Latest Posts:

Mostrando las entradas con la etiqueta quimica. Mostrar todas las entradas
Mostrando las entradas con la etiqueta quimica. Mostrar todas las entradas

2 de febrero de 2016

Hallan nuevas evidencias de 'lluvia' de helio en Saturno

Se trata de la primera evidencia experimental fiable válida tanto para Júpiter como Saturno.

Mediante uno de los láseres más potentes del mundo, el láser OMEGA -se trata de un láser ultra intenso- del Laboratorio de Lásers Energéticos de la Universidad de Rochester en Nueva York (EE.UU.), un equipo de físicos del Laboratorio Nacional Lawrence Livermore (LLNL) en Livermore, California (EE.UU.) ha logrado la primera evidencia experimental de “lluvia” de helio en el planeta Saturno, un fenómeno en el que una mezcla de hidrógeno líquido y helio separa las gotitas de helio en la atmósfera del planeta como si se tratara de la mezcla del aceite y el agua.

Los científicos llevan teorizando acerca de la lluvia de helio en el planeta Saturno desde mediados de los 70, pero hasta ahora las evidencias experimentales habían fallado. “Es una sorpresa que esto ocurra en un régimen tan amplio de tales temperaturas y densidades. Algo estaba sucediendo con la conductividad”, explica Gilbert Collins, físico de materia extrema en el LLNL y líder del trabajo.



Para la temperatura con la que cuenta Saturno, el planeta es un 50% más brillante de lo que debería. Una forma de explicar este brillo extra sería mediante el comportamiento de su envoltura masiva de gases de hidrógeno y de helio. Debido a que las temperaturas y las presiones se elevan en el interior del planeta, estos gases se convierten en estado líquido y a niveles aún mucho más profundos, el hidrógeno ya líquido se convierte en un material eléctricamente conductor o metálico, mientras que el helio permanece mezclado.



Sin embargo, cuando las condiciones atmosféricas superan cierto umbral de presiones y temperaturas, el helio líquido cae de esta mezcla en forma de lluvia. Así, según esta teoría, las gotitas de helio líquido formarían una especie de lluvia que desataría la energía potencial gravitatoria haciendo al sexto planeta del Sistema Solar, ser más luminoso de lo que debería.



Para llegar a estos resultados, que evidenciaron que este suceso también podría encontrarse en Júpiter, los científicos necesitaron cerca de 5 años y 300 disparos de láser para esbozar esta transición de fase con temperaturas entre los 3.000 y los 20.000 º kelvin y presiones entre 30 y 300 gigapascales.



Las conclusiones, que para todos han sido “inesperadas y emocionantes”, aparecen en la revista Science y fueron presentadas en la reunión de la Unión Geofísica Americana en San Francisco, California.

Fuente:

1 de febrero de 2016

Experimentos científicos que puedes hacer en tu microondas

El experimento del palito de fósforo encendido

IMPORTANTE: REALIZARLO SÓLO CON LA SUPERVISIÓN DE UN ADULTO. ESTE EXPERIMENTOS PODRÍA DAÑAR SU ARTEFACTO DE MICROONDAS DE FORMA PERMANENTE.

Si metes una cerilla (o palito de fósforo) encendido en el microondas, sujeta con algún alimento para que se mantenga en posición vertical, y subes la potencia al máximo, generarás plasma como el que hay en el interior de la pantalla del televisor o el que abunda en el universo. Los globos de luz de color azul que emanan de la llama son el cuarto estado de agregación de la materia, ya que este se compone de átomos ionizados que han perdido sus electrones. Idéntico resultado se obtiene con un palillo de dientes.

Más experimentos en:

Muy Interesante

26 de enero de 2016

Estos son los cuatro nuevos elementos de la tabla periódica

Los nuevos elementos son sintéticos (es decir, generados artificialmente en el laboratorio), inestables y radiactivos. Los nombres provisionales son ununtrium (Uut) para el elemento 113, ununpentium (Uup) para el 115, ununseptium (Uus) para el 117 y ununoctium (Uuo) para el 118.

Portavoces del instituto RIKEN, descubridores del elemento 113 en el año 2003, comentaron con anterioridad que japonium podría ser el nombre final del elemento químico 113.
Kosuke Morita, el líder del equipo científico que descubrió el nuevo elemento 113, durante la presentación en la prefectura de Saitama, Japón.

Todos los elementos están descubiertos (Yupi!!!)

