Latest Posts:

Mostrando las entradas con la etiqueta energia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta energia. Mostrar todas las entradas

3 de febrero de 2014

Así descubrieron por qué las aves vuelan en formaciones en V



Si alguna vez se preguntó por qué las aves vuelan en formación simétrica, similar a la letra V, ahora la ciencia, puede ofrecerle una respuesta.

Según un equipo de investigadores del Colegio Real de Veterinarios de Londres, que estudió el patrón de vuelo de la especia amenazada, el ibis eremita, lo hacen para ahorrar energía.

Básicamente, el ave que está detrás utiliza la fuerza del viento que desplaza en su vuelo el ave que está adelante.


Ibis volando en formación

Las aves vuelan formando una V para ahorrar energía.

Vea cómo lo hacen, explicado de manera científica, en este video de BBC Mundo.

1 de febrero de 2014

Pilas de azúcar: un invento duradero, recargable y sin peligro ambiental



Un grupo de científicos ha diseñado una batería de combustible biodegradable que dura cuatro veces más que las pilas alcalinas. El invento resulta aún más 'dulce' dado que, una vez agotado el reactivo, la pila acaba llena de azúcar.

El combustible que aprovecha la innovadora tecnología es muy conocido como un agente de volumen y de textura, así como un encapsulador de sabores en fabricación de alimentos. Es la maltodextrina, un componente casi indispensable del kétchup, bebidas cítricas en polvo, chocolatinas o bizcochuelos.

Los investigadores, de origen chino, pero residentes en EE.UU., destacaron la posición intermedia de esta sustancia en el proceso de conversión de almidón en azúcar, que se repite en la naturaleza vegetal continuamente. Científicamente hablando, es producto de la hidrólisis enzimática parcial del almidón, según recuerdan en una reciente publicación de la revista digital 'Narute Communications'.

El texto completo en:

Actualidad RT

23 de octubre de 2013

Colombia: Joven logra reemplazar combustible por agua para operar un vehículo

La colombiana Vanessa Restrepo Schild, con solo 20 años, logró generar energía a partir de agua tratada por medio de procesos biológicos.


Indudablemente uno de los mayores retos que enfrentamos a nivel generacional radica en romper más de un siglo de nociva dependencia de los hidrocarburos. Por fortuna en la última década se han concentrado grandes recursos en desarrollar alternativas energéticas, sin embargo aún no se ha consolidado una opción accesible de energía limpia.

Utilizando un prototipo de automóvil, la adolescente colombiana Vanessa Restrepo logró utilizar agua como fuente de energía, en este caso como sustituto de combustible en el pequeño vehículo. Partiendo de la premisa de que el cuerpo humano esta constituido, en buena medida, por agua, y que a su vez requiere tanta energía, la joven replico bioquímicamente el procesos celular que aprovecha el agua como fuente de energía. Y funcionó.

Vane Profile final

En entrevista para un diario de su país, Vanessa es tajante al compartir cual es su principal fuente de inspiración (‘casualmente’ la misma que la de todos los grandes inventores):

Para mí, la naturaleza es la máxima expresión de la tecnología. La evolución de los seres vivos lleva muchísimo más tiempo que los seres humanos. Nosotros somos nuevos. Entonces, nosotros hacemos un teléfono, luego un celular, luego un Blackberry, luego un iPhone y cada vez se tienen más respuestas. Pues resulta que la evolución de los seres vivos tiene tantas incontables preguntas como innumerables respuestas.

La alquímica proeza de esta científica de 20 años le ha valido convertirse en la investigadora más joven de la prestigiada Universidad de Oxford. Y si bien su descubrimiento apenas ha sido aplicado en un vehículo de pequeña escala, diversos especialistas afirman que esta línea de investigación tiene altas probabilidades de revolucionar el futuro energético.

Tomado de:

Ecoesfera

17 de octubre de 2013

Hito en el desarrollo de fusión nuclear, la energía del futuro

Fusión nuclear

El NIF y la fusión nuclear

  • 92 rayos láser se enfocan a través de los agujeros de un contenedor de destino llamado hohlraum.
  • Dentro del hohlraum hay una pequeña pastilla que contiene una sólida mezcla, extremadamente fría, de isótopos de hidrógeno.
  • Los láseres golpean las paredes del hohlraum, el cual irradia rayos X
  • Los rayos X descortezan la capa exterior de la pastilla de combustible, calentándola a millones de grados.
  • Si la compresión del combustible es suficientemente alta y lo suficientemente uniforme, puede resultar la fusión nuclear.

Fusión nuclear

La llaman "el santo grial" de la energía, por ser limpia, más barata e inagotable.
Es la energía por fusión nuclear, proceso en el cual varios núcleos atómicos de carga similar se unen y forman un núcleo más pesado. Esto produce la liberación de una cantidad enorme de energía. 

¿Se hará realidad el sueño de la fusión nuclear?
Este es el mismo proceso de liberación de energía que mantiene vivo al sol y a otras estrellas y los científicos creen que es la energía del futuro, ya que puede alimentar la demanda energética sin la amenaza de proliferación nuclear o daños al medio ambiente.

Sin embargo, uno de los mayores desafíos en la producción de este tipo de energía ha sido la de pasar el denominado punto de equilibrio.

Para ser viable, las plantas de energía de fusión tendrían que producir más energía de la que consumen, un objetivo que ha tenido en vilo a los científicos por casi 50 años. Hasta ahora.

