Latest Posts:

Mostrando las entradas con la etiqueta grafeno. Mostrar todas las entradas
Mostrando las entradas con la etiqueta grafeno. Mostrar todas las entradas

11 de septiembre de 2015

Por primera vez se fabrica el estaneno


Dibujo20150803 stanene - 2d layer tin atoms - microscope image - nature materials
El estaneno es un material bidimensional (una hoja monoatómica de estaño, Sn, con un solo átomo de grosor). Se predijo su existencia en el año 2013 y se ha logrado fabricar mediante crecimiento epitaxial sobre una superficie de telurato de bismuto (Bi2Te3). Por ahora no se han podido confirmar si sus propiedades electrónicas son las predichas por los modelos teóricos. Este primo del grafeno (C) se une al club junto al siliceno (Si), fosforeno (P) y germaneno (Ge).

El artículo es Feng-feng Zhu et al., “Epitaxial growth of two-dimensional stanene,” Nature Materials, AOP 03 Aug 2015, doi: 10.1038/nmat4384; me he enterado gracias a Chris Cesare, “Physicists announce graphene’s latest cousin: stanene,” News, Nature, 03 Aug 2015, doi: 10.1038/nature.2015.18113. Recomiendo leer “Más allá del grafeno,” LCMF, 03 May 2015.


Dibujo20150803 Atomic structure model for the 2D stanene - nature materials

Según los modelos teóricos las propiedades de conducción de la electricidad del estenato son excepcionales. Su termoelectricidad casi ideal permite que a temperatura ambiente los electrones se muevan sin disipar calor. Esto implica que este material bidimensional sería ideal para desarrollar circuitos eléctricos de bajo consumo. Por desgracia esta propiedad no se ha podido confirmar usando las muestras fabricadas hasta el momento.

Dibujo20150803 Electronic structures of stanene film - nature materials

El estaneno según los modelos teóricos es un aislante topológico excepcional. Debería presentar superconductividad topológica. Además del efecto Hall cuántico anómalo a temperatura ambiente. Lo que si se confirmara haría que fuera un material mucho más prometedor que el grafeno en muchas aplicaciones. De hecho, también sería útil en espintrónica por el papel del espín en la propagación de ondas de electrones (cuasipartículas). Pero seamos cautos, todavía no se ha podido confirmar que el estaneno fabricado sea un aislante topológico ni que posea todas estas maravillosas propiedades. Por supuesto, se está desarrollando una intensa investigación con objeto de comprobarlo.

Dibujo20150803 omparison between DFT calculations and experiments - statnene - nature materials

La resolución de los experimentos (figura a la derecha) todavía es insuficiente para verificar las propiedades predichas por los modelos teóricos basados en la teoría del funcional densidad (figura a la izquierda). Aún así, las propiedades del estaneno son asombrosas. Sin lugar a dudas el estaneno dará mucho que hablar en los próximos

Fuente:

La ciencia de la Mula Francis

23 de noviembre de 2014

Crean el generador eléctrico más pequeño y delgado del mundo

Por primera vez, un equipo de científicos del Georgia Institute of Technology y de la Universidad de Columbia (EEUU) ha logrado demostrar las propiedades piezoeléctricas de un material tan flexible como el grafeno, generando corriente eléctrica mediante deformaciones mecánicas en disulfuro de molibdeno (MoS2), lo que ha dado como resultado el generador eléctrico más fino que se ha logrado hasta ahora.

El estudio, que ha sido publicado en la revista Nature, explica que este material (que se encuentra en la naturaleza en el mineral molibdenita) podría utilizarse para fabricar generadores eléctricos microscópicos que podrían introducirse en la ropa, transformando la energía de nuestros movimientos en electricidad, pudiendo cargar así dispositivos médicos, sensores portátiles y, por supuesto, el móvil.

“Lo realmente interesante es que hemos descubierto que un material como el MoS2, que no es piezoeléctrico en forma bruta [tridimensional], puede convertirse en piezoeléctrico cuando se reduce a una capa de grosor atómico [bidimensional]”, afirma Lei Wang, coautor del estudio.

Esta nueva generación de materiales del futuro podría tener multitud de aplicaciones interesantes y llamativas, como la citada posibilidad de producir electricidad sin necesidad de contar con una fuente externa (mediante la energía de nuestro movimiento corporal) o el diseño de células fotovoltaicas altamente eficientes que fuesen capaces de absorber un rango muy amplio de energía solar.

Fuente:

Muy Interesante

19 de mayo de 2014

Cómo producir grafeno con la batidora de nuestra cocina

El asunto parece complicado, pero según un estudio publicado en la revista Nature, es posible la producción de pequeñas láminas de grafeno con la batidora que tenemos en la cocina.



Las delgadas láminas de carbono son el material más fuerte del mundo, además de ser buen conductor de la electricidad y muy flexible. Sus aplicaciones parecen infinitas, como pantallas táctiles flexibles o sistemas de tratamiento de agua. El problema viene en conseguir grandes cantidades de escamas de grafeno de buena calidad a un precio aceptable.

El estudio de la revista Nature describe como una batidora, funcionando a alta potencia (unos 400 vatios), al que se le ha añadido medio litro de agua, entre 10 y 25 mililitros de detergente y entre 20 y 50 gramos de polvo de grafito y haciéndola funcionar unos 10-30 minutos, da como resultado un gran número de escamas micrométricas de grafeno suspendidas en el agua.

El experimento muestra lo simple del método para la producción de grafeno en cantidades industriales. El producto obtenido se puede comercializar como polvo seco o como líquido para pulverizar sobre otros materiales.

Las escamas no son de tan alta calidad como las producidas por los ganadores del Premio Nobel de Química 2010, Andre Geim y Kostya Novoselov de la Universidad de Manchester. Tampoco son tan grandes como las hojas de grafeno que actualmente se están produciendo en algunos laboratorios, pero dejando aparte aplicaciones electrónicas de alta gama, las escamas pequeñas son válidas para multitud de aplicaciones.