Actualmente, ya no quedan más huecos en la tabla periódica. Hemos encontrado todos los elementos que pueden existir en la naturaleza, y si añadimos alguno más será sintético e inestable

El hidrógeno es el elemento más abundante del Universo conocido, y el helio es el segundo. Se estima que el hidrógeno y el helio constituyen aproximadamente el 74 % y 24 % de toda la materia del universo. Nuestro planeta, y por extensión el resto del universo, está compuesto básicamente de pocos elementos muy comunes, como el oxígeno (46 % de la masa de la corteza terrestre), el silicio (27,7 %), el aluminio (8 %), el hierro (5 %), el calcio, el sodio, el magnesio o el potasio. Tal y como explico en el libro El elemento del que solo hay un gramo:
En la parte inferior de la tabla periódica hay una gran cantidad de elementos raros llamados elementos transuránicos. Durante mucho tiempo, muchos de ellos tuvieron nombres de referencia como unununio, aunque poco a poco se les ha ido asignando nombres definitivos. La mayoría de estos elementos no existen de forma permanente y se generan en aceleradores de partículas. Muchos duran apenas unos pocos minutos antes de desaparecer. Por ejemplo, si tenemos 100.000 átomos de livermorio (elemento 116), transcurrido un segundo solo nos quedaría 1 átomo. Y más tarde, nada.
Por eso es posible que, en una fecha tan reciente como 2014, se confirmara oficialmente la existencia de un nuevo elemento de la tabla periódica, el conocido como ununseptio, convertido así en el elemento número 117. Es también el segundo elemento más pesado del mundo, un 40% más que el plomo.

Poco después se confirmó el ununoctio, también llamado eka-radón. El ununoctio es actualmente el único elemento sintético del grupo 18 y posee el número y masa atómica más altos de todos los elementos sintetizados. El ununoctio es el elemento químico más pesado observado en laboratorio.

Ya que sólo se han sintetizado tres o cuatro átomos de ununoctio hasta la fecha, no se conocen las aplicaciones de sus compuestos más allá de la investigación científica. Por las características del elemento, la exposición a cualquiera de sus compuestos supondría un caso grave de envenenamiento por radiación.

Vía | El Mundo

24 de enero de 2016

Un fósil millones de años dentro de nuestras células

Nuestro metabolismo ya existía hace 3.000 millones de años, antes que nuestros genes.


Recreación de la Tierra durante el eón Arcaico, en los albores de la vida, de 4.000 a 2.500 millones de años atrás. / The Archean World / Peter Sawyer


Los estudiosos del origen de la vida se enfrentan a una paradoja circular (como la del huevo y la gallina) que, probablemente, puede considerarse el más profundo misterio de la biología evolutiva. Toda la vida que conocemos tiene un fundamento doble: la auto-replicación, o capacidad de un organismo para sacar copias de sí mismo, y el metabolismo, la cocina de la célula que fabrica continuamente sus componentes básicos. Hoy están vinculados de forma inextricable, pero ¿cuál surgió primero en la noche de los tiempos? ¿Y de qué servía el uno sin el otro?

Una investigación bioquímica que imita las condiciones de los sedimentos del eón Arcaico (en los albores de la vida en la Tierra, hace de 4.000 a 2.500 años atrás) muestra que dos rutas metabólicas (cadenas de reacciones químicas, o la cocina de la célula) ya funcionaban entonces igual que ahora, dentro de cada una de nuestras células. Tanto en la era Arcaica como hoy mismo, esas rutas responden al entorno, encendiéndose o apagándose en respuesta a la acidez y a los niveles de hierro. Es un fuerte indicio de que el metabolismo es anterior a las enzimas (proteínas con actividad catalítica) que lo ejecutan hoy. Y también, proponen los autores, a los genes que contienen la información para fabricar esas enzimas.
Tanto en la era Arcaica como hoy mismo, las rutas metabólicas responden al entorno, encendiéndose o apagándose en respuesta a la acidez y a los niveles de hierro.
Una de las implicaciones más extraordinarias del trabajo de Markus Keller y Markus Ralser, del Centro de Biología de Sistemas de la Universidad de Cambridge, y sus colegas, que se presenta en Science Advances, es que llevamos dentro de cada una de nuestras células un testigo de la Tierra primitiva, como un trozo del pasado remoto: un sistema complejo y autoconsistente que, posiblemente, empezó a funcionar antes de la invención de la primera bacteria del planeta. Más aún: una invención que fundamentó la evolución de la primera bacteria. Un invento tan brillante que 3.000 millones de años de evolución no han podido superar. Da vértigo. Casi da hasta asco.

La máquina del tiempo de Keller y Ralser se basa, de manera paradójica, en la tecnología biológica más avanzada, la metabolómica. Si la genómica es el estudio simultáneo de todos los genes, y la proteómica el de todas las proteínas. La metabolómica lo es de todos los metabolitos, las moléculas simples (como la glucosa, la ribosa o el oxalato) que le sirven a toda célula para cocinar todo el resto de sus componentes, como los carbohidratos, las grasas, las proteínas y los genes.

Una de las reacciones del metabolismo primitivo; a la izquierda, a bajo pH se forma ribosa, un componente de los genes; a la derecha, a alto pH se forma eritrosa, precursor de las proteínas.

Una de las reacciones del metabolismo primitivo; a la izquierda, a bajo pH se forma ribosa, un componente de los genes; a la derecha, a alto pH se forma eritrosa, precursor de las proteínas. / MARKUS KELLER

Los científicos de Cambridge se han centrado en dos de las rutas esenciales de ese metabolismo central que ocupa el centro de la cocina celular de todas las especias vivas. Se trata de la glucolisis y el ciclo de las pentosas fosfato, dos cadenas de reacciones enzimáticas que han torturado a los estudiantes de biología durante el último siglo. Convierten los azúcares como la glucosa (la comida) en energía (la gasolina), y también aportan la materia prima para construir muchos otros componentes celulares.