Según información a la que tuvo acceso la BBC, los investigadores del proyecto estadounidense Instalación Nacional de Ignición (NIF, según sus siglas en inglés) han logrado un hito fundamental en el camino hacia la fusión nuclear autosostenida.
El NIF, basado en Livermore, California, utiliza el láser más potente del mundo para calentar y comprimir una pequeña bola de combustible de hidrógeno hasta el punto en el que las reacciones de fusión nuclear se llevan a cabo.

Durante un experimento realizado a finales de septiembre, la cantidad de energía liberada por la reacción de fusión superó por primera vez la cantidad de energía absorbida, en un hecho sin precedentes para cualquier tipo de fusión nuclear a nivel mundial.

"El logro ha sido descrito como el paso más significativo para el desarrollo de la fusión en los últimos años", asegura Paul Rincon, editor de Ciencia de la BBC.

El objetivo oficial del NIF es la "ignición", un paso más allá de lo conseguido ahora, y que se lograría en el el momento en que la fusión nuclear genere tanta energía como la que suministran los láseres.

La diferencia entre la "ignición" y lo conseguido en la actualidad, ocurre por ineficiencias en distintas partes del sistema que hacen que no toda la energía enviada por el láser llegue hasta el combustible.

El artículo completo en:

BBC Ciencia

1 de octubre de 2013

Consiguen que microbios con cables funcionen como minicentrales eléctricas

Científicos usan microorganismos para desarrollar baterías microbianas con la misma eficiencia energética que los paneles solares.

Investigadores de la Universidad de Stanford (EEUU) han usado microbios con cables para extraer energía eléctrica de aguas residuales. Combinando naturaleza y materiales conductores han conseguido fabricar auténticas baterías microbianas con una eficiencia energética similar a la de las placas solares.

Microbio produciendo electricidad. La imagen fue tomada con un microscopio electrónico de barrido. Imagen: Xing Xie. Fuente: Universidad de Stanford.
Microbio produciendo electricidad. La imagen fue tomada con un microscopio electrónico de barrido. Imagen: Xing Xie. Fuente: Universidad de Stanford.
 
El uso incontrolado de los combustibles fósiles nos ha llevado a la conocida crisis energética, pero también ha aumentado el interés por encontrar fuentes alternativas de energía que no dañen el medio ambiente. Avances sorprendentes en esta dirección se están dando en el universo de lo extremadamente pequeño: de los microorganismos.

El año pasado, ya hablamos en Tendencias21 del trabajo de un equipo de científicos de la Universidad Wageningen, en los Países Bajos, que han creado una célula de combustible vegetal y microbiana (Plant-Microbial) capaz de generar electricidad a partir de la interacción natural entre las raíces de las plantas vivas y las bacterias del suelo.

Ahora, ingenieros de la Universidad de Stanford (EEUU) han dado un nuevo paso en la misma dirección, con el desarrollo de una fórmula de generación de electricidad a partir de aguas residuales usando microbios a modo de minicentrales.

Estos organismos producen la electricidad a medida que siguen un proceso natural: mientras digieren desechos animales y vegetales, informa la Universidad de Stanford en un comunicado.

Las “baterías microbianas”, como las llaman sus inventores, podrían ser usadas algún día en plantas de tratamiento de aguas residuales o en los lagos y aguas costeras. Aunque el prototipo de laboratorio es actualmente más o menos del tamaño de una pila y está sumergido en una simple botella de agua residual, los científicos creen que presenta potenciales y prometedoras aplicaciones. 
Lea el artículo completo en:

15 de septiembre de 2013

La Energía Química y la Combustión

Energía química

La humanidad ha utilizado desde su existencia reacciones químicas para producir energía. Desde las más rudimentarias, de combustión de madera o carbón, hasta las más sofisticadas, que tienen lugar en los motores de los modernos aviones o naves espaciales.

Las reacciones químicas, pues, van acompañadas de un desprendimiento, o en otros casos de una absorción, de energía.

¿Cuánta energía puede producir una reacción química? ¿De dónde procede esa energía? ¿Cómo puede medirse y calcularse?

Energía química almacenada
 
La energía es una propiedad inherente a la materia. La materia posee energía almacenada que se debe, por una parte, a la posición o a la altura de un cuerpo (energía cinética) y, por otra, a la naturaleza o las sustancias de que esté hecho el cuerpo al que se hace referencia, ya que a cada elemento o compuesto le corresponde cierta cantidad de energía química almacenada a la que se le denomina contenido energético.

Cuando se lleva a cabo un fenómeno químico, éste va acompañado por una manifestación de energía, ya sea que haya absorción o desprendimiento de ella, debido a la energía química que almacenan las sustancias
Lo anterior significa que, cuando la energía química almacenada de los reactivos es mayor que la energía de los productos, hay un excedente de energía que se libera, pues la energía se mantiene constante, es decir, no se crea ni se destruye.

Por ejemplo, al reaccionar metano (gas combustible) con el oxígeno (gas comburente), hay desprendimiento de energía como producto, porque el contenido energético del metano y del oxígeno es mayor al que posee el dióxido de carbono y el agua, que son las sustancias que se forman durante la reacción:

energiaquimica001

Por lo tanto, si, al reaccionar, una o varias sustancias producen otras con mayor contenido energético, habrá absorción de energía por parte de los reactivos, como lo muestra la siguiente reacción de fotosíntesis:

energiaquimica002


Las sustancias de gran contenido energético se utilizan como combustible, ya que al reaccionar con el oxígeno se genera una gran cantidad de energía en forma de luz y calor.

Alimentos
 
Los alimentos también almacenan energía química y mediante éstos los organismos obtienen la energía necesaria para vivir, es decir, para formar y renovar tejidos, mantener su temperatura, realizar trabajo muscular, etcétera.

