Latest Posts:

Mostrando las entradas con la etiqueta fisica. Mostrar todas las entradas
Mostrando las entradas con la etiqueta fisica. Mostrar todas las entradas

5 de septiembre de 2017

El fuego, ¿es líquido, sólido o gaseoso? Y, ¿por qué es caliente?

Sólido, líquido y gaseoso: esos son los estados de la materia, según nos enseñaron en la escuela. Y luego nos enteramos de que había otros más: plasma, condensados Bose-Einstein, materia degenerada, plasma de quarks-gluones...

A pesar de ello, seguimos teniendo un problema con el fuego, pues no parece entrar en ninguna de esas clasificaciones.

Y es exactamente por eso que ha fascinado a los científicos durante siglos.


Uno de los fascinados fue el físico y químico Michael Faraday (1791-1867), quien descubrió la inducción electromagnética, el diamagnetismo y la electrólisis.

Además de eso, fue el creador de las legendarias Conferencias de Navidad de la Royal Institution de Londres, en 1825, una tradición que aún se mantiene. Su idea era presentarle a los jóvenes las maravillas de la ciencia a través de espectáculos.

El propio Faraday fue uno de los conferencistas en esos primeros tiempos. En 1848, en su exposición más famosa, empezó diciendo: "No hay mejor puerta para entrar al estudio de la filosofía natural que considerando el fenómeno físico de una vela".

Esa conferencia, "La historia química de una vela", es una favorita de los químicos desde entonces, entre ellos a la investigadora forense de incendios Niamh Nic Daeid.

"En mi área, particularmente cuando estamos trabajando en un caso y tenemos que explicar cómo funciona el fuego en un tribunal, lo que tenemos que hacer es explicar en términos muy sencillos la combustión: qué es, cómo ocurre, cómo empiezan los incendios, cómo se desarrollan, etc.", dice la experta a la BBC.

"Cuando recién estaba empezando en el área, un amigo me sugirió que leyera las conferencias de Faraday. Son seis sobre este tema, escritas para niños, así que lo explica de una manera muy sencilla". 

¿Cómo explica Niamh Nic Daeid el misterio del fuego, que no parece ajustarse a ninguno de los estados clásicos de la materia?

"El fuego es una reacción química. Es algo que le sucede a gases en la mayoría de las circunstancias. Y es algo que pasa como resultado del calentamiento de la materia -sólida o líquida- para producir vapores, que luego se encienden al mezclarse con el oxígeno".

Entonces, no es un sólido ni un líquido y es casi un gas, pero no lo es. El fuego es algo que le ocurre al gas.

"Para hacer fuego, tienes que tomar un sólido o un líquido, calentarlo para que se rompan vínculos químicos en el combustible (el sólido o el líquido con el que empezaste) y eso hace que se libere gas. Ese producto gaseoso se mezcla con el oxígeno. Luego introduces una fuente de encendido que produce una llama".

Al prender una vela, "estás viendo química". O, en otras palabras, no es un estado de la materia, sino una reacción.

El artículo completo en:

BBC

2 de agosto de 2017

Experimentos: la cama de clavos y el globo faquir

Para realizar nuestro experimento necesitamos cuatro palitos, cartón, un globo lleno de aire y una caja de chinchetas.

En primer lugar construimos una cama de faquir con cartón, cuatro palitos y unas chinchetas. Si colocamos un globo lleno de aire sobre la cama de chinchetas y luego ponemos algo de peso sobre el globo vemos que no explota.
Explicación
El efecto de una fuerza no depende sólo de su intensidad sino también de la superficie sobre la que se ejerce. Si la superficie es muy grande, el efecto de la fuerza se reparte por toda ella; si, por el contrario, la superficie es pequeña, la intensidad de la fuerza se concentra en ésta y su efecto deformador aumenta. En este caso decimos que la fuerza ejerce mayor presión.

En nuestro experimento empujamos el globo contra la base llena de chinchetas y vemos que no explota. La fuerza ejercida se distribuyó sobre todas las chinchetas y no había suficiente presión sobre ninguna de las chinchetas para que pudiera pinchar el globo.

A continuación empujamos el globo contra una única chincheta y vemos que explota. En este caso, toda la fuerza se concentra en un punto muy pequeño y la presión hace que la chincheta atraviese el globo y explote.



Algo parecido sucede cuando el faquir se acuesta sobre una cama llena de clavos muy juntos y todos de la misma altura. El peso del cuerpo se reparte entre la superficie de todos ellos y no le ocurre nada. Pero si se apoyara solo en unos pocos, el resultado sería muy doloroso.  

Tomado de:

FQ Experimentos

13 de julio de 2017

¿Cómo funciona una guitarra eléctrica?

¿Alguna vez te has preguntado cómo funciona una guitarra eléctrica? ¿Qué la diferencia de una guitarra acústica? ¿Porqué se llama eléctrica? ¿Qué hace que suene cuando ni siquiera usa tomacorrientes o enchufe? En este artículo -que será ameno y no demasiado extenso- te voy a explicar un par de detalles interesantes, que no está de más saber, sobre la guitarra eléctrica y su funcionamiento. Se trata de un artículo orientado a newbies ó novatos. 

Primero un poco de historia. 


Se le atribuye la invención de la guitarra eléctrica moderna, a mediados del siglo XX, a Lester William Polfus, mejor conocido como Les Paul (creador de la marca Gibson y en honor a quien se utiliza el nombre para ese modelo de Gibson, Epiphone y otras marcas posteriores), quien sin saberlo crearía gran historia con "su" invención junto con la aparición del amplificador de guitarra en 1935. Sin embargo los primeros modelos fueron de Bigsby (ver el artículo linkado arriba). E incluso antes que Gibson crease la Les Paul, ya había sido creada la primera Broadcaster de Leo Fender, la primera en ser producida en serie.
Todo comenzó buscando mayor sonido para tocar en directo. A partir de ese momento, tenemos el que es uno de los instrumentos más populares en prácticamente todos los géneros de música moderna, desde el Blues y el Jazz, hasta el Rock y Heavy Metal de hoy día. La primera guitarra eléctrica fue manufacturada por Rickenbacker.