La vida no podría haber surgido en el universo joven, poco después del Big Bang. Porque del Big Bang solo salieron los elementos más simples, el hidrógeno y el helio, y los sistemas biológicos necesitan átomos más pesados, como el carbono y el nitrógeno, y algunos mucho más pesados, como los metales que catalizan las reacciones esenciales. Entre estos últimos, el más importante durante el eón Arcaico en que evolucionó la vida primitiva era el hierro (concretamente el hierro ferroso, por oposición al hierro férrico, más conocido como óxido en el lenguaje común).
Los científicos de Cambridge se han centrado en la glucolisis y el ciclo de las pentosas fosfato, dos cadenas de reacciones enzimáticas que han torturado a los estudiantes de biología durante el último siglo.
Y es a este hierro (ferroso) al que responden los ciclos metabólicos de los investigadores de Cambridge. El hierro cumplía en aquella noche de los tiempos la función que hoy tienen las enzimas metabólicas, las nanomáquinas de gran complejidad que catalizan hoy esas mismas reacciones. Pero que, como atavismo del pasado remoto, siguen conservando en sus centros activos, o núcleos lógicos, el mismo metal, y en el mismo estado de oxidación (ferroso) que entonces.

Hoy hace falta un gen para fabricar un catalizador (una enzima). Entonces solo hacía falta comerse el hierro del océano circundante. Sí, puede que la vida fuera más fácil en el pasado. Pero también era menos interesante.

Más aún, nuestros procesos metabólicos centrales, los que operan en nuestras neuronas para alimentarlas de energía y materiales de construcción, siguen revelando cierta capacidad de auto-sostenimiento que no depende de las enzimas codificadas por los genes, sino del mero hierro (ferroso) que las antecedió en ese papel.

No hemos cambiado tanto en los últimos 3.000 millones de años. Al menos no tanto como en los últimos 10.
Fuente:

20 de enero de 2016

Por qué el plátano es un alimento esencial para los deportistas

La imagen se repite más allá de la especialidad, el escenario o el género.

Tampoco es relevante el momento, ya que con el paso de los años se han visto a diversos deportistas consumirla antes, durante y después del ejercicio.
ç
Y es que la banana, banano, plátano o cambur, según el país, es uno de los alimentos que más fácilmente se relaciona con la actividad física.

La razón es que para cualquier atleta es esencial mantener una alimentación balanceada que le permita alcanzar su mayor rendimiento durante el ejercicio y las propiedades de este fruto tropical cuenta con una variedad de nutrientes que estimulan el cuerpo.

Combustible

Si bien es verdad que no hay una dieta perfecta a la cual aferrarnos, por lo general se recomienda una fórmula de 60% de carbohidratos, 20% de grasas y 20% de proteínas.


La banana es una comida perfecta para hacer ejercicio: es compacta, nada complicada de llevar, fácil de comer y llena de nutrientes

Katie Hiscock
Son estas proporciones las que refuerzan el protagonismo de la banana, ya que es una buena fuente de carbohidratos.

Katie Hiscock, especialista en preparación física y terapia deportiva, explicó a la BBC que la "banana es una comida perfecta para hacer ejercicio: es compacta, nada complicada de llevar, fácil de comer y llena de nutrientes".
Además de potasio, también son ricas en triptófano, el aminoácido que ayuda al organismo a producir serotonina, un neurotransmisor asociado con el estímulo positivo al organismo, y luteína, que ayuda a proteger la vista.

"Brinda un poco más de energía que otras frutas, pero el grueso de sus calorías son en forma de carbohidratos, por lo que es genial para reabastecernos de energía antes, durante y después del ejercicio".

"Al tener potasio, también sirve de agente contra los calambres que puedan aparecer durante la actividad física", agregó Hiscock.

Más información en:

BBC

19 de enero de 2016

Los icebergs gigantes fertilizan el mar y fijan CO2

El estudio de las imágenes por satélite tomadas entre 2003 y 2013 ofrece una sorpresa: los gigantescos pedazos de hielo que se desprenden de la Antártida contribuyen a fijar una parte importante del dióxido de carbono de la atmósfera.


Imágenes del Iceberg B-09B tomadas por el satélite Aqua en la Antártida - Foto NASA

Parece una paradoja, pero los pedazos de hielo que se desprenden de la Antártida como consecuencia del calentamiento global podrían estar contribuyendo a su vez a eliminar CO2 de la atmósfera. El equipo de Grant Bigg  ha analizado 175 imágenes tomadas desde el satélite entre 2003 y 2013 en los océanos del sur del planeta y los resultados indican un aumento de la producción de fitoplancton asociada a la presencia de los icebergs de más de 18 kilómetros que se separan del continente antártico.
Los icebergs contienen hierro y nutrientes que fertilizan el mar
"Hemos detectado un aumento sustancial de los niveles de clorofila, con un radio típico de entre 4 y 10 veces la longitud del iceberg", asegura Bigg. "Este nuevo análisis revela que los icebergs gigantes juegan un papel importante en el ciclo de carbono de los mares del sur". El estudio de las imágenes se basa en el análisis del color, que es un indicador de la actividad de los microorganismos en la superficie. Cuando uno de estos gigantes de hielo se derrite, el hierro y otros nutrientes que contiene fertilizan el mar, de modo que aumenta la población de fitoplancton y otros organismos que contribuyen a la fijación del carbono atmosférico en el lecho marino.