Los alimentos contienen nutrientes tales como los carbohidratos, los lípidos (grasas), las proteínas y las vitaminas, a los cuales se les denomina biogenésicos (por ser de origen orgánico); otros nutrimentos de origen inorgánico son el agua y los minerales como el sodio, el fósforo, el azufre, el cloro, el cobalto, el manganeso y el zinc.

Los organismos utilizan los alimentos para obtener de ellos energía y nutrimentos; estos últimos son descompuestos para ser utilizados en el crecimiento y restauración celular. A este proceso de transformación se le denomina metabolismo.

La energía que se puede metabolizar a partir de los carbohidratos es de 4 kcal por gramo; de los lípidos, de 9 kcal por gramo y, de las proteínas, de 4 kcal por gramo. Se recomienda que en una dieta adecuada se ingieran alimentos que proporcionen aproximadamente 3.000 kcal por día (según la actividad física que se desempeñe), que contengan, de manera balanceada, todos los nutrimentos. Por ejemplo: 75 g de proteínas, 80 g de lípidos y de 400 a 500 g de carbohidratos. Además, se debe considerar que el agua es muy importante como nutrimento y que los seres humanos necesitan de 2 a 2,5 litros  por día, aunque los alimentos también proporcionan una cantidad proporcional de ella que se conoce como agua metabólica.
Es necesario recordar que los organismos obtienen energía a través de un mecanismo autotrófico o heterotrófico.

El mecanismo autotrófico es propio de las plantas, algas y cianobacterias que, a partir de dióxido de carbono y energía luminosa del Sol, producen oxígeno y glucosa. De esta última se forman moléculas más complejas.

El mecanismo heterotrófico es propio de organismos como los de los animales; éstos ingieren el alimento previamente elaborado (carbohidratos, lípidos, etcétera), sus células lo oxidan mediante la respiración y con ello producen CO2, vapor de agua y otras sustancias de desecho.

Eficiencia de un motor de combustión interna
 
Las reacciones químicas de combustión de compuestos de carbono con oxígeno para liberar energía son bien conocidas por todos. Ocurren, por ejemplo, al quemar madera o gas en el horno o bien cuando la bencina de un auto proporciona la energía necesaria para su funcionamiento. Estas reacciones son demasiado violentas y poco controladas para que los organismos vivientes las puedan usar dentro de una célula.

Para que un motor funcione, éste requiere de combustible que, al reaccionar, desprende energía. En el caso del motor de combustión interna, la energía del combustible se transforma en potencia y movimiento, de tal forma que la fuerza producida sirve para hacer funcionar un autobús, una hélice y un generador, entre otras cosas.

El motor de cuatro tiempos es el motor de combustión interna más conocido, y su funcionamiento se lleva a cabo en cuatro etapas, las cuales son:

Primer tiempo (admisión): tiene lugar la penetración de una mezcla de combustible y aire a la válvula de admisión, al bajar el pistón.

Segundo tiempo (compresión): el pistón sube y comprime la mezcla al reducir el volumen.

Tercer tiempo (explosión): al encender la bujía, ésta provoca la explosión de la mezcla; en este momento el pistón es empujado y baja.

Cuarto tiempo (expulsión): los gases producidos por la explosión son expulsados a través de la válvula de expulsión; en este momento el pistón baja.

energfiaquimica003

Representación esquemática del funcionamiento de un motor de cuatro tiempos.

La combustión

La combustión es una oxidación violenta, la cual, a su vez, desprende energía en forma de calor y luz. Los principales productos de ella son: el CO2, el vapor de agua y la energía.

Ejemplos de este proceso son la combustión del gas de la estufa, de la leña, y del carbón. En todos estos fenómenos se presenta una oxidación y, por lo tanto, también tiene lugar una reducción, ya que cuando se produce la combustión de una de estas sustancias, el oxígeno se reduce ganando electrones y el elemento que se oxida los pierde.

En el organismo de los seres vivos existen procesos de "combustión orgánica", los cuales se denominan así por la similitud que guardan con los productos obtenidos. Sin embargo, no son propiamente combustiones, pues no son, oxidaciones violentas.

Un ejemplo de éstas es la degradación de la glucosa que, durante la respiración celular, produce CO2, H2O y energía, de acuerdo con la siguiente reacción:

energiaquimica004

En esta ecuación se observa que cada átomo de oxígeno "gana" 2 electrones (se reduce) y el carbono "pierde" 4 electrones (se oxida).

energiaquimica005

La oxidación del gas butano es una combustión inorgánica, ya que no se efectúa en los seres vivos. Su reacción es la siguiente:

energiaquimica006

Energía química en el organismo

Las células requieren energía para llevar a cabo la mayoría de los procesos biológicos. La energía proviene de los alimentos que ingerimos.

El oxígeno presente en el aire que respiramos se combina con los átomos de carbono e hidrógeno presentes en las moléculas de los alimentos liberando energía y formando después de numerosos pasos dióxido de carbono y agua.

La fuente original de alimentos son las plantas verdes. Estas son capaces de utilizar la energía solar, dióxido de carbono del aire y agua para crear moléculas orgánicas complejas formadas mayormente por carbono, hidrógeno y oxígeno y ricas en energía.

Estas moléculas son de tres tipos básicos: carbohidratos, lípidos y proteínas. Cualquiera de estos grupos puede combinarse con oxígeno y generar la energía necesaria para la vida.

