07 Jun 2023 undefined comments

El tamaño de las partículas es ínfimo y de plásticos muy comunes, como polietileno y acrílico. Se detectaron trazas de micropartículas de plástico en 6 de cada 10 muestras de semen de hombres sanos ...

Read More
02 Jun 2023 undefined comments comments

Un informe cuantifica los límites climáticos, naturales y de contaminantes que aseguran el mantenimiento seguro y justo de la civilización.Un amplio grupo de científicos identificó en 2009 nueve lí...

Read More
08 Mar 2023 undefined comments comments comments

Aquí van las razones geográficas y socioeconómicas por las que el río más largo y caudaloso del mundo nunca tendrá una estructura que sirva para cruzar de orilla a orilla.Cuando vemos en algún doc...

Read More
07 Mar 2023 undefined comments comments comments comments

El 43,7% de loretanos no tiene acceso al servicio de agua potable o tratada. Es el mayor déficit en todo el país, según el INEI, y afecta principalmente a la niñez de las zonas rurales de la región...

Read More
06 Mar 2023 undefined comments comments comments comments comments

Perú se ubica en la escala de desigualdad por encima de México. El informe señala que el 1% de la población más rica del mundo concentra entre el 25% y 30% de los ingresos totales de su país...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments

Al principio de su historia, el planeta rojo habría sido probablemente habitable para los metanógenos, microbios que viven en hábitats extremos de la Tierra.El Marte noáquino habría sido un hábitat...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments comments

La astrofísica del Centro de Astrofísica Harvard & Smithsonian en Cambridge, detalló que se trata de un fenómeno completamente nuevo ya que “estamos observando la evolución estelar en tiempo r...

Read More
13 Aug 2022 undefined comments comments comments comments comments comments comments comments

El dispositivo podría suministrar energía constante a una amplia variedad de aparatos electrónicos alimentándose de la transpiración humana.Investigadores de la Universidad de Massachusetts Amherst...

Read More

Latest Posts:

13 de agosto de 2014

Quìmica: ¿Tiene límite la tabla periódica de los elementos?





El elemento químico con el mayor número atómico (Z) que se ha sintetizado en laboratorio tiene Z=118. Según la electrodinámica cuántica (QED) el número atómico más grande posible es Z=172; la energía de enlace de un electrón en un átomo con Z=173 supera el doble de su masa, luego da lugar a un par electrón-positrón y el átomo se vuelve inestable por interacción con el vacío que le rodea.

El modelo atómico de Bohr predice que la velocidad de un electrón en un átomo es v=Zcα (donde c es la velocidad de la luz en el vacío y α ≈ 1/137 es la constante de estructura fina). Luego, según la mecánica cuántica no relativista, el valor máximo de Z es 137 (ya que para Z>137 se tiene v > c). El mismo límite se obtiene usando la ecuación de Dirac (mecánica cuántica relativista) si el núcleo del átomo se supone puntual. Sin embargo, si se tiene en cuenta el tamaño finito del núcleo, el límite crece hasta Z < 173 (el obtenido con QED).

Nos lo contaron Paul Indelicato, Alexander Karpov, “Theoretical physics: Sizing up atoms,” Nature 498: 40-41, 06 Jun 2013; y más recientemente Rick Marshall, “Can the periodic table be extended indefinitely?,” Physics Education 49: 365, 2014. Los cálculos en QED están detallados en P. Indelicato et al., “QED and relativistic corrections in superheavy elements,” The European Physical Journal D 45: 155-170, 2007; y Paul Indelicato et al., “Are MCDF calculations 101% correct in the super-heavy elements range?,” Theoretical Chemistry Accounts 129: 495-505, 2011.

La tabla periódica que abre esta entrada fue desarrollada por Theodor Benfey en 1960, mientras era editor de una revista de educación en química llamada Chemistry, para ilustrar los periodos de la tabla periódica. La he extraído del artículo de Michelle Francl, “Table manners,” Nature Chemistry 1: 97-98, 2009. Recomiendo ver la charla de César Tomé, “Deconstruyendo la tabla periódica,” Cuaderno de Cultura Científica, 16 Feb 2014.

Como no podía ser de otra manera, esta entrada participa en el XXXVII Carnaval de la Química – Edición Rb – alojado en el blog “ISQCH – Moléculas a reacción” (@ISQCH_Divulga).

Dibujo20140721 bismuth-209 atom structure - nature

Esta figura ilustra el modelo atómico de Bohr para el bismuto-209, el núcleo atómico más pesado que es estable. Con 83 protones y 126 neutrones, se desintegra por radioactividad alfa con una vida media de 1,9 ± 0,2 × 1019 años, cuando la edad del universo es de 13,8 × 109 años). Todos los elementos más pesados tienen vidas medias mucho más cortas y son radioactivos (aunque el torio y el uranio tienen una vida media tan grande que son metaestables, pudiéndose observar en la Naturaleza).

¿Tiene límite la masa atómica de un núcleo? No lo sabemos. Ciertos núcleos tienen un número “mágico” de protones y neutrones, lo que l0s hace mucho más estables que los núcleos con un nucleón más o menos. Los números mágicos para el número de protones (Z) son 2, 8, 20, 28, 50, 82 y 114, y para el número de neutrones (A−Z) son 2, 8, 20, 28, 50, 82, 126 y 184. No sabemos si hay números mágicos más altos.

La “isla” de estabilidad más pesada observada hasta el momento está asociada a Z=82 y A−Z=126. Se cree que existe una “isla” de estabilidad aún más pesada asociada al número “mágico” de 114 protones y 184 neutrones, pero aún no ha sido observada. Se pensaba que sería “fácil” observarla, pero se están encontrando grandes dificultades experimentales. No se sabe si hay alguna “isla” de estabilidad aún más pesada (los cálculos matemáticos para un sistema cuántico tan grande son extremadamente complicados).

¿Cuánto más grande es el elemento Z=172 respecto al átomo de hidrógeno? Los cálculos indican que el orbital más externo de dicho elemento tiene un radio ocho veces mayor que el radio de Bohr, aproximadamente el radio de la órbita del electrón en el hidrógeno. Hay que tener cuidado con este concepto, pues cada electrón ligado a un núcleo se comporta como una onda. La longitud de onda de De Broglie es λ=h/(mv), donde h es la constante de Planck, v es su velocidad y m es su masa. Para un electrón ligado a un átomo esta longitud de onda es comparable al tamaño del propio átomo.

PS 23 Jul 2014: Los cálculos nos los ha detallado (en inglés) Amarashiki (@riemannium), “LOG#113. Bohr’s legacy (I). A centenary model,” The Spectrum Of Riemannium, 30 Jun 2013. También recomiendo leer “LOG#114. Bohr’s legacy (II). Electron shells, Quantum Mechanics and The Periodic Table,” The Spectrum Of Riemannium, 10 Jul 2013. Y ya que estamos su tercera entrada “Dedicated to Niels Bohr and his atomic model (1913-2013)” titulada “LOG#115. Bohr’s legacy (III). From gravatoms to dark matter,” The Spectrum Of Riemannium, 10 Jul 2014.

Fuente:

La Ciencia de la Mula Francis
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0