Los autores del trabajo, publicado en Nature Geoscience, calculan que estos icebergs son responsables del almacenamiento del 20 por ciento del carbono en el hemisferio sur del planeta. Las pruebas sugieren que hasta una décima parte de la fijación de carbono del planeta se produce en estos océanos y que los icebergs tienen un papel principal, a pesar de que estudios anteriores decían lo contrario "Si el desprendimiento de icebergs aumenta en este siglo como esperamos, esta retroalimentación negativa del ciclo del carbono puede ser más importante de lo que esperábamos antes", incide Bigg.

Referencia: Enhanced Southern Ocean marine productivity from fertilization by giant icebergs (Nature Geoscience) DOI 10.1038/ngeo2633
Tomado de:

9 de enero de 2016

Así se gestó el mapa de la vida

Leer cada letra de nuestro ADN

Durante 2010 se celebraron los diez años del día en que se anunció que habíamos conseguido 'leer' (o secuenciar, en el lenguaje técnico) el genoma humano. El impacto que esto ha tenido en la investigación de la última década ha sido espectacular, hasta el punto de que hablamos ya de la «era post-genómica» de la Biomedicina. El proyecto empezó a gestarse en la década de los 80 del siglo XX y uno de sus instigadores fue James Watson, que en los 50, junto con Francis Crick, había descubierto la estructura del ADN. La idea, muy ambiciosa para la época, era leer todas sus letras. 

Todas las células del cuerpo, tan distintas y especializadas como son, extraen las órdenes para realizar su trabajo de un manual de instrucciones común. Sólo tienen que leer el capítulo adecuado a las necesidades del lugar y el momento en el que se encuentran. Este libro, que nos permite vivir, es el ácido desoxirribonucleico o ADN. La información que contiene es única para cada uno de nosotros, pero hay una gran parte (la mayoría) que es común a todos los seres humanos y que nos define como especie. Descifrarla es básico para entender cómo funciona nuestro organismo.

El proyecto comenzó de forma oficial en 1990. Con la tecnología de la que se disponía entonces, se previó que se tardaría 15 años en conseguir el objetivo, contando con la participación de casi 3.000 investigadores de 16 institutos científicos, repartidos por seis países en varios continentes. Desde el principio, una de las ideas fundamentales que defendió Watson fue la de que todos los datos tenían que compartirse y hacerse públicos. Y así fue: a medida que se iba completando la secuencia, se colgaba en bases de datos públicas. Watson fue forzado a retirarse del proyecto en el año 1992 y el liderazgo pasó a manos de Francis Collins, cabeza visible del programa hasta el final. 

La secuenciación avanzaba según el ritmo previsto, cuando en 1998 apareció un competidor inesperado. Craig Venter, que había creado la compañía Celera Genomics ese mismo año, aseguró que, utilizando una técnica distinta de la que había adoptado el Proyecto del Genoma Humano, podría llegar al final mucho más rápido. Y con un coste mínimo: sólo 300 millones de dólares, frente a los 3.000 que preveía el presupuesto oficial. Además, Venter anunció que a la información que él obtuviera sólo se podría acceder mediante el pago de una cuota. Eso, naturalmente, indignó a la comunidad científica. 

Había una única manera de detener a Venter: pisar el acelerador. Solamente podría hacer negocio con sus secuencias hasta que el Proyecto del Genoma Humano lograra obtenerlas y las hiciera públicas de forma gratuita. Empezaba así la carrera frenética entre el sector privado y el público para ser los primeros en llegar a la meta. Fue entonces cuando la prensa empezó a ocuparse en serio del Proyecto del Genoma Humano, que hasta entonces sólo había interesado a los científicos. 

En el año 2000, el Gobierno de EEUU decidió intervenir, tras escuchar los ruegos de Collins y la comunidad científica, y declarar que la información del genoma humano era patrimonio de la Humanidad. Desaparecían así las posibilidades de Celera de hacer negocio. En junio de ese año, Venter y Collins anunciaron conjuntamente que habían conseguido el objetivo fijado de leer todo el genoma, aunque en realidad sólo se tenía un borrador. Y así acababa de forma oficial el Proyecto.