Artículo: #4: Anglagard-les-paul-portrait.jpg
Lester William Polfus "Les Paul"


La guitarra eléctrica es un instrumento musical armónico que utiliza el principio de inducción electromagnética con el objeto de convertir la vibración de las cuerdas en señales eléctricas y, por medio del amplificador, estas señales en sonido.


Artículo: #4: Anglagard-electromagneticinduction.gif

La inducción electromagnética es el fenómeno que origina la producción de una fuerza electromotriz en un medio o cuerpo expuesto a un campo magnético variable (las cuerdas), respecto a un campo magnético estático (las bobinas en las pastillas y sus imanes). Es así que, cuando dicho cuerpo es un conductor, se produce la corriente inducida. Este fenómeno fue descubierto por Michael Faraday en 1831, quien lo expresó indicando que:


  • La magnitud de la tensión inducida es proporcional a la variación del flujo electromagnético (Ley de Faraday).


Artículo: #4: Anglagard-michael-faraday-1241x763.jpg
Michael Faraday (1791-1867)

En el caso de una guitarra eléctrica, el sonido se ve influido por el diseño de las pastillas, ubicación de las mismas, escala, y material las cuales estén hechas; siendo todo esto causa de diversos cambios en el flujo electromagnético que sucede con la vibración de las cuerdas.

Artículo: #4: Anglagard-single_coil_string_anim.gifArtículo: #4: Anglagard-induccion3.gif

De esta manera, las pastillas son el ente que convierte la vibración de las cuerdas en energía eléctrica, la cual pasa por una diversidad de circuitos (resistencias variables y capacitores en un ámbito básico) para tallar nuestro sonido a gusto antes de salir hacia el amplificador, el cual recibe la señal eléctrica y hace una serie de procesos que crean ese sonido caliente y agresivo que tanto nos gusta.


Artículo: #4: Anglagard-electric-guitar-wiring-diagrams-b64fde88136d376f.jpg Esquema de circuito de guitarra tipo Les Paul

Desde un primer vistazo la apariencia de la guitarra eléctrica no ayuda a optimizar el sonido, porque es un instrumento macizo, a diferencia de las guitarras acústicas que son huecas y tienen caja de resonancia. Hay una gran polémica sobre si algunas propiedades de la madera afectan o no al sonido de las guitarras eléctricas, como puede ser el peso y los nudos de la propia madera, que pueden afectar al sustain.

Tenemos un mástil que va atornillado (o de una pieza) al cuerpo, a lo largo del cuál van los trastes y el clavijero. Las cuerdas son de metal por un motivo: para que sus propiedades electromagnéticas interactúen con las pastillas de manera adecuada, generando la energía eléctrica.

Las pastillas son 6 (en el caso de las guitarras de seis cuerdas o más de seis si tienen más cuerdas) imanes rodeados de una bobina de cobre fino, más fino que el cabello humano. Esta bobina rodea los imanes aproximadamente 7200 veces (dependiendo de modelos y fabricantes). La corriente emitida por una pastilla de guitarra eléctrica ronda los 2 voltios de media, aunque depende del modelo concreto y de si son simples o dobles (para más información sobre pastillas, ver el artículo Diferencia técnica entre pastillas activas y pasivas).


Artículo: #4: Anglagard-single-coil-pickup.jpg
Pastilla pasiva single tipo Fender

Producto de estos descubrimientos y creaciones hoy día gozamos de una infinidad de aparatos digitales que producen una inmensa variedad de sonidos orgánicos a base de circuitería y señales eléctricas. Todo se lo debemos a visionarios que no pueden estarse quietos...


Tomado de:

Guitar Bend

18 de abril de 2017

La historia de Mileva Maric, la primera esposa de Albert Einstein

Comienza sus estudios a la edad de diez años (1886) en un colegio para niñas. Posteriormente, estudia en el instituto de educación de Sremska Mitrovica. Este centro disponía de un magnifico laboratorio de Física y Química. 

Mileva nace el 19 de diciembre de 1875 en la ciudad de Titel situada en la provincia de Vojvodina, que por aquel entonces formaba parte del Imperio Austrohúngaro y que actualmente forma parte de Serbia. Su familia era acomodada y es la mayor de tres hermanos.

Comienza sus estudios a la edad de diez años (1886) en un colegio para niñas. Posteriormente, estudia en el instituto de educación de Sremska Mitrovica. Este centro disponía de un magnifico laboratorio de Física y Química.

Mileva se gradúa en el año 1890, obteniendo la máxima calificación en Física y Química. Es aceptada como estudiante privada en el Colegio Real de Zagreb, con una dispensa especial, pues el centro sólo admitía hombres. Es en la universidad de Zagreb donde entabla amistad con otro genio de la física y matemáticas, como era Nikola Testa, que tuvo un gran reconocimiento académico.






En el verano de 1896, Mileva comienza sus estudios de medicina en la universidad suiza de Zúrich, pero solo sigue estos estudios seis meses y a finales de 1896 comienza sus estudios de física y matemáticas en el Instituto Politécnico  de Zúrich. Este centro otorgaba una titulación que permitía dedicarse a la docencia de la física y las matemáticas.

El Instituto Politécnico de Zúrich era uno de los pocos centros europeos de enseñanza superior que admitía mujeres. Mileva era la quinta mujer  en ser admitida en dicho centro en toda su historia y la única que había en su clase, que sólo tenía once alumnos, entre los que se encontraba Albert Einstein.

Mileva tenía un carácter poco sociable y presentaba una cojera muy ostensible, debido a una artritis congénita, que le hacía tener una autoestima muy baja a pesar de su brillante inteligencia y su gran formación académica.

Mileva y Albert Einstein iniciaron una relación sentimental muy fuerte. Mileva era cuatro años mayor que Albert. La madre de Einstein, que era alemana, nunca vio con buenos ojos el matrimonio de su hijo con Mileva. La definía de la siguiente forma ”ella es un libro, igual que tú… Pero deberías tener una mujer. Cuando tengas treinta años. Ella será una vieja bruja”.