Los animales no pueden generar carbohidratos, lípidos o proteínas a partir de las simples moléculas de dióxido de carbono, agua y usando la energía solar. En cambio, se alimentan de plantas que ya han hecho este trabajo o de otros animales que ya se han devorado plantas.

Bioquímica de la respiración celular

La conversión de los nutrientes en energía ocurre durante los llamados procesos de catabolismo. La moneda fundamental de energía dentro de las células es una molécula denominada ATP. La estructura de esta molécula es tal que contiene uniones químicas capaces de liberar mucha energía al partirse.

energiaquimica007

Dos ejemplos fundamentales de catabolismo son:
 
1. Fermentación.
2. Respiración.

La fermentación es un proceso de generación de energía que no depende de la presencia de oxígeno. Los productos finales del proceso son moléculas orgánicas pequeñas como el etanol. Este es el proceso mediante el cual se generan las bebidas alcohólicas.

La respiración es un proceso que sí requiere de oxígeno y que genera mayores cantidades de energía mediante una oxidación completa liberando dióxido de carbono y agua. La energía proviene en definitiva de los alimentos que comemos. Estos son sometidos a diversos procesos enzimáticos que los convierten en moléculas más pequeñas que forman la base de los mecanismos generadores de energía.

Tomado de:

Profesor en Línea

11 de septiembre de 2013

Clasificación de los seres vivos (por fuente de energía, fuente de carbono y por necesidad de oxígeno)

1. INTRODUCCIÓN


Existen diversas clasificaciones para organizar la materia “viva”. Una de las más básicas y fundamentales consiste en clasificar los organismos en función de su fuente de energía, de su fuente de carbono y de su necesidad o no de oxígeno. A continuación analizaremos cada una de ellas y al final del artículo, a modo de resumen, podrán encontrar una tabla esquemática que resume muy brevemente cada una de las clasificaciones.

2. CLASIFICACIÓN DE LOS SERES VIVOS (FUENTE ENERGÉTICA)

  • Fotótrofos: organismos cuya fuente energética es la LUZ.
  • Quimiótrofos: organismos cuya fuente energética se deriva de COMPUESTOS QUÍMICOS.

3. CLASIFICACIÓN DE LOS SERES VIVOS (OBTENCIÓN DE CARBONO)

  • Autótrofos: organismos cuya fuente de carbono la obtienen del CO2 del ambiente.
  • Heterótrofos: organismos cuya fuente de carbono la obtienen de otros COMPUESTOS ORGÁNICOS.

4. CLASIFICACIÓN DE LOS SERES VIVOS (NECESIDAD DE OXÍGENO)

  • Aerobios estrictos: organismos que dependen del oxígeno, pero que no pueden sobrevivir a altas concentraciones de este.
  • Anaerobios estrictos: organismos que no pueden sobrevivir o desarrollarse en presencia de oxígeno.
  • Anaerobios facultativos: organismos que pueden desarrollarse y sobrevivir tanto en ausencia como en presencia de oxígeno.

5. ANEXO

 

Tabla 1. Clasificación de los seres vivos en función de su fuente energética, de carbono y de su necesidad de oxígeno

Fuente:

Saber Práctico

6 de septiembre de 2013

¿Qué pasa en tu cerebro cuando te aburres?

Teresa Belta y Esther Priyadharshini, de la Universidad de East Anglia (Reino Unido), han demostrado que estar siempre ocupados, sobre todo durante la infancia, impide desarrollar la imaginación. Por el contrario, aburrirse y no hacer nada es positivo para el cerebro. Mientras contemplamos las musarañas y permanecemos desocupados se activan unos circuitos neuronales que forman la llamada “red por defecto”, descubierta en 2011 por Raichel y Shculman. Al parecer esta red es la que nos hace soñar despiertos, se ocupa de conectar experiencias y lecciones aprendidas en el pasado con planes futuros, crea narraciones sobre nuestra propia vida encadenando los recuerdos y da alas a la imaginación. No en vano, entre el 60 y el 80% de la energía del cerebro se dedica “solamente” a mantener la conexión entre neuronas.

Por cierto, que hay que tener en cuenta que si bostezamos espontáneamente no es por aburrimiento, ni tampoco a causa del hambre, como se suele pensar. Según ha demostrado un estudio de la Universidad de Princeton (EE UU) lo más probable es que tengamos la “sesera” demasiado caliente, ya que a nivel biológico el bostezo es un mecanismo que sirve para enfriar el cerebro.

Fuente:

Muy Interesante

2 de septiembre de 2013

La internet de las cosas muertas


Smart App-artamento, un proyecto para controlar los servicios del hogar a través de una tableta.

Hace calor. El refrigerador regula su temperatura para asegurarse que las bebidas estén frías para cuando llegues a casa, en 30 minutos.

La televisión descarga tu episodio favorito y lo tiene listo para cuando enciendas el televisor. La vasija con agua para el perro se vuelve a llenar después de que tu mascota la ha vaciado.

Tú no estás haciendo nada. Internet lo está haciendo todo por ti.

Hace algunas semanas hablamos de la clic internet de las cosas vivas, una propuesta para 'hackear a la naturaleza' haciendo uso de las propiedades de la red. Hoy hablaremos de su opuesto: la internet de los objetos o de las cosas muertas.

La "internet of things" o IoT (como se le conoce en inglés) es un término que data de 1999 y que se refiere al concepto de que los objetos de casas, oficinas o ciudades puedan hablar entre sí a través de una conexión a internet.

Sus usos -más allá de las anécdotas personales relatadas arriba- pueden tener un fuerte impacto en políticas públicas.