¿Cuántos genes hay en el genoma humano? Ésta era una de las preguntas básicas que se hacían los científicos al principio, y aún ahora no tenemos una respuesta clara. Diferenciar dónde empieza y acaba un gen en la maraña de letras de nuestro ADN no es tan fácil como parece. Se calcula que no puede haber más de unos 20.000. Es una cifra mucho más baja de la esperada y sorprende que un organismo tan avanzado como el humano pueda funcionar con tan pocos genes. Para que nos hagamos una idea, una mosca tiene unos 13.700. Y un gusano, unos 19.000. Hay animales aparentemente muy sencillos que nos superan en número de genes, como el erizo de mar (23.300) o el ratón (29.000). E incluso vegetales como la Arabidopsis thaliana, una planta europea de la familia de la mostaza, que tiene 25.500 genes. O el arroz, del que se cree que tiene cerca de 50.000. 

Estas estadísticas dejan claro que, en lo que se refiere al genoma, el tamaño no importa. Aunque sea cierto que es preciso un número mínimo de genes para que un organismo pueda funcionar, más genes no nos vuelven necesariamente más evolucionados. ¿Cómo consigue la célula humana llevar a cabo todas las funciones únicas de nuestra especie cuando cuenta con un repertorio limitado de herramientas? La respuesta a esta pregunta nos mantendrá ocupados aún una buena temporada.

* Salvador Macip es médico, científico y escritor. Doctorado en Genética Molecular en la Universidad de Barcelona, trabaja en su propio laboratorio de la Universidad de Leicester, Reino Unido, donde es profesor de Mecanismos de Muerte Celular. 

FotoFotoFoto

De arriba abajo: Bill Clinton, por entonces presidente de EEUU, flanqueado por Craig Venter y Francis Collins el día que se presentó el borrador; un ratón y su secuencia de ADN; y una técnico del Centro de Genómica Química de los NIH (Institutos Nacionales de la Salud de EEUU). | Fotos: Rick Bowmer / Ap, Darryl Leja / NHGRI

Fuente:

El Mundo (Especiales)

25 de diciembre de 2015

¿Por qué el papel de aluminio tiene dos caras diferentes?



En efecto: una es brillante y la otra mate.

¿Y es mejor un lado que otro para envolver el bocadillo?
La mayoría de los sólidos se rompen al ser sometidos a presión, pero esto no ocurre con los metales. El aluminio, como el resto de los metales, es maleable. Así podremos aplastarlo al aplicarle la suficiente presión y extenderlo en láminas o en planchas. Y enrollarlo en láminas muy delgadas.

Pero ¿qué quiere decir maleable?

Los metales son maleables porque sus átomos se mantienen unidos mediante una serie movible de electrones compartidos, en lugar de estar unidos por fuerzar rígidas entre los electrones de un átomo y los del siguiente, como pasa en la mayoría de los sólidos.

Como un átomo en concreto no tiene una posición fija, puede cambiar de lugar manteniendo su enlace con uno u otro electrón, dependiendo de la presión a la que se vea sometido el metal.

En la fábrica de papel de aluminio se somete al aluminio a una gran presión hasta que se obtiene una lámina delgada, lo suficiente para devanarlo haciéndolo pasar entre pares de rodillos, para ir obteniendo progresivamente láminas más y más finas. Hasta conseguir alcanzar grosores de menos de dos centésimas de milimetro.

Para que la lámina no se rompa en el laminado en frío y para ahorrar espacio en el laminado final, se hacen pasar dos láminas a la vez entre los rodillos.

Así, las superficies que están en contacto con los rodillos de acero pulido, salen lisas y brillantes. Pero las superficies interiores, de aluminio contra aluminio, salen ligeramente rugosas y mates, ya que el aluminio es mucho más blando que el acero.

Aparte del aspecto, no hay ninguna diferencia entre una y otra cara, por lo que se puede usar cualquiera de ellas para envolver los alimentos.

Tomdo de Saber Curioso

23 de septiembre de 2015

Los naipes para los fanáticos de la ciencia


La Science Deck es una preciosa baraja de naipes en la que el tema general son motivos científicos: las figuras son los grandes personajes de la ciencia –Einstein, Curie, Tesla, Lovelace, Mendeleiev) y el resto descubrimientos, inventos o componentes de teorías físicas.

Los cuatro palos representan la química, la bología, la tecnología y la física, respectivamente. Su precio es de unos 25 euros – se envían desde Australia. 


Click para agrandar la imagen.

21 de septiembre de 2015

Así se veía la primera versión de la tabla periódica de los elementos

Aquellos que alguna vez pisaron un aula de química probablemente tuvieron que lidiar con la todopoderosa tabla periódica de los elementos. Aunque parezca mentira, y como tantos otras herramientas académicas, la tabla periódica no existe para desorientarnos y desesperar, sino para facilitarnos las cosas. Si no saben de lo que estoy hablando, la tabla periódica es un sistema genuino donde se listan, según sus propiedades químicas, los elementos que componen todo lo conocido.

Una sola persona no tuvo la inspiración de confeccionar este sistema, sino que fue más bien un descubrimiento progresivo, como suele pasar generalmente en la ciencia. En particular, la tabla periódica sufrió varios vaivenes. Los científicos no encontraban quórum a la hora de encontrar un criterio para ordenar los elementos. Además, en sus primeras etapas, era bastante común el descubrimiento de nuevos elementos y la presencia de gaps (baches) en la tabla, los cuales daban cuenta que faltaban eslabones en la cadena.