Vía |Nature

Fuente:

Xakata Ciencia

25 de abril de 2014

Generan electricidad moviendo una gota líquida sobre grafeno



Desde principios del siglo XIX, se sabe que se genera una diferencia de potencial eléctrico cuando un líquido iónico se mueve a través de un canal fino bajo un gradiente de presión. Se publica en Nature Nanotechnology que el movimiento de una gota de agua salada (solución iónica) sobre una tira de grafeno produce una tensión de unos pocos milivoltios. La diferencia de potencial en este fenómeno electrocinético es proporcional a la velocidad y al número de gotas, decreciendo cuando crece el número de capas de grafeno.

Más aún, a la inversa, al aplicar una tensión en los extremos de la tira de grafeno con un gota encima, la gota se mueve. La impulsa un cambio de su forma debido al movimiento de iones de la parte trasera a la parte delantera de la gota. En la figura se muestra una gota con una solución salina 0,6 Molar de NaCl con ángulo en la zona delantera de θA~91,9° y en la trasera de θR~60.2° (estos ángulos dependen del ión disuelto). El artículo presenta cálculos teóricos del fenómeno mediante la teoría del funcional densidad (DFT) que indican que la gota se comporta como un pseudocondensador que se carga en la parte trasera a través de la interfaz con el grafeno y se descarga en la parte delantera.

El artículo técnico es Jun Yin, Xuemei Li, Jin Yu, Zhuhua Zhang, Jianxin Zhou, Wanlin Guo, “Generating electricity by moving a droplet of ionic liquid along graphene,” Nature Nanotechnology, AOP 6 Apr 2014.

Lea el artículo completo en:

NAUKAS 

Lea en los archivos de Conocer Ciencia:

Grafeno: El material del futuro

Grafeno: De la mina de un lápiz a las grandes transnacionales

22 de abril de 2014

Grafeno + Agua Salada = Electricidad

El grafeno es una sustancia formada por carbón puro, compuesta por átomos dispuestos en un patrón regula hexagonal similar al grafito, pero con un grosor de un átomo de espesor y un peso de 0,77 miligramos por metro cuadrado. Puede saber más sobre el grafeno aquí.


Las aplicaciones del grafeno parecen ser ilimitadas, desde ordenadores a cubiertas de edificios, vendajes o componentes electrónicos. Recientemente se ha descubierto que si fluye sobre el grafeno agua salada, el resultado es electricidad.

Los últimos avances científicos en el campo de la energía hidroeléctrica, han ido en la línea de empujar los fluidos iónicos a través de un gradiente de presión. El problema es que los gradientes de presión son complicados de generar, por lo que el proceso no es factible para generar grandes cantidades de electricidad. Pero por el contrario, si se arrastra agua salada sobre grafeno se obtiene electricidad, sin la necesidad de emplear un gradiente de presión.

Al empujar el agua sobre el grafeno, su carga se desequilibra. Los electrones de grafeno son desabsorbidos en un punto y absorbidos en otro, generando electricidad por sí mismo.

La velocidad con la que el agua salada se arrastra sobre el grafeno tiene un impacto directo sobre la generación de la electricidad. Cuanto más rápida se desliza el agua más electricidad se obtiene. Por otra parte si se aumenta el flujo del agua, también se incrementa la energía producida.

Actualmente el proceso se genera a nivel nanométrico, pero el sistema podría ser ampliado para su uso a nivel doméstico o industrial.

Vía | Nature

Fuente:

Xakata Ciencia

Lea en los Archivos de CXonocer Ciencia:

Grafeno: el nuevo material más ligero del mundo

Grafeno: el material del futuro

Grafeno: de la mina de un lápiz a las grandes transnacionales


15 de enero de 2014

Grafeno: De la mina de un lápiz a las grandes multinacionales



"Una hamaca hecha de grafeno de un metro cuadrado, aún teniendo un espesor de un solo átomo, podría aguantar el peso de un niño recién nacido o de un gato sin romperse". Discurso de entrega del premio Nobel de Física 2010 a A. Geim y K. Novoselov. Derecha: imagen tomada con microscopio de efecto túnel (STM) de átomos de grafeno. ESISNA

Los descubrimientos científicos son importantes cuando nos enseñan como es el mundo que nos rodea, o cuando dan lugar a una tecnología de uso cotidiano. En algunos campos de investigación, como en el de los nuevos materiales, el paso desde la ciencia a la tecnología, o lo que es lo mismo, desde el laboratorio al mercado, es muy rápido. Así, en pocos años, las pantallas planas hechas de cristales líquidos han pasado de tener un precio imposible a estar en la mayoría de los hogares. Lo mismo podríamos decir de las películas finas de óxidos que cubren las pantallas táctiles de los teléfonos móviles, de los recubrimientos protectores de nuestras gafas de sol, o de las aleaciones duras y ligeras de las que están fabricadas las bicicletas.

Una de las tendencias tecnológicas más importantes es la de reducir el tamaño o la dimensión de los nuevos materiales que se fabrican, de forma que siendo más y más pequeños sean cada vez más potentes. En esta carrera hacia la miniaturización nos encontramos con un límite físico: el del átomo. Aunque el electrón y el núcleo atómico son partículas más pequeñas no pueden utilizarse para crear estructuras tecnológicas. Es así como el átomo se convierte en el ladrillo más pequeño que puede utilizarse en la fabricación de nuevos materiales de dimensiones nanométricas.

Esta reducción del tamaño trae asociada una importante consecuencia: la aparición de los llamados efectos cuánticos, que cambian completamente las propiedades del material. Cuando el espesor es reducido a pocas capas atómicas, éstos dejan de funcionar como cabría esperar y presentan comportamientos anómalos, que pueden aprovecharse para mejorar o cambiar sus propiedades. Es decir, al hacer los materiales más pequeños, también los hacemos diferentes.

Lea el artículo completo en:

El Mundo Ciencia

11 de abril de 2013

Revelan método que utiliza moléculas de ADN para moldear el grafeno



(CC) snickclunk


En un artículo publicado en el número del 9 de abril de Nature Communications, un equipo de ingenieros químicos y moleculares del MIT y de la Universidad de Harvard describen un método para crear moldes a escala nanométrica para darle formas al grafeno utilizando moléculas de ADN.