Imagina por ejemplo una ciudad con electricidad inteligente. La compañía que provee el servicio registra a través de medidores especiales cuando estás en casa, cuando usas más electricidad y regula el suministro de esa manera. Así se ahorra energía, recursos y dineros. Todos ganan.

Lea el artículo completo en:

BBC Ciencia

23 de agosto de 2013

¿Se hará realidad el sueño de la fusión nuclear?


SOBRE LA FUSIÓN 
  • Es el proceso que enciende las estrellas, incluyendo al Sol.
  • Un litro de agua contiene suficiente deuterio para producir -al fusionarse con tritio- el equivalente energético a 500 litros de gasolina.
  • Una central de energía de fusión de 1.500MW consumiría unos 600g de tritio y 400g de deuterio al día.
  • El primer uso a gran escala de la fusión fue la detonación de la bomba de hidrógeno Ivy Mike, realizada por el ejército de Estados Unidos el 1ro de noviembre de 1952.
  • El diseño de ITER incluye un tokamak, que es la palabra rusa para designar la cámara magnética con forma de anillo.
  • El campo magnético deberá contener plasma a 150 millones de grados, la temperatura necesaria para el proceso de fusión.
  • Estados Unidos es socio de ITER, pero también está financiando el proyecto National Ignition Facility, que utiliza láser para calentar y comprimir el hidrógeno al punto de fusión.
  • Corea del Sur, otro miembro de ITER, está inviertiendo U$941 millones en un prototipo de tecnología de fusión, K-DEMO, que podría ser el primero en generar energía eléctrica.
  • Los críticos se oponen a que se siga investigando la energía nuclear y cuestionan los probables altos costos que tendrá su uso comercial.


La construcción del reactor ITER es todo un desafío tecnológico.

La apuesta más grande del mundo por desarrollar energía a partir de la fusión nuclear avanza a paso lento en el sur de Francia.

El proyecto del Reactor Termonuclear Experimental Internacional (ITER, por sus siglas en inglés), ubicado en Cadarache, en Provenza, comienza a recibir los primeros componentes necesarios (hacen falta alrededor de un millón) para su reactor experimental.

Pero su construcción lleva dos años de retraso, obstaculizada por el aumento masivo de los costos y largas postergaciones.

Fusión nuclear

Al colisionar los átomos de deuterio y el tritio, dos formas de hidrógeno, liberan gran cantidad de energía.

"No escondemos nada, es muy frustrante", le dice a la BBC David Campbell, subdirector del proyecto ITER.

"Ahora estamos haciendo todo lo que podemos para recuperar tiempo. El proyecto es tan inspirador que da la energía para continuar. Todos queremos energía de fusión lo antes posible".
Superados los problemas de diseño iniciales y las dificultades de coordinación para este proyecto internacional único, ahora hay un poco más de confianza en los plazos.

La energía del Sol

Desde la década de los años 50, la fusión ha alimentado el sueño de une energía casi ilimitada –imitando el proceso de la bola de fuego que enciende el sol– a partir de dos formas de hidrógeno fácilmente disponibles.

El gran atractivo de la energía de fusión incluye la combinación de un combustible económico, relativamente poco desperdicio radiactivo y cero emisiones de gases de efecto invernadero.

Pero los desafíos técnicos son inmensos: no sólo es difícil controlar un proceso tan extremo, también lo es diseñar formas de extraer energía.

Y eso es lo que pondrá a prueba el reactor ITER, conocido como "tokamak" (acrónimo de la expresión rusa para decir "cámara toroidal con bobinas magnéticas"), que está basado en el diseño de JET, un proyecto piloto europeo con base en Reino Unido.


La idea es crear un plasma de gas supercaliente que alcance temperaturas de más de 200 millones de grados centígrados, el calor necesario para forzar a los átomos de deuterio y tritio a fusionarse y liberar energía.

El proceso tendrá lugar dentro de un gigantesco campo magnético con forma de anillo, la única manera de contener un calor tan extremo.

La planta de JET consiguió reacciones de fusión en estallidos cortos, pero requirió el uso de más energía de la que era capaz de producir.

El reactor ITER es mucho más grande y está diseñado para generar 10 veces más energía (500 MW) que la que va a consumir.


La iniciativa une el impulso científico y político de los gobiernos de la Unión Europea –que financia casi la mitad de su costo– junto con los de China, India, Japón, Corea del Sur y Estados Unidos.

El presupuesto total se calcula en unos U$20.000 millones, aunque la cifra exacta no está disponible debido a que muchas de las contribuciones no son en efectivo, sino en equipamiento y tecnología.

Complicaciones y retrasos

Pero la innovadora estructura de ITER ha causado fricciones y retrasos, sobre todo en su fase inicial.

Cada socio tuvo que crear primero un organismo local para lidiar con el abastecimiento de componentes dentro de cada país, y no fueron pocas las complicaciones para importarlos.

Los retrasos aumentaron con las disputas por el acceso a las sedes de producción en los países participantes. Como cada parte debe cumplir con requisitos extremadamente específicos, los inspectores de ITER y las autoridades nucleares francesas tuvieron que negociar las visitas a compañías que no estaban habituadas al escrutinio ajeno.

El resultado es que aunque se ha acordado un calendario para el traslado de los elementos clave, se asume que aún habrá más demoras.

Por eso, el edificio principal que albergará al tokamak fue adaptado para dejar los espacios necesarios para que los componentes que llegarán más tarde sean añadidos sin causar demasiados problemas.