Hubo un científico ruso que fue clave para darle inicio a este sistema que condensa todos los elementos y sus principales propiedades químicas. Su nombre fue Dmitri Ivanovich Mendeleev y fue el creador de la primera tabla periódica de los elementos.

La primera tabla periódica

Asi-se-veia-la-primera-version-de-la-tabla-periodica-de-los-elementos-1.jpg 

Bastante más chica que la actual, ¿verdad? Esta tabla fue publicada por Mendeleev en el año 1871. A primera vista luce mucho más corta, escueta e incompleta. Sin embargo, si hacemos el ejercicio de remontarnos a la época, es asombroso pensar ya estaban caracterizados los elementos más importantes: el hidrógeno, el oxígeno y el carbono, entre otros.

En aquel tiempo, grandes químicos como Cannizzaro ya habían calculado el peso relativo de las diferente sustancias conocidas. Por ejemplo, sabían que el oxígeno era 16 veces más pesado que el hidrógeno (aún hoy se sigue relativizando de esta manera). 

Mendeleev decidió ordenar los elementos en su tabla según sus pesos relativos, empezando por los más livianos y terminando por los más pesados. No obstante, como podemos apreciar en la figura, la tabla no es una mera línea horizontal que va desde el hidrógeno (H) hasta el uranio (U), sino que este criterio, al mismo tiempo, le permitió detectar patrones relacionados a propiedades químicas de los elementos.

Al igual que las tablas periódicas que podemos comprar hoy en las librerías, la de Mendeleev estaba dividida en grupos (columnas) y períodos (filas). Por ejemplo, se puede ver que los metales tienden a estar a la izquierda (potasio, magnesio) y los no metales a la derecha (oxígeno, fósforo).

Asi-se-veia-la-primera-version-de-la-tabla-periodica-de-los-elementos-2.jpg 

A su vez, otro rasgo sobresaliente en la obra del genio ruso es la presencia de gaps en la tabla. Cada espacio en blanco en la tabla representa un gap. Este recurso no resultó para nada menor: le permitió predecir elementos que científicos ulteriores descubrieron y caracterizaron. 

Tengamos en cuenta que por aquella época se comenzaba a poner en boga la noción del átomo. Todavía quedaba un largo trecho para el descubrimiento de los protones y electrones. Con el avance de la ciencia, en especial de la física, los científicos comprendieron que los elementos en la tabla debían ser ordenados acorde a su número atómico (cantidad de protones) y no su masa, como originalmente se hizo.

Finalmente, quiero aclarar que en realidad hubo un boceto de tabla periódica dos años antes que la presentada en este artículo. Fue publicada en 1869 por el mismo autor, en la revista Zeitschrift für Chemie. No la consideramos una tabla periódica propiamente dicha porque carecía de la estructura que derivó en las que hoy genera dolores de cabeza a los alumnos de química.

La tabla periódica hoy 

Asi-se-veia-la-primera-version-de-la-tabla-periodica-de-los-elementos-3.jpg 

Esta tabla probablemente te resulta más familiar. Si la comparamos con su antepasado de 150 años de edad, la esencia es la misma. Como se puede apreciar, los gaps de la antigua tabla fueron sistemáticamente descubiertos, además de nuevos elementos, varios de ellos generados en el laboratorio. 

La actual tabla periódica esta lejos de ser un sistema estático o terminado. Frecuentemente se la pone en jaque a raíz de diferentes inconsistencias encontradas en los elementos. Por ejemplo, hace sólo unos días se ponía en duda la ubicación del lawrencio (Lr) debido a anomalías en sus propiedades químicas, que lo asemeja más a otro grupo de elementos. 

A su vez, existen tablas periódicas alternativas que obedecen otros patrones o criterios a la hora de ubicar los elementos. Cada una de ellas tiene sus ventajas y desventajas. Mientras tanto, nosotros seguimos con la descendiente de lo que alguna vez fue un boceto de Mendeleev.

Fascinante, ¿no es así?

Fuente:

Ojo Científico

11 de septiembre de 2015

Por primera vez se fabrica el estaneno


Dibujo20150803 stanene - 2d layer tin atoms - microscope image - nature materials
El estaneno es un material bidimensional (una hoja monoatómica de estaño, Sn, con un solo átomo de grosor). Se predijo su existencia en el año 2013 y se ha logrado fabricar mediante crecimiento epitaxial sobre una superficie de telurato de bismuto (Bi2Te3). Por ahora no se han podido confirmar si sus propiedades electrónicas son las predichas por los modelos teóricos. Este primo del grafeno (C) se une al club junto al siliceno (Si), fosforeno (P) y germaneno (Ge).

El artículo es Feng-feng Zhu et al., “Epitaxial growth of two-dimensional stanene,” Nature Materials, AOP 03 Aug 2015, doi: 10.1038/nmat4384; me he enterado gracias a Chris Cesare, “Physicists announce graphene’s latest cousin: stanene,” News, Nature, 03 Aug 2015, doi: 10.1038/nature.2015.18113. Recomiendo leer “Más allá del grafeno,” LCMF, 03 May 2015.