Tras construir nanoestructuras de ADN de variadas y precisas formas, estas moléculas se pueden utilizar como moldes para crear chips electrónicos hechos de grafeno, pues como recordaremos, el material que consiste en un arreglo hexagonal y bidimensional de átomos de carbono tiene increíbles propiedades eléctricas.

Aunque suene increíble, crear nanoestructuras complejas de ADN no es algo tan complejo, de hecho, uno de los autores del estudio, Peng Yin, ha creado más de 100 distintas formas a  escala nanométrica, como por ejemplo todo el alfabeto y varios emoticones. Todas las letras y figuras de la siguente imagen fueron creadas por Yin utilizando una técnica que apoda: ‘Origami de ADN‘. (Click para agrandar la imagen).


Link: Folded DNA templates allow researchers to precisely cut out graphene shapes which could be used in electronic circuits (Phys.org)

Fuente:

FayerWayer

4 de abril de 2013

Recargando la batería de un smartphone en sólo dos minutos

¿Os imagináis la posibilidad de cargar la batería de vuestro teléfono móvil en sólo dos minutos? Es algo que sería posible ahora mismo si ya estuviera comercializándose una batería de grafeno.

Los superconductores de grafeno cargan y descargan la batería con una efectividad entre 1.000 y 2.000 veces mayor. Esta nueva batería es conocida como un súper condensador a micro escala.

Lo cierto es que dichas baterías también se descargarían más rápido, pero algunos investigadores incluso señalan que un iPhone provisto de esta batería podría cargarse de nuevo en cuestión de pocos segundos.

A continuación, el vídeo “El Superconductor”, finalista del popular certamen Filmmaker:



The Super Supercapacitor | Brian Golden Davis from Focus Forward Films on Vimeo.

Tomado de:

Xakata Ciencia

22 de marzo de 2013

Aerogel de grafeno, el nuevo material más ligero del mundo

Hace unos meses publicamos un post sobre las sorprendentes propiedades del aerografito, hasta hace poco el material más ligero del mundo. En él incluimos vídeos e información de sus sorprendentes propiedades físicas y químicas. 
Ahora científicos de la Universidad de Zhejiang situada en Hangzhou (China) han creado un material aun más ligero. 
En este caso os dejamos dos fotografías del material sobre una flor de cerezo que resume visualmente las propiedades y ligereza del material. Tiene un peso de 0,16 miligramos por centímetro cúbico, sólo el doble de densidad que el hidrógeno y menos denso que el helio.



Via: nature.comzju.edu.cn







17 de enero de 2013

La competencia global por el grafeno, el material del futuro

 EL GRAFENO
  • El grafeno es una forma de carbono en forma de lámina y de un sólo átomo de grosor.
  • Los átomos se distribuyen en una estructura de dos dimensiones con la forma de un panal de abeja.
  • El descubrimiento del grafeno fue anunciado en 2004 por la revista Science.
  • Es cien veces más resistente que el acero y conduce la electricidad mejor que el cobre.
  • En un futuro podría sustituir al silicio en electrónica.
  • Tan sólo un 1% de grafeno en una composición plástica podría hacerla conductiva

Grafeno

El grafeno podría desatar una nueva revolución industrial.


La fiebre investigadora en torno del grafeno demuestra que el mundo vive una auténtica competencia global por este material con múltiples usos, que podría conducir a una nueva revolución industrial.

Los últimos datos demuestran que desde 2007 se ha producido un notorio aumento en el número de patentes registradas en relación con distintos aspectos del grafeno, con un agudo repunte en el último año.

China lidera la carrera al ser el país con más patentes, mientras el gigante surcoreano de la electrónica, Samsung, es la empresa con más registros a su nombre.

Los datos pertenecen a un informe publicado por la firma consultora de patentes CambridgeIP, con sede en Reino Unido.

Más duro que el diamante

El grafeno fue identificado en 2004 y consiste en una única capa de átomos de carbono que lo convierten en el material más fino jamás creado.

.
Los primeros trabajos realizados sobre este material, llevados a cabo por los dos científicos rusos de la Universidad de Manchester, Andrei Geim y Konstantin Novosolev, les valieron un premio Nobel de Física en 2010 y dos títulos de caballero concedidos por la corona británica.

Las particulares propiedades del grafeno abren todo un mundo de posibilidades y aplicaciones, desde el campo de la informática hasta el sector energético o la medicina.

Es más duro que el diamante, con mayor conductividad eléctrica que el cobre y tan flexible como el caucho, por lo que no es de extrañar que sea el objeto de una batalla global por explotar sus propiedades y desarrollar técnicas para su comercialización.

En un principio, este material podría hacer su debut en nuestras vidas con su uso en pantallas táctiles, luces en las paredes y baterías mejoradas.

China a la cabeza

Pero un primer paso para que el grafeno sea rentable son las patentes, ya que es un material que todavía no ha dado el salto desde el laboratorio.

Según CambridgeIP, a fines de 2012 se contabilizaron 7.351 patentes de grafeno y de aplicaciones vinculadas con él. Un número considerable para un material descubierto hace casi una década.


grafeno

China es el país del mundo con más patentes del nuevo material.

Las instituciones chinas poseen la mayoría (2.200), seguidas por Estados Unidos (1.754), lo que hace evidente la determinación de ambas potencias por capitalizar el futuro valor de este material de múltiples aplicaciones.

Curiosamente Reino Unido, país pionero en la investigación del grafeno con sus trabajos de 2004, apenas cuenta con 54 patentes, lo que ha llevado al ministro de Ciencia, David Willetts, a identificar este material como "prioridad de investigación nacional".

A nivel corporativo Samsung lleva la delantera, con un total de 407 patentes, seguida de la estadounidense IBM con 134.