La ruta desde los puertos hasta el emplazamiento tuvo que ser reforzada para soportar el traslado de cargas de hasta 600 toneladas, y esta tarea también ha sido más lenta de lo esperado.
Según el plan inicial, se esperaba conseguir el primer plasma a mediados de la pasada década.

Después de una restructuración, se fijó una nueva fecha límite para noviembre de 2020, pero esto también se ha puesto en duda.

Los encargados de ITER dicen que están haciendo turnos dobles para acelerar el ritmo de construcción, pero aun así se considera que incluso comenzar a operar en 2021 es un desafío.

Ken Blacker es el hombre encargado de coordinar el ensamblaje del reactor.

"Ahora hemos empezado de verdad", le cuenta a la BBC. "La producción industrial está avanzando así que el calendario es mucho más certero y se han resuelto muchos desafíos técnicos".

"Pero ITER es increíblemente complicado. Las piezas se están haciendo en varias partes del mundo y se transportarán hasta aquí".

"Tendremos que organizar su llegada y construir paso a paso, cada cosa debe llegar en el orden correcto, y eso es realmente crucial".

40, 50 o 60 años

La secuencia de llegada de grandes componentes es una cuestión fundamental, pero también lo es que los componentes en sí mismos tengan la suficiente calidad como para que el sistema funcione.

Los 28 imanes que crearán el campo magnético contenedor del plasma deben ser fabricados con un nivel de exactitud muy exigente. Y cada parte debe ser estructuralmente firme, luego será soldada con las demás para asegurar un vacío totalmente hermético, sin el cual no se puede mantener el plasma.
Un solo fallo podría poner en peligro todo el proyecto.

Asumiendo que ITER lograra producir más energía de la que consume, el siguiente paso será que los socios internacionales avancen con un proyecto de demostración tecnológica que ponga a prueba los componentes y sistemas necesarios para hacer un reactor comercial.

Irónicamente, cuánto más se progresa, más evidente se hace la enormidad del desafío que supone crear un reactor de fusión para comercializar.

El año pasado le pregunté a un panel de expertos cuándo estará disponible en el mercado el primer reactor de fusión capaz de abastecer de energía las redes eléctricas.

Unos pocos dijeron que eso podría ocurrir en los próximos 40 años, pero la mayoría dijo que llevará otros 50 o incluso 60 años.

Aunque en ITER se trabaja a destajo, la energía de fusión aún sigue siendo un sueño.

Tomado de:

BBC Ciencia

19 de julio de 2013

¿Por qué quedamos inconscientes al golpearnos la cabeza?

El efecto de un pequeño impacto en el cerebro es apenas un poco menos dramático que lo que esperas que le pase a tu computador si uno lo tira desde dos metros de altura. Lo increíble es que la gente se recupere tan rápidamente.
La sacudida física daña las células de las paredes del cerebro y estira los axones que conectan las neuronas, desestabilizando el flujo normal de los neurotransmisores y causando un escape de iones de potasio de las células y un ingreso de iones de calcio.

Esto desencadena una demanda repentina de energía química, que al cerebro le queda difícil proveer, especialmente si ha habido pérdida de sangre.

Como resultado, al cerebro se le puede agotar la energía y se apaga, desencadenando la inconciencia.

Tomado de:

BBC Ciencia

16 de julio de 2013

Los molinos que quitan la sed en la sierra ecuatoriana

A principios de 2013 el Ministerio de Electricidad y Energía Renovable de Ecuador presentó un Atlas Eólico.

"Es una ilusión de niño, siempre quise tener un molino de viento y ya lo tengo. Al menos para esta cosa puedo morir tranquilo", suspira el francés Christopher Vercoutere, quien lleva 40 años viviendo en Ecuador.

A su lado asiente en silencio Agustín Seminario, el ingeniero que siete años atrás construyó su primer molino, ése que disfruta Vercoutere en su campo, el mismo que tímidamente comienza a moverse como si lo empujaran el francés y el ecuatoriano con la mirada.
El molino de Vercoutere se encuentra en la comunidad de San Roque, provincia de Imbabura, en el norte de la región Sierra, una de las zonas del Ecuador que más sufre para regar sus sembradíos.

"Vivimos en una zona que no tiene acceso a la energía. Si bien es cierto que la electricidad llega a la casa, no llega a las fuentes de agua. Incluso en una gran hacienda que tenga electricidad, ésta llega solo a la casa de la hacienda", explica Seminario, quien estudió ingeniería mecánica en Quito.

Aunque ha llevado sus molinos por todas las provincias serranas, desde Carchi hasta Azuay, Seminario se mueve en un mercado dominado por bombas que funcionan a gasolina o a diesel debido al bajo precio de estos combustibles, pero su apuesta por la generosidad de los vientos ha calado también en Quito.

Un atlas de vientos

A comienzo de este año, el Ministerio de Electricidad y Energía Renovable de Ecuador presentó su Atlas Eólico, para identificar las zonas del país donde este recurso puede ser aprovechado para la generación de electricidad y diversificar la matriz energética.
"La participación de la energía eólica en la matriz de producción eléctrica hasta la fecha es marginal"

Esteban Albornoz, ministro de Electricidad y Energía Renovable de Ecuador.

"La participación de la energía eólica en la matriz de producción eléctrica hasta la fecha es marginal, con tan solo 16,5 MW en el territorio continental correspondientes al proyecto Villonaco que entró en operación en enero de 2013", dijo a BBC Mundo el ministro Esteban Albornoz y agregó:

"La información contenida en el Atlas Eólico, sumada a los incentivos que se vienen implementando a nivel regulatorio, establecen condiciones propicias para el desarrollo de nuevos proyectos eólicos de iniciativa pública y privada, que contribuirán al abastecimiento de la demanda y al desplazamiento de energía térmica que consume combustibles fósiles".