Dibujo20150803 Atomic structure model for the 2D stanene - nature materials

Según los modelos teóricos las propiedades de conducción de la electricidad del estenato son excepcionales. Su termoelectricidad casi ideal permite que a temperatura ambiente los electrones se muevan sin disipar calor. Esto implica que este material bidimensional sería ideal para desarrollar circuitos eléctricos de bajo consumo. Por desgracia esta propiedad no se ha podido confirmar usando las muestras fabricadas hasta el momento.

Dibujo20150803 Electronic structures of stanene film - nature materials

El estaneno según los modelos teóricos es un aislante topológico excepcional. Debería presentar superconductividad topológica. Además del efecto Hall cuántico anómalo a temperatura ambiente. Lo que si se confirmara haría que fuera un material mucho más prometedor que el grafeno en muchas aplicaciones. De hecho, también sería útil en espintrónica por el papel del espín en la propagación de ondas de electrones (cuasipartículas). Pero seamos cautos, todavía no se ha podido confirmar que el estaneno fabricado sea un aislante topológico ni que posea todas estas maravillosas propiedades. Por supuesto, se está desarrollando una intensa investigación con objeto de comprobarlo.

Dibujo20150803 omparison between DFT calculations and experiments - statnene - nature materials

La resolución de los experimentos (figura a la derecha) todavía es insuficiente para verificar las propiedades predichas por los modelos teóricos basados en la teoría del funcional densidad (figura a la izquierda). Aún así, las propiedades del estaneno son asombrosas. Sin lugar a dudas el estaneno dará mucho que hablar en los próximos

Fuente:

La ciencia de la Mula Francis

2 de agosto de 2015

Biografía de Louis Pasteur (y nos vamos más allá de la pasteurización)

Pocas personas han salvado más vidas que Louis Pasteur.

Las vacunas que desarrolló han protegido a millones.

Al entender que los gérmenes causan enfermedades revolucionó la atención médica.

Y encontró nuevas formas para hacer que los alimentos que consumimos no nos hicieran daño.

Definitivamente, Pasteur fue un químico que cambió nuestra interpretación de la biología en forma fundamental. Pero además, al examinar paso a paso su vida, se hace evidente que estuvo a la vanguardia de una nueva rama de la ciencia: la microbiología.

27 de diciembre de 1822: El artista que se volvió químico

Louis Pasteur era el hijo de un sargento de las guerras napoleónicas, que creció amando apasionadamente a su nativa Francia.

Pasó su niñez en el macizo del Jura, en el este de Francia.

No se destacó como alumno y era un apasionado del dibujo y la pintura. De niño, hizo una serie de retratos de su familia que revelan un buen ojo para la precisión y los detalles.

Sus profesores alentaron ese lado artístico, pero su padre consideraba que pintar era una indulgencia: lo que importaba era el trabajo sólido escolar, así que Pasteur estudiaba con tesón.

1848: Un descubrimiento sobre los pilares de la vida


Pasteur empezó su carrera en química con un empleo en la Universidad de Estrasburgo y pronto hizo un descubrimiento revolucionario: demostró que moléculas idénticas podían existir como imágenes espejo (o versiones "zurdas" y "diestras").

Notó que las moléculas producidas por los seres vivos siempre eran zurdas.

El descubrimiento fue un avance fundamental para la microbiología, que apuntaló el desarrollo moderno de las medicinas y hasta nuestra comprensión del ADN.

A los 25 años de edad, Pasteur ya había hecho lo que se puede considerar como su contribución más profunda a la ciencia.

En Conocer Ciencia TV realizamos un especial (endos partes) sobre la vida de Pasteur:


Parte del programa de History Channel sobre Pasteur:




El artículo completo sobre la vida de Pasteur en la web de la BBC


30 de abril de 2015

Seis cosas que no nos cuentan sobre los pesticidas

La mayoría de gente sigue ignorando que los pesticidas están relacionados con todo tipo de problemas de salud. A continuación exponemos los 6 principales efectos negativos que los pesticidas tienen sobre nuestras vidas.

pesticide-spray
1.LOS PESTICIDAS ESTÁN DESTRUYENDO LA FERTILIDAD MASCULINA


Un estudio ha sugerido que los hombres que comen grandes cantidades de productos tratados con pesticidas, tienen una cantidad de espermatozoides un 50% inferior que los hombres que consumen pequeñas cantidades de frutas y verduras y frutas.

2.LOS PESTICIDAS CONTAMINAN EL AGUA

En muchos lugares con una alta actividad agrícola, los fertilizantes contaminados con pesticidas están contaminando el suministro de agua. Los pesticidas son un problema tan extendido que incluso están contaminando los océanos. Carne de ballena de Noruega fue importada a Japón y diversos análisis confirmaron que contenía una cantidad de toxinas que doblaban el límite legal aceptado.
pesticide00

3.LOS PESTICIDAS ARRUINAN EL BUEN VINO
Un informe sobre vinos franceses analizó algunos de los “300 vinos franceses de las añadas 2007 y 2008 del Ródano y de la región de Aquitania”. El estudio demostró que el 90% de ellos estaban contaminados con pesticidas.