En el año 1900, Einstein escribe a Mileva  lo siguiente “estoy solo con todo el mundo, salvo contigo.  Qué feliz soy por haberte encontrado a ti, a alguien igual a mí en todos los aspectos, tan fuerte y autónomo como yo”.

Queda embarazada en 1901 sin estar casados, lo que provoca una situación social muy difícil de soportar en aquellos momentos históricos. Esta situación le lleva a abandonar sus estudios a pesar de que sólo le faltaba superar el examen final.


Albert Einstein y Mileva Maric de jóvenes

Mileva se refugia en casa de su hermana en Novi Sad en la actual Serbia, dando a luz en 1902 a una niña Liesert, que cuando cumple un año es dada en adopción. Einstein nunca llevó bien el ser padre de Liesert y nunca informó a su familia de que era padre.
 
El seis de enero de 1903 es cuando Einstein y Mileva se casan en la capital suiza, Berna. Tenía Einstein entonces veinticuatro años y ya había terminando sus estudios, consiguiendo inmediatamente su primer trabajo como técnico de la Oficina de Patentes de Berna.

En 1904, tienen un nuevo hijo Hans Albert y es cuando Mileva decide sacrificar  todas sus posibilidades profesionales y de investigación para dedicarse al cuidado de su familia. Ya entonces Mileva tenía una gran preparación académica. Había desarrollado investigaciones sobre la teoría de los números, cálculo diferencial e integral, funciones elípticas, teoría del calor y electrodinámica.

Se piensa, que los conocimientos matemáticos que tenía Mileva, fueron indispensables para que Einstein pudiera desarrollar sus teorías. Los años más creativos de Einstein fueron aquellos en los que compartió sus investigaciones con ella, de ahí la injusticia que se comete con Mileva.


Albert Einstein y Mileva Maric

El año  1905 fue el de los grandes logros  de Albert Einstein, publicando cuatro grandes artículos, y uno de ellos incluía la teoría de la relatividad, que revolucionaron el mundo científico y que le convertirían en un genio. Es revelador, que Mileva en una carta escrita a una amiga le decía “hace poco hemos terminado un trabajo muy importante que hará mundialmente famosos a mi marido”.

Lea el artículo completo en:

Nueva Tribuna

23 de enero de 2017

Científicos de Harvard y del MIT construyen una 'espada láser' real (y te decimos cómo hacer tu propia espada láser)

Un equipo de físicos de Harvard y del Instituto Tecnológico de Massachusetts (MIT), han construido una espada láser real, similar a las de 'Star Wars'.

Los científicos lograron juntar fotones para formar moléculas, logrando un estado de la materia que hasta ahora era solo teórico

Han creado un tipo especial de medio en el cual los fotones interactúan entre sí tan fuertemente que comienzan a actuar como si tuvieran masa.



Un equipo de físicos de la Universidad de Harvard y el Instituto Tecnológico de Massachusetts (MIT), han construido una 'espada láser' real, con efectos similares a las utilizadas en la saga de Star Wars. Los científicos lograron juntar fotones para formar moléculas, logrando un estado de la materia que hasta ahora era solo teórico.

La física de lo que sucede en estas moléculas es similar a lo que se ve en las películas...

Este logro, que ha sido publicado por Nature, desafía décadas de conocimiento sobre la naturaleza de la luz. Hasta ahora, los fotones han sido descritos tradicionalmente como partículas sin masa, que no interactúan entre sí, es decir, que si enfrentas un láser a otro, simplemente se atraviesan.

Sin embargo, las moléculas fotónicas no se comportan como los láser tradicionales. "No es una mala analogía comparar esto a los sables de luz. Cuando estos fotones interactúan entre sí, se empujan desviándose unos a otros. La física de lo que sucede en estas moléculas es similar a lo que se ve en las películas", ha señalado uno de los autores principales del trabajo, Mikhail Lukin.

Según ha explicado, se ha creado un tipo especial de medio en el cual los fotones interactúan entre sí tan fuertemente que comienzan a actuar como si tuvieran masa, y se juntan para formar moléculas. Los expertos han explicado que este tipo de estado unido de fotones se ha discutido en numerosas ocasiones en teoría, pero no había sido observado, comentó.

Todo, gracias a los átomos de rubidio

Para hacer que los fotones, normalmente sin masa se junten, los investigadores usaron átomos de rubidio y una cámara al vacío. Luego usaron láser para enfriar la nube de átomos hasta un nivel apenas superior al cero absoluto.

Usando varios láser muy débiles, dispararon fotones individuales a la nube de átomos. Al ingresar a esta nube fría, la energía del fotón excita a los átomos en su camino, provocando una desaceleración del fotón. Al ir avanzando, esa energía pasa de átomo en átomo y luego abandona la nube junto al fotón. 

"Cuando el fotón abandona el medio, su identidad se preserva. Es el mismo efecto que se ve en la refracción de la luz en un vaso de agua. La luz entra en el agua, entrega parte de su energía al medio, y dentro existe como luz y materia combinadas, pero cuando sale, sigue siendo luz", ha indicado el físico.

El artículo completo en:

20 Minutos

Bonus 1: El Dr. Michio Kaku te explica cómo se elabora un sable de luz "real"...



Bonus 2: Pero aquí nosotros te enseñamos a hcer tu propia espada laser con un encendedor y una cañita (sorbete o popote), bueno no es un láser pero en la oscuridad se ve muy bien!!!! El video AQUÍ.


Que la Fuerza los acompañe 

11 de diciembre de 2016

Una nueva teoría sobre la gravedad podría explicar la materia oscura

La teoría fue bautizada como "de gravedad emergente" y puede aclarar esa materia oscura que tantos dolores de cabeza está dando a los científicos. Erik Verlinde lleva seis años observando el cielo para explicarse el movimiento y la velocidad exacta de las estrellas y ahora concluye que no necesita invocar ninguna misteriosa partícula de materia oscura para entender qué pasa en las galaxias. Las cosas no funcionan exactamente como predijo Einstein, aunque el padre de la gravedad sí estableció las bases.