Pero los subsidios oficiales a estos combustibles han alejado del mercado a otros amantes de los molinos de viento como el ingeniero mecánico Marcos Cabrera, quien comenzó a construirlos como hobby en la provincia del Azuay, en el sur de la Sierra ecuatoriana, seis años atrás.

"La idea nació cuando un amigo me preguntó si le podría hacer un molino de viento y yo por alegrarlo le hice uno de adorno. Luego los fabriqué como negocio, pero hoy en día ya casi estoy retirándome de esta actividad porque la energía en Ecuador, el gas y la electricidad, es muy baratas y las posibilidades de hacer negocios son bien escasas".

Por eso, los artesanos de los molinos de viento han tenido que encontrarles nuevas funciones a las aspas de estos gigantes imaginados por Cervantes: bombear agua ya no es su única misión, sino oxigenarla.

Agua estancada 

Molino

Los molinos de viento ya no sólo bombean el agua, sino que también la oxigenan.

Inspirado por los molinos levantados en las zonas rurales del Ecuador por una misión internacional en la década del 60, Agustín Seminario comenzó a investigar cómo construirlos y cómo comercializarlos.

"Vi molinos de la Misión Andina que habían durado desde el año 65 y todavía seguían, aunque ya no bombeaban. Entonces fui a un molino, me subí, tomé fotos de sus partes, y dije 'esto ya está inventado, lo que hay que hacer es adaptarse a lo que tenemos acá'".

El principal inconveniente que enfrentó era el costo de cada uno de los cuatro piñones que movían estos molinos, que puede variar de 200 a 300 dólares, pero por fortuna, uno de sus trabajadores sugirió utilizar los piñones de una moto, mucho más baratos, y el invento funcionó.

Pero no todos los campesinos ubicados en la ladera del volcán Imbabura necesitaban bombear agua de pozos cavados en la tierra, algunos requerían hacer algo con el agua caída del cielo.

"Nosotros plantamos papa, zanahoria y hierva para el ganado pero para riego no hay nada de agua, solo esperamos a la lluvia en abril y mayo que son aguas medias duras, por eso hicieron esos reservorios", dice a BBC Mundo Luis Rosales, cuidador de unos de los campos de la comunidad Cerotal, ubicada a 3.200 metros de altura.

Fabricar piscinas para almacenar el agua pareció ser la mejor solución, pero los campesinos pronto descubrieron el agua estancada por mucho tiempo pierde el oxígeno y se pudre… y ahí entraron los molinos.

Otro sabor

"En Estados Unidos se diseñó un molino que en lugar de llevar una bomba de agua tenía un compresor, entonces el aire que es comprimido se inyecta debajo del agua y comienzan a salir burbujas como si estuviera hirviendo", cuenta el ingeniero Seminario, quien comenzó a reproducir este modelo en Ecuador.
"Lo interesante de esta agua es que es muy agradable para tomar porque no tiene gusto a cloro"

Christopher Vercoutere

Al oxigenar los reservorios se eliminan las algas y se prolonga la vida útil del agua que pueden beber los animales.


Mientras los animales sacian su sed en los molinos ideados para oxigenar el agua, los hombres que aman los molinos en la sierra ecuatoriana disfrutan del agua que bombean de los pozos estas máquinas inventadas hace siglos.

"Todo el mundo piensa hoy en día que el agua tiene que ser suministrada por redes, pero no se puede comparar a nivel de sabor del agua entubada con esta agua", dice el francés Vercoutere.

"Lo interesante de esta agua es que es muy agradable para tomar porque no tiene gusto a cloro. Es algo que me ha sobrado de niño, porque en cada persona hay algo de niño que hay que tratar de guardar", concluye.

Tomado de BBC Ciencia

12 de julio de 2013

¿Por qué produce electricidad una placa solar?


La energía fotovoltaica es la energía del futuro. Tenemos energía del Sol para que 50.000 veces la población actual del planeta viva como vivíamos los españoles en 2006.

Las células de una placa solar son de muy diversos materiales y formas, pero básicamente de silicio (poli)cristalino. Este silicio (arena de playa fundida y solidificada lentamente para formar un cristal muy puro) se dopa con muy pequeñas cantidades de galio y arsénico, exactamente como los transistores que a miles de millones están en los ordenadores, teléfonos móviles y otros aparatos.

Antonio Ruiz de Elvira, catedrático de Física de la Universidad de Alcalá de Henares, nos los explica desde Cosmocaixa, el museo de la ciencia de la Obra Social La Caixa.

La introducción de otros metales en la red cristalina del silicio cambia la disposición de los electrones de sus átomos en la red: es como sentar a alguien muy grueso en una fila de sillas. En esta nueva disposición la luz de la frecuencia adecuada proporciona energía, al hacer oscilar al electrón con mayor amplitud hasta que el electrón salta lejos del núcleo de su átomo y llega a la banda de conducción.

Un símil burdo pero ilustrativo es un almendro a orillas de un río: Si agitamos (la luz) con fuerza las almendras, éstas caen al río que se las lleva. El árbol es el átomo, los electrones que se mueven por los cables son el río de corriente eléctrica que enciende las bombillas o mueve los motores de los aparatos de casa.