El director de CambridgeIP, Quentin Tannock, le comentó a la BBC: "Existe un increíble interés en todo el mundo, y desde 2007 en adelante vemos un repunte masivo en patentes, particulamente en Estados Unidos, Asia y Europa".

El director del área de investigación del grafeno en la Universidad Nacional de Singapur también le confirmó a la BBC que el material es ahora objeto de una competencia internacional.

"Es extremadamente competitivo no sólo desde el punto de vista de la ciencia (...) sino también desde el punto de vista económico, porque muchas empresas están empezando a operar y vender grafeno y cosas vinculadas al grafeno", explicó el profesor Antonio Castro Neto.

Mas allá del horizonte


Grafeno

Reino Unido construirá un centro de investigación del grafeno en Manchester. 

Sin embargo, uno de los pioneros en estudiar este material, el profesor Geim, afirmó que muchas empresas occidentales carecen de la capacidad para impulsar estas investigaciones.

"La industria está preocupada no en lo que se puede hacer, sino en lo que hace la competencia; temen perder la competencia", apuntó.

"Hay un gran distanciamiento entre el mundo académico y la industria que ha aumentado durante las últimas décadas tras el fin de la Guerra Fría".

"Esto es lo que ha pasado en los últimos 30 o 40 años. Matamos a famosos laboratorios como Bell Labs [de las empresas AT&T and Bel]; las compañías se han empequeñecido, por lo que no pueden permitirse más institutos de investigación. Si algo pasa en Corea es porque Samsung tiene un instituto". 

"No pueden ver más allá de un horizonte de diez años y el grafeno está más allá de ese horizonte", subrayó.

Sin embargo, los esfuerzos europeos podrían verse fortalecidos a fines de este mes cuando la Comisión Europea anuncie a los ganadores del premio de US$1.330 millones para diez años para investigaciones científicas. Uno de los seis elegidos es un consorcio de investigación del grafeno.

Fuente: 

BBC Ciencia

Contenido relacionado

27 de diciembre de 2012

Haciendo grafeno con una grabadora DVD

Un grupo de investigadores han descubierto la manera de producir grafeno utilizando una unidad de DVD. Este descubrimiento ayuda a despejar el camino para la producción en masa de la sustancia, que se descubrió en los años 1980.


The Super Supercapacitor | Brian Golden Davis from Focus Forward Films on Vimeo.

Más información (en inglés) en:

Hacker Day  


Lea también en los Archivos de Conocer Ciencia:

¿Qué es el grafeno?

El grafeno puede ser un excelente absorvente de la luz

Grafino: El hermano desconocido del grafeno

26 de diciembre de 2012

Convierten agua salada en agua potable con un filtro de grafeno

A pesar de que los océanos y mares contienen alrededor del 97% del agua existente sobre la Tierra, en la actualidad apenas un 1% del suministro mundial de agua potable proviene del agua desalada. Realmente muy poco. Los científicos creen que este recurso podría ser más y mejor explotado, con técnicas de desalinización más eficientes y menos costosas. Dos investigadores del Instituto de Tecnología de Massachusetts (MIT) han dado un interesante paso en ese camino. En simulaciones, dicen haber demostrado que los nanoporos de grafeno pueden filtrar la sal del agua a una velocidad de 2 a 3 veces mayor que la mejor tecnología de desalinización comercial que existe en la actualidad (la ósmosis inversa).

Los investigadores creen que la superior permeabilidad al agua del grafeno podría conducir a técnicas de desalinización que requieren menos energía y equipos, según explican en Physorg. «Este trabajo muestra que algunos de los inconvenientes de las técnicas de desalinización actuales se podrían evitar con la invención de materiales membrana más eficientes y precisos», dice Jeffrey C. Grossman, del MIT. Los investigadores creen que este material permite el flujo real de agua, evita por completo que se filtre la sal y tiene una permeabilidad mucho mayoren comparación a la ósmosis inversa. Y todo ello mucho más rápido que con las técnicas actuales.




Una sola capa de grafeno, que tiene un átomo de carbono de espesor, resulta muy delgada, por lo que es ventajoso para la desalinización del agua. En la eficacia de la deslinización participan el tamaño de los poros del material y la presión aplicada. Claro que esto tiene un pequeño inconveniente: hace falta que la humanidad consiga fabricar grafeno de forma sencilla y barata.

Los científicos esperan probar la capacidad de desalación con grafeno en los próximos meses. Si realmente es una técnica exitosa, podría ayudar a conseguir agua potable en aquellos lugares del mundo azotados por la desertización y la sequía. La investigación aparece publicada en NanoLetters.

Via: http://www.abc.es/20120625/ciencia/abci-obtienen-agua-potable-filtro-201206251245.html



Fuente:

Grafeno.com

Lea también en los Archivos de Conocer Ciencia:

¿Qué es el grafeno?

El grafeno puede ser un excelente absorvente de la luz

Grafino: El hermano desconocido del grafeno

6 de marzo de 2012

Grafino, el hermano desconocido del grafeno


grafeno-iacEl grafeno, al que se ha apodado también como el "material milagroso" del siglo XXI por sus múltiples aplicaciones en el campo de la electrónica, podría tener un competidor: el grafino. Un trabajo publicado en la revista Physical Review Letters ha examinado mediante simulaciones informáticas las propiedades electrónicas de este material que aún debe ser sintetizado en el laboratorio.

El estudio muestra que, al igual que el grafeno, el grafino es capaz de conducir los electrones a gran velocidad, pero en una única dirección. Esta propiedad podría aprovecharse para diseñar transistores y otros componentes electrónicos mucho más rápidos que los actuales, afirma Andreas Görling, uno de los autores del trabajo, de la Universidad de Erlangen-Nuremberg (Alemania).

Ambos materiales consisten en una lámina plana de átomos de carbono unidos por enlaces. En el caso del grafeno, estos enlaces son sencillos o dobles, y se crea un patrón hexagonal que parece una malla gallinera en miniatura. Esta estructura forma lo que se llama cono de Dirac, que hace que los electrones que circulan a través del grafeno se comporten como si no tuvieran masa, por lo que pueden viajar a gran velocidad.