Las estrellas se comportan como si estuviesen presionadas o aguantadas por algo más fuerte que ellas. La gran fuerza gravitacional requerida desconcierta a los telescopios que intentan detectarla. Hasta ahora, los físicos han optado por la existencia de una "materia oscura" para explicar ese "algo" que desconocen y que sería necesaria para explicar el comportamiento gravitacional que los astrónomos observan en el Universo. Esa energía oscura -dicen- existe en gran cantidad (supone el 25% del Cosmos), pero hasta ahora nadie ha sido capaz de observarla, a pesar de los muchos esfuerzos por detectar su existencia y explicar qué pasa en las galaxias.

Verlinde dice que el problema está en que se ha estado mirando donde no es. No hay tal materia oscura, las estrellas giran y se mueven dentro de las galaxias porque la gravedad emerge. "A grandes escalas, la gravedad no se comporta como predice la teoría de Einstein", ha sentenciado.

Uno de los puntos importantes de la teoría de las cuerdas es una adaptación del principio holográfico del profesor Gerard't Hoof (Utrecht), premio Nobel en 1999. Según este punto, la información contenida en una región del espacio se determinada por el superficie que la contiene, esto hace que toda la información presenten en todo el universo pueda describirse en una esfera imaginaria gigante alrededor del mismo. Para Verlinde, "parte de la información de nuestro universo está contenida en el espacio mismo".

El artículo completo en:

El Mundo

28 de noviembre de 2016

Científicos descubren un nuevo estado del agua

Una investigación científica ha revelado que el agua, además del estado sólido, liquido o gaseoso, podría encontrarse en otro estado, desconocido hasta el momento.


El agua es uno de los componentes fundamentales de la Tierra y constituye aproximadamente el 60 % del cuerpo humano. Estamos tan acostumbrados a ella, que es difícil de imaginar cuestiones más complejas que sus tres estados básicos: sólido, líquido o gaseoso. (En ocasiones muy raras, se la puede encontrar en un estado parecido al plasma), indica 'Science'.

Sin embargo, ahora investigadores liderados por Laura Maestro, de la Universidad de Oxford, han encontrado que cuando se calienta a entre 40 °C y 60 °C, el agua presenta algo conocido como temperatura de reticulación, y entonces se produce una conmutación entre dos estados diferentes del líquido.

"En realidad, nadie comprende completamente al agua. Es un poco incómodo admitirlo, pero esta sustancia que cubre dos partes del planeta es en muchos sentidos un misterio. Y lo que es peor, cuanto más la estudiamos, más problemas se acumulan", señaló al respecto el físico británico Philip Ball a 'Nature'.

En muchos sentidos, el agua es diferente a cualquier otra sustancia en el planeta. Con la excepción del mercurio, tiene la tensión superficial más alta de todos los líquidos. Es también una de las sustancias conocidas cuyo estado sólido puede flotar en su estado líquido, y a diferencia de casi todas las demás sustancias conocidas, se expande cuando se congela.

También tiene un punto de ebullición extraño. Mientras que los puntos de ebullición de otros hidruros, tales como el telururo de hidrógeno y el sulfuro de hidrógeno, disminuyen a medida de que se reduce el tamaño de sus moléculas, el H2O posee un punto de ebullición sorprendentemente alto para un peso molecular tan pequeño.

Tomado de:

Actualidad RT

4 de octubre de 2016

2016: Nobel de Física para los descubridores de los secretos de la materia exótica

Las ondas gravitacionales se quedan para otro año. El comité de los Nobel ha querido reconocer a tres científicos británicos por revelar los secretos de la materia exótica.



Premio Nobel de Física ha recaído este año en David Thouless, Duncan Haldane y Michael Kosterlitz por el "estudio de transiciones de fase topológicas", según ha anunciado esta mañana la academia de ciencias sueca.

Los premiados de este año "abrieron la puerta a un mundo desconocido hasta entonces en el que la materia puede asumir estados extraños", explica el fallo del jurado, utilizando métodos de matemáticas avanzadas para analizar fases, o estados, inusuales de la materia, como los superconductores, los superfluidos o los films magnéticos.

Gracias a su trabajo pionero, físicos de todo el mundo trabajan ahora buscando nuevas y exóticas fases de la materia. Hay grandes esperanzas en sus usos futuros dentro de las ciencias de los materiales y la electrónica.

El uso de conceptos topológicos dentro de la física fue decisivo para sus descubrimientos. La topología es la rama de las matemáticas que describe las propiedades de la materia que solo cambia siguiendo un paso tras otro.





Esta rama de la matemática se interesa por las propiedades que cambian paso a paso, al igual que el número de agujeros en los objetos anteriores. La topología fue la clave de los descubrimientos de los Premios Nobel.


Utilizando la topología como herramienta, consiguieron superar a los expertos de la época. En la década de los 70, Michael Kosterlitz y David Thouless utilizaron esos conceptos matemáticos para estudiar los fenómenos que surgen en un mundo plano, en superficies tan finas que se pueden considerar bidimensionales. Con sus trabajos dieron la vuelta a las teorías del momento de que la superconductividad o la superfluidez no podían ocurrir en capas finas de materia, demostrando que la superconductividad puede ocurrir a bajas temperaturas y también explicando el mecanismo, llamado fase de transición, que hace que la superconductividad desaparezca a altas temperaturas.

Años después, en los 80, Thouless fue capaz de explicar un experimento previo, con capas conductoras de electricidad muy finas en las que la conductividad se podía medir de forma precisa en pasos completos. Demostró que esos pasos eran topológicos en su naturaleza. En torno al mismo tiempo, Duncan Haldane descubrió cómo se pueden utilizar conceptos topológicos para entender las propiedades de la cadenas de pequeños imanes encontrados en algunos materiales, tan finas que se podrían considerar unidimensionales.