4.LOS PESTICIDAS AUMENTAN LA RESISTENCIA A LOS ANTIBIÓTICOS

Un estudio reciente sugiere que el glifosato, el ingrediente principal del herbicida Roundup de Monsanto y otros dos herbicidas comunes (2,4-D y dicamba), podrían estar conectados a la resistencia a los antibióticos. Tras la exposición a las toxinas, las bacterias reaccionaron de manera diferente a los antibióticos comunes, tales como la ampicilina, la ciprofloxacina y la tetraciclina. Incluso la Organización Mundial de la Salud (OMS) dictaminó recientemente que el glifosato “posiblemente era carcinogénico para los humanos”.

zz-roundup

5.LOS PESTICIDAS ESTÁN VINCULADOS CON EL AUTISMO

Un estudio sugiere que debido a la toxicidad del glifosato en nuestro suministro de alimentos, 1 de cada 2 niños tendrán autismo para el año 2025. Esta es una afirmación radical y potencialmente devastadora que no puede ser ignorada, pero de la que apenas se habla.

Tomado de:

28 de abril de 2015

L'Oreal: La ciencia desenreda los misterios del cabello

Físicos, químicos, ópticos, expertos en ciencia de los materiales, metrólogos, estadísticos y matemáticos trabajan en el recién inaugurado centro de investigación de L’Oréal en Saint Ouen (París). De una plantilla de 500 personas, 400 son científicos; el resto, peluqueros y estilistas.Todos ellos trabajan para desentrañar los misterios del cabello, una de las estructuras más complejas del cuerpo humano, y diseñar productos que se adapten a la gran diversidad de tipos de cabello del mundo y a las diferencias en su cuidado.

El gigante francés de la cosmética L’Oréal acaba de inaugurar el en barrio parisino de Saint Ouen el mayor centro de investigación del cabello del mundo. La apertura de este centro ha supuesto una inversión de 100 millones de euros. SINC ha visitado estas instalaciones, que son una mezcla de laboratorio con la última tecnología e inmenso salón de belleza.




En este nuevo centro trabajan 400 científicos, desde, físicos, químicos y ópticos hasta expertos en ciencia de los materiales, metrólogos, estadísticos y matemáticos. Otro centenar de trabajadores son peluqueros y estilistas que se encargan de probar con voluntarios de diferentes nacionalidades, razas y edades las últimas formulaciones de champús, acondicionadores, productos de fijación, de coloración y de peinado, y de recoger sus impresiones.
El día de la visita al centro, en la zona del salón, los ‘peluqueros científicos’ (así les denominan en L’Oréal) estaban probando con voluntarios asiáticos un tinte físico que, a diferencia de los químicos, no penetra en el cabello. Sus partículas tienen propiedades ópticas que se depositan en el pelo y aumentan su brillo o aportan reflejos con diferentes tonos.
L’Oréal invierte al año 750 millones de euros a I+D (el 3,5% de su facturación total) y un tercio de esta cantidad va destinado específicamente a investigación sobre el cabello, explica Patricia Pinau, portavoz científica de la empresa.
La investigación sobre el cabello le parece apasionante a esta directiva. “Es único por su estructura biológica altamente desarrollada, autónoma y capaz de auto renovarse En el interior de un cabello se expresan los factores principales que rigen la vida y muerte celular”, subraya.
El artículo completo en:

20 de abril de 2015

Los calcetines que no se lavan y no huelen mal


La tecnología avanza y está presente en muchos lugares que no esperábamos, como el caso de la ropa donde la tecnología ha sido usada sobre todo para el segmento deportivo desde camisetas y otras prendas que integran sensores para cuantificar nuestra actividad hasta las que son capaces de absorber el sudor, pero nunca habíamos visto una prenda que fuera capaz de absolverlo sin necesidad de lavarla y sin la preocupación de que ésta huela mal.
Los calcetines SilverAir son un proyecto que actualmente busca financiación en Kickstarter, plataforma en donde nació la compañía responsable de estos calcetines llamada Y Athletics y que precisamente hace un año crearon una camiseta que ofrecía una característica similar: nunca preocuparnos por el olor.


Después del exito conseguido hace un año con la camiseta SilverAir, ahora la compañía ha decidido repetir la hazaña con unos calcetines que ya han logrado más de dos mil backers, consiguiendo superar la meta de 35 mil dólares para su financiación y eso que aún faltan 31 días para que termine la campaña.
La tecnología detrás de los SilverAir Socks es sencilla pero funcional y sobre todo bien implementada ya que se basa en colocar pequeños filamentos de plata pura en la tela de los calcetines. Con estos filamentos es posible neutralizar los malos olores que puedan nacer debido a las proteínas en el sudor que fomentan el crecimiento de bacterias, además de que su diseño cuenta con paneles de ventilación en ambos lados del pie para permitir el flujo de aire y así mantener el pie seco.
Tomado de:
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0