En el caso del grafino los enlaces son dobles o triples, y la estructura resultante no es siempre hexagonal, por lo que existen muchos tipos de grafino posibles. El equipo de Görling ha simulado por ordenador las propiedades electrónicas de distintas formas de grafino. En una de ellas, el 6,6,12-grafino, se han encontrado también los conos de Dirac, lo que sugiere que el material también puede conducir los electrones a gran velocidad, pero en una única dirección.

Mientras que algunos físicos teóricos se muestran escépticos con el descubrimiento, otros lo aplauden y el equipo de Görling insiste en que ahora es necesario sintetizar el 6,6,12-grafino en laboratorio para probar en la práctica sus increíbles propiedades.

Fuente:

Muy Interesante

5 de febrero de 2012

El grafeno podría ser un absorbente perfecto de la luz


Físicos de España y el Reino Unido han calculado que el grafeno – una capa de carbono de apenas un átomo de grosor – podría usarse para crear un absorbente perfecto de la luz si es dopado y colocado en una organización periódica. El trabajo podría llevar a unos dispositivos mejorados de fotodetección, particularmente en la parte infrarroja del espectro electromagnético, donde las tecnologías actuales tienen problemas de funcionamiento.

La afirmación es extraordinaria, dado que los materiales convencionales normalmente necesitan tener miles de átomos de grosor para absorber completamente la luz. “La predicción de que una capa de material de apenas un átomo de grosor puede absorber la luz por completo es notable y excitante”, dice el jefe del equipo F. Javier García de Abajo del Instituto de Óptica en Madrid.

“La capa en cuestión es grafeno en un patrón de ordenación periódica de nanodiscos”, explica García de Abajo. La estructura absorbe luz confinándola a regiones que son cientos de veces menores que la longitud de onda de la luz. Esto se hace aprovechando los plasmones que aparecen dentro de las estructuras individuales de nanodiscos. Los plasmones son oscilaciones colectivas cuantizadas de los electrones dentro de un nanodisco – e interactúan con mucha fuerza con la luz.

Dopando con electrodos

El confinamiento de la luz en el grafeno sólo es posible si el material está cargado eléctricamente. Y la longitud de onda a la que puede quedar confinada la luz depende de cuánto se carga el material. También conocido como dopaje, debido a que tiene un efecto similar al de introducir impurezas en los semiconductores convencionales, la carga se consigue fácilmente colocando electrodos cerca del grafeno. La cantidad de carga puede controlarse variando el voltaje aplicado a los electrodos.

En sus cálculos, el equipo estudió cómo el patrón del grafeno absorbía la luz en el rango del espectro electromagnético del infrarrojo medio y cercano. Los investigadores dicen que sería fácil extender sus resultados a otros rangos de longitudes de onda, hacia el infrarrojo medio y el régimen de terahertzs, por ejemplo, aplicando directamente las ecuaciones analíticas que emplearon. “Todas estas regiones espectrales son especialmente interesantes, con potenciales aplicaciones en imágenes, sensores y detección”, dice García de Abajo. “Necesitamos dispositivos de buena absorción de luz en este rango de longitudes de onda, debido a que los detectores actuales no tienen un buen rendimiento aquí. Nuestro trabajo puede incluso proporcionar un puente para este famoso ‘hueco de terahertz’”.

La separación es justo la correcta

Los investigadores dicen que los nanodiscos son capaces de absorber grandes cantidades de luz debido a que estas estructuras individuales de grafeno están ordenadas a una distancia bien definida unas de otras. Si están demasiado cerca, la luz puede re-emitirse de vuelta y ser reflejada. Por otra parte, no se absorbe suficientemente si los nanodiscos se colocan demasiado lejos. Un efecto similar puede obtenerse con otros patrones de grafeno, específicamente con lazos, los cuales según los investigadores son más fáciles de dopar.

La luz también produce campos inducidos cerca de los nanodiscos. Estos campos están hechos de ondas evanescentes – ondas electromagnéticas que decaen exponencialmente desde una estructura. “El mecanismo, por tanto, no es un efecto de difracción en el sentido de onda clásica en el cual dos o más ondas que se propagan interfieren y forman patrones limitados de tamaño, de aproximadamente la mitad de la longitud de onda de la luz”, explica García de Abajo. “En lugar de esto, lo que se da es un acoplamiento crítico”.

El equipo, que incluye a científicos del ICFO en Barcelona y del Centro de Investigación Optoelectrónica en la Universidad de Southampton, planea ahora explorar otros efectos ópticos extraordinarios en el grafeno – posiblemente hasta el límite cuántico con estudios sobre los efectos en fotones aislados. “También esperamos analizar materiales alternativos, tales como aislantes topológicos, que podrían producir efectos similares”, revela García de Abajo.

El trabajo se describe en Phys. Rev. Lett. 108 047401

Tomado de:
Enlace
Ciencia Kanija

31 de enero de 2012

La propiedad más inesperada y embriagante del grafeno

Grafeno

Los científicos se asombran de los usos potenciales del grafeno y sus derivados.

Las membranas hechas a base de ese "material milagroso" llamado grafeno sirven para destilar alcohol, de acuerdo a un nuevo estudio publicado en el Science Journal.

Un equipo internacional creó este tipo de membrana a partir del óxido de grafeno. Demostraron que bloquea el paso de varios gases y líquidos, pero sí permite el del agua. Esta característica se une a una larga lista de propiedades fascinantes e inusuales asociadas al grafeno y sus derivados.

El grafeno es una forma de carbono. Se trata de una capa plana de átomos de ese elemento ajustadamente empaquetados en una estructura bidimensional con forma de panal.

Al ser tan fina, es prácticamente transparente. Como conductor de electricidad funciona igual que el cobre, y como conductor de calor, es mejor que cualquier otro material.

Las inusuales propiedades electrónicas, mecánicas y químicas del grafeno a escala molecular prometen numerosas aplicaciones.