Las fases más comunes son el gas, líquido y materia sólida. Sin embargo, en muy alta o baja
temperaturas cuestión asume otros estados, más exóticos. El artículo completo en:



El Confidencial 

25 de agosto de 2016

El neutrino que podría explicar por qué existimos... no existe

El cuarto tipo de neutrinos, el único que no se ha podido identificar, permite entender sobre el papel por qué hay más materia que antimateria.


El área roja indica el lugar donde debería registrarse la señal de los neutrinos estériles sobre el IceCube Neutrino Observatory, en el Polo Sur.

Son unas de las partículas más abundantes del universo pero también de las más difíciles de detectar. Su masa es una millonésima parte de la de un electrón y apenas interaccionan con la materia, de ahí que consigan atravesar prácticamente cualquier cosa que se les ponga por delante, aunque sea la misma Tierra. Son los neutrinos, también conocidos como las partículas fantasma por exhibir un comportamiento tan particular. Hasta el momento se han descrito tres tipos diferentes, pero la comunidad científica trataba de encontrar un cuarto que, sobre el papel, explicaría por qué hay más materia que antimateria. En definitiva, la partícula que resolvería, entre otros misterios, por qué existimos.

Pero esa partícula no existe. O, al menos, no ha podido ser detectada. Ésa es la conclusión a la que ha llegado un grupo de investigadores del Instituto Niels Bohr de la Universidad de Copenhague (Dinamarca), después de desplazarse al Polo Sur para trabajar en el IceCube Neutrino Observatory, donde han analizado los miles de neutrinos que atraviesan nuestro planeta de un polo a otro. Pero no han hallado ni rastro de ese nuevo componente del grupo. Sus resultados los publica ahora la revista Physical Review Letters.

El artículo completo en:

El Mundo Ciencia

24 de julio de 2016

¿Qué pasa con el crecimiento vegetativo en gravedad cero?

Es bien sabido que los patrones de crecimiento de las plantas están influenciados por una variedad de estímulos, siendo uno de ellos la gravedad. En la Tierra, las raíces de las plantas exhiben ciertos comportamientos característicos que se pensaba que eran dependientes de la fuerza de la gravedad. 

Sin embargo, las plantas de Arabidopsis cultivadas en la Estación Espacial Internacional (ISS) han demostrado que esta teoría está equivocada. Según un estudio publicado en BioMed Central, la ondulación e inclinación de la raíz se producen en las plantas de los vuelos espaciales de manera independiente a la gravedad.

En las raíces de plantas, la ondulación se compone de una serie de cambios regulares en las raíces durante el crecimiento. Se cree que están asociados con la percepción y la evasión de obstáculos, dependiendo de la detección de la gravedad y capacidad de respuesta. 

Mientras que la inclinación es la progresión de las raíces que crecen a lo largo de una superficie casi vertical. Se piensa que es una desviación de las raíces en la dirección de la gravedad y también sujeta a mecanismos similares que afectan al ondeado. 

A pesar de que la base precisa de estos patrones de crecimiento no se entiende bien, la gravedad se considera un jugador importante en estos procesos.

Para probar lo que ocurre con el crecimiento de raíces de las plantas cuando se quita del todo la gravedad, un equipo de investigadores de la Universidad de Florida, hizo crecer dos tipos de Arabidopsis thaliana, Wassilewskija (WS) y Columbia (Col-0), en la ISS

Las plantas se cultivaron en unidades de crecimiento especializadas que combinan un hábitat con un sistema de cámaras que captura imágenes de cada seis horas. Las imágenes han entregado los datos en tiempo real desde la ISS, existiendo un control terrestre de comprobación desde el Centro Espacial Kennedy.

El fenómeno de fototropismo negativo en las raíces de las plantas está bien documentada, pero su papel en la orientación de crecimiento de la raíz sigue siendo explorado. Los autores encontraron que, en ausencia de gravedad pero con luz, las raíces permanecieron fototrópicamente negativas, creciendo en la dirección opuesta del crecimiento del brote, como lo hacen en la Tierra. 

El camino recorrido por las raíces en su crecimiento seguía con los complejos patrones de ondulación e inclinación, características de la Tierra y la influencia de la gravedad. Además, mientras estaban en órbita, cada cultivo conservaba un patrón único de inclinación terrestre.

Sin embargo, el equipo observó que el grado de ondulación mostrado por las plantas en el espacio no coinciden con lo que se preveía con las raíces de la Tierra. En el espacio, la ondulación era mucho más sutil. Este resultado refuerza la idea de que la ondulación e inclinación representan dos fenómenos separados, y que la gravedad no funciona como parte mecánica sobre estos dos procesos.
Aunque las plantas utilicen la gravedad como un tropismo para orientarse sobre la superficie de la Tierra, está claro que la gravedad no es esencial para la orientación de la raíz, ni es el único factor que influye sobre los patrones de crecimiento de las raíces
Parece ser que otras características del medio ambiente también son necesarios para asegurar que una raíz crezca fuera de la semilla, lo que mejora sus posibilidades de encontrar suficiente agua y nutrientes para asegurar su supervivencia
Concluyen los autores principales, Anna-Lisa Paul y Ferl Robert.

Fuente:

Xakata Ciencia

3 de julio de 2016

Las leyes de la Termodinámica... ¡en cinco minutos!

Saludos

Nuevamente les dejo un video de Quantum Fracture, esta vez nos explican, en tan solo cinco minutos, las leyes de la termodinámica.

¿Qué es la termodinámica?

En la web de Profesor en Línea encontramos la siguiente definición: La termodinámica (del griego  termo, que significa "calor"dinámico, que significa "fuerza") es una rama de la física que estudia los fenómenos relacionados con el calor.

Específicamente, la termodinámica se ocupa de las propiedades macroscópicas (grandes, en oposición a lo microscópico o pequeño) de la materia, especialmente las que son afectadas por el calor y la temperatura, así como de la transformación de unas formas de energía en otras. 


