Los récords informáticos no suelen durar mucho tiempo: dos meses antes del gran avance de China, la primera computadora de un petaflop, que reinó en 2008, fue descartada por lenta. 

Cuando se difunda la siguiente lista, Tianhe-2 puede llegar a ganarse a sí misma. Su máxima velocidad teórica es de más de 50 petaflops, pero incluso ese récord puede quedar obsoleto pronto ya que los genios informáticos apuestan por la llegada de una máquina de un exaflop (trillón de flops) para 2017. 

Eso significa mil millones de cálculos cada milmillonésima de segundo.

73

Por Pippa Malmgren, de Principalis Asset Management

Tantalio

El mayor productor de tantalio del mundo es la República Democrática del Congo.

El 73 es el número de la tabla periódica de un elemento del que poca gente ha oído hablar: el tantalio.

Somos increíblemente dependientes de este metal raro. Es esencial para todas las telecomunicaciones y para mucho del equipamiento de defensa.

Además, los teléfonos móviles no funcionarían sin él.

El tantalio sirve como recordatorio de que en la economía mundial muchas de las cosas más importantes que necesitamos son muy limitadas. Uno asume que si necesitas algo como el tantalio es fácil tenerlo.

Pues no es así. No tenemos suficientes ingenieros, incluyendo expertos en minería, y no los tendremos probablemente por algunos años hasta que rectifiquemos este desequilibrio.

En los últimos 25 años, quienes poseen algún talento matemático se dedicaron a las finanzas porque en esa carrera se ganaba más. Eso significa que ahora estamos frente a una escasez global de ingenieros.

El nuevo año será interesante porque será la primera vez que los graduados de Escuela de Minas de Colorado, la mejor universidad de ingeniería de Estados Unidos, tendrán mejores salarios que los egresados de la Escuela de Negocios de Harvard y esto estimulará a la gente joven con inquietudes matemáticas a dedicarse a la economía real, que es una gran cosa

Fuente:

BBC Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0