Andrei Geim y Konstantin Novoselov de la Universidad de Manchester recibieron el Premio Nobel en Física en 2010 por su descubrimiento, esbozado en un informe científico en 2004.

Geim y otros científicos han desarrollado una lámina hecha de hojas de óxido de grafeno. Éstas resultaron ser cientos de veces más finas que un cabello pero aún así son fuertes, flexibles y fáciles de manipular.

Cuando un recipiente de metal fue sellado con ese film, ni el equipo más sensible pudo detectar la pérdida de aire o cualquier otro gas, incluido el helio.

Pero cuando los investigadores probaron lo mismo con agua, encontraron que se evaporó sin importar el sellado. Las moléculas pasaron a través de las membranas de óxido de grafeno a tal velocidad que la tasa de evaporación era la misma si el recipiente está abierto o sellado.

"Sólo para divertirse"

Rahul Nair, de la Universidad de Manchester, quien encabezó el equipo, comentó que "las hojas de óxido de grafeno se colocan de tal forma que entre ellas sólo hay espacio para una capa de moléculas de agua exactamente".

"Si otro átomo o molécula intenta el mismo truco, encontrará que los capilares de grafeno o se encojen con un poco de humedad o quedan atascados con las moléculas de agua", agrega.

El profesor Gleim, por su parte, añadió que el "gas de helio es difícil de detener". "Lentamente se filtra aun a través de una ventana de vidrio de un milímetro de grosor pero nuestros films ultra finos lo bloquean completamente. Al mismo tiempo, el agua se evapora a través de ellos sin dificultad. Los materiales no se pueden comportar de manera más extraña", subraya.

Nair confiesa que "sólo para divertirse" sellaron una botella de vodka con la membrana. "Encontramos que la solución destilada se volvió más y más fuerte con el tiempo. Ninguno de nosotros bebe vodka pero fue muy entretenido realizar el experimento".

A pesar de esto, los investigadores no ofrecen ninguna idea inmediata en cuanto a su aplicación. Sin embargo, el profesor Geim, comentó que "las propiedades son tan inusuales que es difícil imaginar que no se encuentre algún uso en el diseño de membranas para filtrado, separación o para remoción selectiva de agua".

En otro estudio publicado en el Science Journal, otro quipo de investigadores informó sobre el desarrollo de una membrana basada en un tipo de carbono similar al diamante. Esta membrana tiene unos poros de un tamaño único que permiten el paso ultra rápido de combustible a través de ellos. Un experto dijo que se podría utilizar para filtrar contaminantes tóxicos en el agua o para purificar químicos industriales.

Fuente:Enlace

BBC Ciencia

Contenido relacionado

14 de junio de 2011

Grafeno, el material de los sueños (con entrevista Nobel de Física 2010)

Entrevista exclusiva a Kostya Novoselov, premio Nobel de Física 2010.

El premio Nobel de Física 2010, Kostya Novoselov, concede una entrevista exclusiva a La Pizarra de Yuri / Público.

El premio Nobel de Física 2010, Kostya Novoselov, concede una entrevista exclusiva a La Pizarra de Yuri / Público.

Aunque sea bastante lógico, no deja de resultarme curioso cómo abunda la gente altanera, áspera y suficiente entre los mediocres. En cambio, quienes realmente podrían permitirse el lujo de ir por la vida con la nariz un poco más levantada que los demás a menudo son amables, sencillos y cordiales. Este es el caso del doctor Konstantin Novoselov, que con 36 años ya puede incluir en su curriculum el Premio Nobel de Física 2010. Gracias a ese hecho, hoy puedo ofrecerte en la Pizarra de Yuri la primera entrevista exclusiva a un Nobel concedida a un blog en castellano (corrígeme si me equivoco y ha habido alguna antes; me interesaría mucho saberlo). La edición en papel de Público sacó un resumen el domingo pasado, pero esta es la versión completa.

Entrevistar a un premio Nobel es siempre un desafío y uno teme no acertar con las preguntas. Así pues, en esta ocasión consulté a más personas amables, que aportaron preguntas inteligentes. Entre estas personas se encuentran Pablo García Risueño (físico, Instituto Max Planck / Instituto de Química Física Rocasolano – CSIC / European Theoretical Spectroscopy Facility – Spanish node), Dani Torregrosa (químico, autor del blog Ese punto azul pálido) o David (doctor en química, Universidad de Valencia); lo que hago constar con mi agradecimiento. Así, yo creo que ha quedado una entrevista mucho más chula. ;-) Si hay algún error en este post, es mío; si hay algún acierto, es de ellos.

Konstantin, que se hace llamar por el diminutivo Kostya, nació en Nizhny Tagil (URSS) siendo 1974. Actualmente investiga en el Laboratorio de Física de la Materia Condensada de la Universidad de Manchester, en el Reino Unido; tiene la doble nacionalidad ruso-británica. Ha trabajado en una diversidad de campos y muy notablemente en procesos magnéticos. Es coinventor de la cinta de salamanquesa (gecko tape), que sólo pega en un sentido, con diversos usos en nanocirugía, robótica y tecnologías aeroespaciales. Pero Kostya recibió el Nobel en 2010, junto al profesor Andrei Gueim, por sus “experimentos revolucionarios sobre el material bidimensional grafeno”. ¿Y qué es el grafeno?

Grafeno.

Estructura del "material bidimensional" grafeno.

Estructura del "material bidimensional" grafeno.

No es rigurosamente bidimensional, aunque así lo describa la Fundación Nobel y todo el mundo, incluso el propio Kostya. :-P A fin de cuentas, un átomo tiene espesor. Pero ese es todo su espesor: el grafeno es una estructura laminar compuesta por átomos de carbono en disposición hexagonal, unidos mediante enlaces covalentes producidos por hibridación sp2. Se trata de una alotropía del carbono, distinta del carbono amorfo, el vítreo o el diamante. Tampoco es exactamente un fullereno o un nanotubo (aunque el grafeno podría utilizarse para crear nanotubos, plegándolo en forma de cilindro).