Fuente:

El Mundo Ciencia

7 de julio de 2013

Agua contaminada en los pozos cercanos al 'fracking'

El 'fracking' es ya uno de los temas más polémicos de la escena energética española incluso antes de haberse perforado un solo pozo ni siquiera para la investigación de su potencial en el territorio nacional. Pero el interés mostrado por algunas autonomías como País Vasco y por el ministro de Industria, Energía y Turismo, José Manuel Soria, y la prohibición de este tipo de extracción de gas natural en otras regiones como Cantabria han situado esta técnica en boca de todos.


No obstante, es EEUU el país que tiene experiencia en esta nueva forma de extraer gas para la que hay que romper estratos rocosos de pizarra en el subsuelo, usando agua a presión mezclada con arena y sustancias químicas contaminantes. Y es allí donde se están estudiando en detalle los riesgos ambientales, geológicos y para la salud pública que puede implicar. El último de ellos se acaba de publicar en la revista 'Proceedings of the National Academy of Sciences' (PNAS) y revisa precisamente una de las mayores amenazas para la salud pública: la contaminación de las aguas subterráneas para consumo humano.

El equipo de investigadores de la Universidad de Duke que firma el trabajo analizó 81 nuevos pozos de agua cercanos a puntos de extracción de gas con la técnica de 'fracking' y añadió esos resultados a los que ya se habían realizado previamente en otros 60 pozos. Las principales conclusiones a las que llegaron es que la concentración de gas metano en el agua de consumo humano era seis veces mayor de lo normal y la de etano llegaba a ser hasta 23 veces superior en los pozos situados a un kilómetro de la prospección.

Todos los puntos analizados estaban situados en el noreste de Pennsylvania, en un yacimiento de gas de pizarra llamado Marcellus. La contaminación de las aguas subterráneas con metano es algo que ya se había demostrado con anterioridad y que otros estudios aseguraban que era producida por causas naturales. Pero, según el autor principal, Robert Jackson, los resultados sobre el etano y el propano (encontrado también en 10 de los pozos analizados) son "nuevos y muy difíciles de refutar".

La polémica está servida

"No hay una fuente biológica de etano y propano en la región que estudiamos y el gas de Marcellus es rico en ambos gases", explica Jackson. Los investigadores, además, realizaron análisis isotópicos de los átomos de carbono para comprobar la procedencia de los gases encontrados. "Los datos sobre el metano, el propano y el etano y las nuevas evidencias obtenidas de los isótopos de los hidrocarburos y del helio sugieren que las perforaciones han afectado al agua de algunas viviendas cercanas", asegura el investigador del departamento de ciencias ambientales de la Universidad de Duke (EEUU).

"En una minoría de casos, el gas incluso se parece mucho al de Marcellus, probablemente debido a una construcción defectuosa del pozo", dice Jackson. Sin embargo, desde Shale Gas España, la plataforma que aúna a las empresas interesadas en extraer este combustible en España, dudan de la fiabilidad de los resultados obtenidos por Jackson y su grupo. "Que hayan encontrado estos gases en aguas de pozos de agua no demuestra nada. En esa zona de Pennsylvania hay contaminación de las aguas de forma natural porque estos gases están a muy poca profundidad y están realmente mezclados", explica Rafael López, geólogo de Shale Gas España.

Según este portavoz de la industria del 'fracking', para saber realmente si la contaminación tiene que ver con este método de extracción habría que hacer muchas más pruebas geológicas. En su opinión aún hace falta mucha más investigación para "llegar al fondo del asunto".

Fuente:

El Mundo Ciencia

19 de junio de 2013

¿Por qué necesitamos un martillo para clavar un clavo?


Para clavar un clavo es mucho más efectivo un golpe seco con un martillo que apretar sobre él, ni siquiera con la fuerza de varias personas. Esto es algo por todos sabido, pero… ¿conoce el curioso el porqué?

Si empujamos sobre la cabeza del clavo, aunque lo hagamos con mucha fuerza, esta de diluye en el tiempo.

Es decir, distribuimos la energía de nuestro empujón a lo largo de un número indeterminado de segundos.

En cambio, si utilizamos un martillo, toda la fuerza aplicada en el martillazo, áunque menor que la de varias personas empujando, es suficiente para lograr que el clavo se introduzca en, por ejemplo, un taco de madera.

Y esto es así, porque el clavo recibe un mayor impulso, pues toda esa fuerza se aplica en un instante, en un periodo muy corto de tiempo. De tal manera que casi toda la energía cinética del martillo en movimiento se traslada a la cabeza del clavo, en lo que llamamos una colisión elástica.

Entendamos por una colisión perfectamente elástica el choque entre dos o más cuerpos que no sufren deformaciones permanentes debido al impacto, en la que se conserva la energía cinética del sistema y en la que no hay intercambio de masa entre los cuerpos que colisionan.

Un martillazo no es perfectamente elástico porque la cabeza del clavo se deforma, se pierde energía en forma de calor y quizá una pizca de metal del clavo quede enganchado en el martillo o viceversa, pero sí podríamos calificarlo de elástico.

Y una vez recibido el impacto… ¿por qué se introduce el clavo? ¿por qué no se parte o hace rebotar el martillo o…?

La fuerza y la comsiguiente deformación del metal se originan en la cabeza del clavo, pero se propagan a lo largo del cuerpo del clavo como onda de presión hasta alcanzar la punta.

La presión es una magnitud que viene dada por la fuerva dividida por el área. Es decir, una misma fuerza aplicada sobre un superficie más pequeña tendrá mayor presión.

Y esto es lo que ocurre aquí. La superficie de la punta es mucho menor que la de la cabeza, y en la punta la presión se hace mayor, facilitando de esta manera su penetración en la madera.

Fuente:

Saber Curioso
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0