Se considera a Nicolas Léonard Sadi Carnot, que aparece en la imagen de ariba, (París, 1 de junio de 1796 - 24 de agosto de 1832), como el padre de la Termodinámica. 



Ahora veamos el video para conocer más de cerca las Leyes de la Termodinámica: 


Visiten siempre nuestro blog para más ciencia y más experimentos!!!

Un fuerte abrazo


Leonardo Sánchez Coello


Archivos de Conocer Ciencia:






Las leyes de Newton... ¡en dos minutos!


Quantum Fracture es un canal en YouTube que explica diversas nociones y conceptos de manera sencilla, es decir cumple los requisitos que también posee el Proyecto "Conocer Ciencia", es decir la ciencia se vuelve sencilla, divertida y fascinante. 

En esta ocasion comparto con Ustedes un video de tan solo dos minutos en los que los de Quantum nos explican las tres leyes de Newton:





En Conocer Ciencia TV le dedicamos varios videos a Newton, aquí les dejo uno de ellos:



Y aquí una presentación en power point con apuntes de la vida de Newton, los apuntes fueron tomados de libros de Isaac Asimov:



Conocer Ciencia, hágalo, pero hágalo Con Ciencia...

Prof. Leonardo Sánchez Coello

4 cosas increibles que puedes hacer con una wincha (flexómetro)


Casi todos tenemos una wincha en casa, y nos resulta muy útil para medir. Pero te apuesto a que no sabías estas impresionantes utilidades que le puedes dar a una wincha, al estilo de un "valor agregado". Muy útil, ya sea que seas o no un hombre de ciencias:



En esta web podrás encontrar tips múy útiles para usar de manera correcta una wincha.Nunca está de más este conocimiento.

Hasta la próxima
Leonardo Sánchez Coello

Experimentos: Cómo congelar agua ¡en menos de un minuto!





Un experimento sencillo y fascinante, solo se necesita agua embotellada, les sugieron que primero practiquen empleando marcas de diferentes de agua embotellada (agua sin gas).


Les dejo el video, es súper fácil de realizar, pero si eres menor de edad primero pide permiso a tu mamá o papá para que puedas usar el refrigerador.


Una variante del experimento, en el que emplea sal para acelerar el proceso de congelación, se puede econtrar en la web de la BBC

29 de mayo de 2016

Esta es la verdadera razón por la que nada puede ser más rápido que la luz


La luz permanece imbatible en su récord de velocidad. 
 
Corría septiembre de 2011 y el físico Antonio Ereditato conmocionaba al mundo.

El anuncio que había hecho prometía dar un drástico giro a nuestros conocimientos sobre el Universo. Si los datos recogidos por 160 científicos que trabajaban en el proyecto OPERA eran correctos, lo impensable había ocurrido.

Un grupo de partículas -en este caso, los neutrinos- había viajado más rápido que la luz.
Según la teoría de la relatividad de Albert Einstein, eso no era posible. Y las implicaciones eran enormes. Muchos aspectos de la física tendrían que ser modificados.

Al final, el resultado de OPERA estaba errado por causa de un problema de sincronización debido a un cable mal conectado.

Como consecuencia, las mediciones de lo que tardaban los neutrinos en recorrer la distancia estaban equivocadas en 73 nanosegundos, e hizo que pareciera como si hubieran viajado más rápidamente de lo que lo hicieron.

Ereditato renunció.
Pero, ¿estamos realmente seguros de que nada puede viajar más rápido que la luz?

Cuestión de peso

Examinemos el asunto. La velocidad de la luz en el vacío es de 299.792.458 kilómetros por segundo (cerca de la cifra redonda de 300.000 km/s). El Sol se encuentra a 150 millones de km de la Tierra y la luz tarda sólo ocho minutos y 20 segundos en recorrer esa distancia.

A principios de la década de 1960, William Bertozzi, del Instituto de Tecnología de Massachusetts, en EE.UU., experimentó con la aceleración de electrones a velocidades cada vez mayores.

Debido a que los electrones tienen una carga negativa, es posible propulsarlos aplicando la misma carga negativa a un material.

En teoría sólo se tiene que aumentar la energía aplicada con el fin de alcanzar la velocidad requerida de 300.000 km/s, pero resultó que no es posible que los electrones se muevan tan rápido.

Los experimentos de Bertozzi revelaron que el uso de más energía sólo causaba un aumento directamente proporcional en la velocidad del electrón.
La luz está compuesta de partículas llamadas fotones. ¿Por qué estas partículas pueden viajar a la velocidad de la luz cuando otras partículas como los electrones no pueden?

"A medida que los objetos viajan más rápido, su masa crece y mientras más masa tienen, más difícil es lograr la aceleración, por lo que nunca llegan a la velocidad de la luz", explica Roger Rassool, físico de la Universidad de Melbourne, en Australia.

Einstein, siempre Einstein

Los fotones son bastante especiales. No sólo carecen de masa, lo que les da vía libre a la hora de atravesar vacíos como el espacio, sino que además no necesitan acelerar. La energía natural que poseen significa que cuando se crean ya están a su máxima velocidad.

No hemos observado o creado nada que pueda desplazarse tan o más rápidamente que los fotones.

Lea el artículo completo en:

BBC Ciencia

2 de mayo de 2016

El accidenteque creó una batería que dura toda una vida

Crear una batería que dure toda una vida parecía difícil de lograr, aunque un grupo de investigadores estadounidenses lo consiguió.

Lo que más llama la atención es que todo fue fruto de un accidente.





Científicos de la Universidad de California, en Irvine, Estados Unidos, estaba buscando una forma de sustituir el litio líquido de las baterías por una opción más sólida y segura (las baterías de litio son extremadamente combustibles y muy sensibles a la temperatura) cuando dieron con esta batería 400 veces más eficiente que las actuales.


Empezaron a experimentar con nanocables de oro recubiertos con un gel de electrolitos y descubrieron que eran increíblemente resistentes. La batería podía seguir trabajando de forma efectiva durante más de 200.000 ciclos de carga.