Más parecido es al grafito, hasta el punto de que se podría considerar al grafito como una serie de capas superpuestas de grafeno; de hecho, al pintar líneas con un lápiz (cuya mina es de grafito) aparecen trazas de grafeno. No obstante, este no es un buen procedimiento para producirlo en cantidades significativas.

¿Y qué tiene de particular este grafeno? Muchas cosas. Por ejemplo, es el material más resistente medido jamás: 200 veces más que el acero. Pero, al mismo tiempo, es mucho más ligero y tan elástico como el caucho. En palabras de Andrei Gueim, “el grafeno es más fuerte y más tenaz que el diamante, y sin embargo puede estirarse en un cuarto de su longitud, como el caucho. El área que puede cubrir es la mayor que se conoce para el mismo peso.” Otros investigadores, como Ali Reza Ranjbartoreh (Universidad de Wollongong, Australia), dicen “No sólo es más ligero, más fuerte, más duro y más flexible que el acero; también es un producto reciclable, que se puede fabricar de manera sostenible, ecológico y económico.” En opinión de Ranjbartoreh, esto permitirá desarrollar coches y aviones que usen menos combustible, generen menos polución, sean más baratos de operar y resulten menos dañinos al medio ambiente.

Sus propiedades eléctricas y electrónicas resultan igualmente extraordinarias. Por ejemplo, los nanotubos de grafeno podrían reemplazar al silicio como semiconductor en los circuitos microelectrónicos avanzados; en 2008, el equipo de Gueim y Novoselov ya fueron capaces de construir con él un transistor de un nanometro, que tiene un solo átomo de espesor y diez de anchura. Ya por entonces Kostya declaró que esto podría muy bien hallarse en el límite físico absoluto de la Ley de Moore y añadió: “Está en torno a lo más pequeño que se puede hacer. Desde el punto de vista de la Física, el grafeno es una mina de oro. Podrías estudiarlo durante eras.” Conduce el calor tan bien como el diamante y es más transparente. También se le cree capaz de generar efecto Casimir. Muchos lo consideran el primer material del futuro. Pero será mejor que te lo cuente él. ;-)

Kostya Novoselov durante la conferencia de aceptación del Premio Nobel. Imagen: nobelprize.org

Kostya Novoselov durante la conferencia de aceptación del Premio Nobel. Imagen: nobelprize.org

El material de los sueños de Kostya Novoselov.

Konstantin Novoselov (centro) con Mikhail Trudin (izda) y Yuri Samarskiy (dcha). (Clic para ampliar)

Kostya Novoselov (centro) con Mikhail Trunin (decano del FOPF-MFTI, izda.) y Yuri Samarskiy (rector del MFTI, dcha.). Foto: Sergei Vladimirov. (Clic para ampliar)

Dr. Novoselov, quiero darle muchas gracias por responder a nuestras preguntas. Es muy raro tener la oportunidad de entrevistar a un premio Nobel. Y además a uno tan joven, con 36 años. Mientras, la mayoría de nosotros ni siquiera podemos imaginar lo que se siente cuando alguien te dice: “Kostya, te han concedido el premio Nobel”. Por cierto, ¿qué se siente en un momento semejante?

Fue impresionante. Estaba muy impresionado y te das cuenta de que esto cambia tu papel para siempre. Y de que vas a tener que trabajar mucho para que no cambie también tu vida. Esto fue todo lo que se me ocurrió, que tenía que intentar que no cambiase mi vida.

¿Y lo consiguió?

Sí. De hecho, conseguí regresar a la normalidad y mi vida no es muy diferente ahora de como era antes.

Por cierto, ¿quién le dijo que le habían concedido el Nobel?

Me llamaron por teléfono. No estoy seguro de quién llamó exactamente, porque estaba verdaderamente impresionado. No lo recuerdo pero probablemente fue uno de los secretarios de la Fundación o el presidente de la Fundación.

Kostya, cuénteme el secreto: ¿cómo se gana un premio Nobel antes de los cuarenta?

No hay un secreto. La mejor receta, probablemente, me la dio un buen amigo y colega hace mucho tiempo: “si quieres ganar un premio Nobel, no pienses en ello”. Así que esa es una de las recetas: nunca pienses en ello y limítate a trabajar y divertirte con lo que haces.

A usted le han concedido el premio Nobel junto al Dr. Geim por realizar “experimentos revolucionarios sobre el material bidimensional grafeno”. ¿Qué es un grafeno?

Imagínate el material de tus sueños, el más fuerte, el más conductor, el más duradero… es increíble. El mejor camino a la teoría; eso es el grafeno. En la práctica es uno de los pocos tejidos bidimensionales que se pueden hacer con carbono y tiene todas estas propiedades fantásticas como conductividad, transparencia, fortaleza imperecedera…

¿Y qué hizo usted con este grafeno exactamente?

Estudiamos sus propiedades. Estudiamos principalmente sus propiedades electrónicas pero también algunas otras.

Sin embargo, originalmente usted estudiaba el electromagnetismo, ¿no?

He trabajado en varios campos distintos a lo largo de mi vida, así que cuando me lié con el grafeno no me supuso una gran diferencia. He trabajado en procesos magnéticos, superconductores, semiconductores… así que los grafenos sólo fueron otra cosa más.

Convénzame: ¿por qué debería invertir mi dinero en las investigaciones sobre el grafeno? ¿De qué manera va a cambiar nuestras vidas este nuevo nanomaterial?

Hay varias propiedades de este material que son únicas, mucho mejores que las de cualquier otro. Ya se puede pensar en sustituir todos los materiales existentes por grafenos, para conseguir mejores resultados en todas las aplicaciones avanzadas. Por ejemplo, a los materiales estructurales se les puede añadir unas fibras de carbono para hacerlos mucho más fuertes. O usarlo para las láminas conductoras de las pantallas táctiles: esa es otra área donde el grafeno puede resultar muy beneficioso. Pero las más importantes serán aquellas que no somos capaces de concebir todavía porque no teníamos los materiales adecuados. El grafeno es muy diferente de cualquier otro material, así que podemos ponernos a pensar en estas nuevas aplicaciones.