Durante mucho tiempo, los científicos han experimentado con nanocables para baterías.
Esto se debe a que son miles de veces más delgados que el cabello humano, altamente conductores y cuentan con una superficie amplia para el almacenamiento y transferencia de electrones.

El problema estaba en que estos filamentos son extremadamente frágiles y hasta ahora no aguantaban la presión de carga y descarga.
Pero un día la estudiante de doctorado Mya Le Thai decidió colocar en estos delicados hilos una capa de gel.

"Mya estaba jugueteando y lo cubrió todo con una un fina capa de gel antes de empezar el ciclo", explicó Reginald Penner, consejero de departamento de química la Universidad de California en Irvine.

"Descubrió que tan solo usando este gel (de electrolitos) podía someterlos a ciclos (de carga y descarga) cientos de miles de veces sin que perdiera su capacidades".
Y lo hizo durante tres meses.

"Esto es increíble porque estas cosas típicamente mueren dramáticamente tras 5.000 o 6.000 ciclos, 7.000 como mucho", agregó

Penner le contó a la revista Popular Science que cuando empezaron a probar los dispositivos, se dieron cuenta que no iban a morir.

Los expertos piensan que la efectividad de la batería de Irvine se debe a que la sustancia viscosa plastifica el óxido metálico en la batería y le da flexibilidad, lo que evita el agrietamiento.

"El electrodo revestido mantiene su forma mucho mejor, lo que lo hace una opción más fiable", explicó Thai.

El artículo completo en:

BBC Ciencia

28 de febrero de 2016

Por qué es tan importante que se haya comprobado la predicción de Einstein sobre las ondas gravitacionales




"Hemos detectado ondas gravitacionales", anunció David Reitze, director ejecutivo de LIGO.

Hace 100 años Albert Einstein predijo la existencia de ondas gravitacionales como parte de su Teoría General de la Relatividad.

Durante décadas, científicos habían intentado, sin éxito, detectar estas ondas, fundamentales para entender las leyes del Universo y que muestran cómo los objetos hacen que el espacio-tiempo se curve.

Hasta este 11 de febrero de 2016.

"Hemos detectado ondas gravitacionales", anunció este jueves David Reitze, director ejecutivo del Observatorio Avanzado de Interferometría Láser de Ondas Gravitacionales, conocido como LIGO.

Según los expertos, las ondas captadas vienen de la colisión de dos agujeros negros, uno 29 veces más grande que el Sol y el otro con un tamaño 36 veces mayor, que crearon un nuevo agujero 62 veces la masa de nuestra estrella solar.

Este evento pudo ser "escuchado" por LIGO; y tras varios meses de revisiones y corroboraciones de los datos, pueden decir con seguridad que se trata de las ondas gravitacionales.

"Esto marca el inicio de una nueva era de la astronomía", le dijo a BBC Mundo la doctora Alicia Sintes, del departamento de física de la universidad de las Islas Baleares y el Instituto de Estudios Espaciales de Cataluña, España, quien participó en el proyecto.

"Esta será una herramienta con la que estudiar el Universo y todos los objetos astrofísicos que existen", agregó.

También es la constatación absoluta de la última predicción que hizo Einstein.

Ondas gravitacionales por todas partes





Según la teoría de Einstein, todos los cuerpos en movimiento emiten esas ondas que, de la misma forma que una piedra afecta el agua donde cae, producen perturbaciones en el espacio.Y fue el 25 de noviembre de 1915 cuando Albert Einstein presentó la versión final de sus ecuaciones del campo ante la Academia Prusiana de las Ciencias.


Estas son la base de su Teoría General de la Relatividad, un pilar fundamental de la física moderna que ha transformado nuestra comprensión del espacio, el tiempo y la gravedad.

Gracias a ella hemos podido entender muchas cosas: desde la expansión del Universo hasta el movimiento de los planetas y la existencia de los agujeros negros.

Pero Einstein también propuso la presencia de ondas gravitacionales. Estas son, esencialmente, las ondulaciones de energía que distorsionan la estructura del tiempo y el espacio.

Cualquier objeto con masa debería producirlas cuando está en movimiento. Incluso nosotros. 

Pero cuanto más grande es la masa y más dramático el movimiento, más grandes son las ondas.

Y Einstein predijo que el Universo estaba repleto de ellas.

Lea el artículo completo en:

BBC Ciencia

1 de febrero de 2016

Experimentos científicos que puedes hacer en tu microondas

El experimento del palito de fósforo encendido

IMPORTANTE: REALIZARLO SÓLO CON LA SUPERVISIÓN DE UN ADULTO. ESTE EXPERIMENTOS PODRÍA DAÑAR SU ARTEFACTO DE MICROONDAS DE FORMA PERMANENTE.

Si metes una cerilla (o palito de fósforo) encendido en el microondas, sujeta con algún alimento para que se mantenga en posición vertical, y subes la potencia al máximo, generarás plasma como el que hay en el interior de la pantalla del televisor o el que abunda en el universo. Los globos de luz de color azul que emanan de la llama son el cuarto estado de agregación de la materia, ya que este se compone de átomos ionizados que han perdido sus electrones. Idéntico resultado se obtiene con un palillo de dientes.