De todas estas posibles aplicaciones, ¿cuál cree usted que se desarrollará primero?

Ya hay varias aplicaciones en las que se está utilizando. Puedes comprar grafeno en varias empresas de Rusia, Europa, Asia… por ejemplo, para microscopios electrónicos de transmisión. Aunque esto es una aplicación menor. Probablemente, la primera aplicación a gran escala será en las pantallas táctiles.

¿Qué aproximación le parece más prometedora para producir grafenos industrialmente a buen precio?

Ya hay técnicas para producirlos en grandes cantidades. Por ejemplo, mediante crecimiento por CVT [deposición de vapor químico asistida por agua]… se está produciendo en grandes cantidades para muchas aplicaciones.

Con la crisis energética actual, y la energía nuclear comprometida a raíz de los sucesos de Fukushima, ha aumentado el interés en las energías renovables. ¿Serviría el grafeno para desarrollar nuevas células solares mucho más eficientes y baratas que las actuales? ¿Podría sentar las bases de una revolución energética?

El grafeno es sólo una parte de las células solares del futuro. Hay otras muchas partes que deben desarrollarse también. Queda un camino muy, muy largo para que se desarrollen células solares significativamente más eficientes.

Algunas personas han expresado su preocupación por los posibles riesgos para la salud, y especialmente los riesgos para la salud laboral, de esta clase de nanomateriales. ¿Qué opina?

Se puede observar mi vida y ver la evolución de mi salud. Probablemente, soy un conejillo de indias en estos experimentos. Me estoy exponiendo a estos materiales en el laboratorio todos los días, con bastante intensidad, así que podéis experimentarlo conmigo si queréis.

Por cierto, he oído que quiere usted cambiar de campo porque ya ha pasado mucho tiempo en este…

Sí. Te vas ralentizando. Estoy pensando en hacer alguna otra cosa.

¿Como por ejemplo…?

Eso prefiero guardármelo.

Tenía que intentarlo. ;-) Dr. Novoselov, a menudo se considera a los ganadores del premio Nobel como “heraldos de la ciencia” de cara al mundo, a la sociedad. ¿Se siente cómodo en este papel?

Todos tenemos la oportunidad de educar al público en materia científica. Esta es una de las muchas posibilidades que se incrementan cuando ganas el premio Nobel, y también una responsabilidad. Por ejemplo, es una pena ver cómo la gente sobrerreacciona con este asunto de Fukushima. Por desgracia, la gente que gana el premio Nobel , aunque tenga mejores posibilidades de educar al público, no tiene necesariamente la capacidad para hacerlo.

En algunos ámbitos existe una percepción de que la creatividad se está perdiendo en la ciencia moderna por un exceso de rigidez en la práctica cotidiana. ¿Cómo se puede aumentar la creatividad en el entorno de la ciencia moderna? ¿Se puede enseñar creatividad a las personas?

No se puede enseñar la creatividad a las personas. Cuando las personas vienen al laboratorio, intentamos liberar sus mentes para que hagan cualquier cosa que deseen hacer, con los únicos límites de su naturaleza y su imaginación. Y no creo que falte creatividad en estos momentos. Creo que recientemente se han logrado algunos de los mejores resultados científicos. No me parece que haya un problema con ese tema.

He oído hablar de sus “experimentos de los viernes”. ¿Puede decirnos en qué consisten?

Hacemos cosas raras que queremos hacer, intentamos cosas que no son convencionales. Cosas que probablemente parezcan bastante extrañas al principio, pero que pueden terminar convirtiéndose en algo grande. Simplemente, tratamos de liberar la mente.

¿Qué es más importante en estos “experimentos de los viernes”: la creatividad o el conocimiento guiado por la experiencia?

Nunca me planteo qué es lo más importante. Simplemente hago lo que me resulta interesante a mí.

Vamos a ir un poco más lejos. ¿Qué caminos le parece que está tomando la ciencia? ¿Qué grandes avances espera en el futuro próximo?

Yo sólo soy capaz de predecir el pasado, no el futuro. Pero el futuro está ahí y siempre es capaz de superar nuestras predicciones más descabelladas. Hay un montón de cosas ahí fuera donde podemos encontrar nuevas realidades.

Kostya, como usted sabrá, hay gente que piensa que la ciencia y la tecnología están avanzando demasiado, demasiado rápido. Temen los posibles efectos adversos sobre la gente, el medio ambiente y la vida en general. ¿Le gustaría decir algo a estas personas?

No se puede detener el progreso. No se puede detener la ciencia porque es parte de nuestra naturaleza, de nuestra curiosidad. Necesitamos a la ciencia, pero tenemos que asegurarnos de estudiar su impacto adecuadamente antes de usarla. Y esto se puede hacer siempre mejorando la ciencia, haciendo mejor ciencia. Hacer menos ciencia resulta mucho más peligroso que hacer más ciencia.

Yo suelo comentar que cuando una sociedad deja de avanzar, no sólo se estanca, sino que de inmediato comienza a retroceder; y que esto es especialmente cierto para el progreso científico. ¿Está de acuerdo conmigo? :-D

A las personas nos encantan las cosas nuevas. Siempre nos obligamos a usar cosas nuevas, a pensar en cosas nuevas. Es absolutamente inevitable. Si se deja de utilizar la ciencia, estas cosas nuevas no serán científicas, y esto es mucho más peligroso que utilizar las nuevas respuestas científicas.

No quiero robarle más tiempo, doctor. Por cierto, ¿llegó a conocer al hamster Tisha? ;-)

Sí. Era un hamster bastante metomentodo.

Tengo entendido que nació usted en Nizhny Tagil, ¿no?

Sí, así es.

Nació en Nizhny Tagil y desde allí salió al mundo para estudiar el material de sus sueños y con ello ganar el premio Nobel. Me parece algo fabuloso.

Muchas gracias.

Muchas gracias a usted de nuevo, Kostya. Большое спасибо.



Tomado de:

La Pizarra de Yuri
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0