Más experimentos en:

Muy Interesante

30 de diciembre de 2015

Estas son las propiedades físicas de la materia




Propiedades físicas de la materia
La manera en que se comporta cualquier clase de materia, depende de la forma que se unen entre sí los átomos de esa materia. Cada propiedad de la materia está relacionada con los átomos. Algunos ejemplos:
Presión – Cuando hinchamos un globo, bombardeamos montones de moléculas de aire en su interior. Esas moléculas van de un lado para otro dentro del globo y, cuando golpean su pared, rebotan. Cada rebote ejerce una diminuta fuerza en el globo, y la presión que podemos leer en un indicador de presión es sólo la suma total de todas esas fuerzas.

propiedades-fisicas-materia-presion

Presión del aire y el agua – Tanto el aire como el agua están hechos de moléculas, y ambos son en consecuencia capaces de ejercer una presión. Las moléculas en un cubo de agua en medio del océano, por ejemplo, ejercerán una presión contra todos los lados del cubo: arriba, abajo y hacia los lados.

propiedades-fisicas-materia-presion-aire-agua

Si imaginamos una columna de agua que se extiende hacia abajo en el océano, la fuerza de la gravedad hacia abajo sobre esa columna tiene que ser equilibrada por la fuerza hacia arriba ejercida por el agua debajo de ella. Así, cuanto más bajemos en el océano (o en la atmósfera), mayor será la presión. Al nivel del mar, por ejemplo, el aire ejerce una presión de 1 kilo por cm2.

propiedades-fisicas-materia-presion-aire-agua-atmosfera

Flotabilidad – Si metemos algo en el agua, se ejercerá una presión sobre ello. El resultado de esta presión es una fuerza hacia arriba a la que llamamos flotabilidad. Esta fuerza es igual al peso del agua desplazada por el objeto, de modo que si el objeto es menos denso que el agua, flotará. De otro modo, se hundirá.
Podemos pensar por ejemplo, que cómo un transatlántico puede flotar si el hierro es más pesado que el agua. Pues debemos pensar que la cantidad de agua desplazada por el barco, es igual al volumen de hierro más el aire dentro del casco. Si el barco estuviera lleno de agua (o de hierro), se hundiría.

propiedades-fisicas-materia-flotabilidad

Adhesión y cohesión – Cuando las moléculas de algún material son atraídas a otras moléculas del mismo material, denominamos a esa fuerza cohesión. Es la fuerza que conserva las cosas de una pieza. Si las moléculas de diversas materias son atraídas unas a otras, la fuerza entonces se denomina cohesión. Dicha fuerza, permite que una cosa se pegue a otra. En los dos casos, sin embargo, la base para la fuerza es la atracción entre átomos.

propiedades-fisicas-materia-adhesion propiedades-fisicas-materia-cohesion
Adhesión y cohesión

Tensión superficial – Las fuerzas cohesivas dentro de un líquido tienden a hacer que el líquido adopte forma esférica. Cuando una gota de agua “forma una cuenta” sobre un impermeable, es la fuerza de cohesión la que la mantiene así. Los físicos piensan en los efectos de la cohesión como en una fuerza que mantiene la superficie unida, y llaman a esa fuerza tensión superficial.

propiedades-fisicas-materia-tension-superficial propiedades-fisicas-materia-tension-superficial-gota-agua

Elasticidad – Es la propiedad de los sólidos que les hace volver a su forma original cuando han sido deformados. Cuando doblamos una pieza de metal, sus átomos ejercen una fuerza que se opone al doblado. Tan pronto como la soltamos, las fuerzas interiores actúan y el metal vuelve a su posición original.

propiedades-fisicas-materia-elasticidad-acero-bender-doblador propiedades-fisicas-materia-elasticidad

Compresibilidad – Puesto que las fuerzas entre los átomos pueden volverse repulsivas si los átomos son apretados demasiado juntos, los materiales se resisten a las fuerzas exteriores que intentan comprimirlos. Algunos materiales, como el acero y el agua, se resisten muy fuertemente. Otros, como el aire, no.

propiedades-fisicas-materia-jeringa-compresibilidad-aire-gas propiedades-fisicas-materia-jeringa-liquido-agua

Fuerza tensora – Del mismo modo que los materiales se resisten a que sus átomos sean comprimidos juntos, se resisten también a que sean separados. La fuerza tensora mide la fuerza requerida para superar las fuerzas de atracción entre átomos y separarlos. El acero tiene también una alta fuerza tensora: resulta difícil separar sus átomos, aunque sea fácil romperlo.

propiedades-fisicas-materia-fuerza-tensora-acero

Ósmosis – Si dos soluciones son separadas por una membrana, el agua (pero no las moléculas en solución) puede moverse a través de la membrana, cambiando la concentración de la solución de ambos lados. Esto recibe el nombre de ósmosis. Cuando la piel presenta un aspecto arrugado después de estar en la bañera demasiado tiempo, es porque el agua ha fluido dentro de nuestras células por ósmosis.

propiedades-fisicas-materia-osmosis
propiedades-fisicas-materia-osmosis-agua

Difusión – Cuando las moléculas de dos fluidos distintos se unen al movimiento molecular normal, da como resultado que dos conjuntos de moléculas se entremezclen. Este proceso recibe el nombre de difusión. Si dejamos caer una gota de tinta en un vaso de agua, podemos seguir el rastro de la difusión a medida que la tinta se expande.

Puesto que la difusión depende sólo del movimiento de las moléculas, puede aparecer en lugares inesperados. Es bien sabido de los ingenieros, por ejemplo, que los gases pueden difundirse en (e incluso a través de) contenedores metálicos. Los científicos espaciales tienen que preocuparse por los gases que se difunden a través de las pareces de la nave espacial en las misiones largas.

propiedades-fisicas-materia-difusion

Capilaridad – Si metemos un tubo delgado hueco en un líquido, el líquido ascenderá dentro del tubo con respecto al nivel exterior. Este efecto recibe el nombre de capilaridad. Funciona de esta forma: el empuje hacia abajo de la gravedad sobre el líquido en el tubo es superado por la fuerza de adhesión entre el líquido y las pareces del tubo.

Es la capilaridad la que alza el agua en las plantas (otro mecanismo que hace que entre el agua por las raíces es la ósmosis, pero lo que verdaderamente hace que suba el agua hacia las copas de los arboles (hasta 20-30 metros de altura), es la pérdida constante de agua que estos sufren por las hojas debido a la transpiración, creándose una presión negativa que se compensa con la entrada de agua nueva por las raíces).

Para un tubo de un tamaño determinado, hay un límite a lo alto que puede ascender un líquido. El peso de la columna líquida no puede exceder a la fuerza de ascensión ejercida por la cohesión.

propiedades-fisicas-materia-capilaridad


Fuente:

Blogodisea
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0