Latest Posts:

Mostrando las entradas con la etiqueta relatividad. Mostrar todas las entradas
Mostrando las entradas con la etiqueta relatividad. Mostrar todas las entradas

21 de febrero de 2013

¿ El universo podría existir sin necesidad de Big Bang? Claro que sí...

universo-3d
GaleríaFotogalería: La imagen del día del espacio
Haz click aquí

Investigadores de la Universitat Politècnica de Catalunya · BarcelonaTech (UPC) han demostrado con modelos matemáticos que el universo se expande de forma acelerada debido a una pequeña constante cosmológica que actúa contra la gravedad, tal como evidencian experimentalmente las teorías cosmológicas de los últimos unos años.

En un artículo que publica la prestigiosa revista Physical Review Letters, los investigadores Jaime Haro y Jaume Amorós, del Departamento de Matemática Aplicada I de la UPC, retoman el modelo del universo introducido originalmente por Albert Einstein a finales de los años veinte en un intento de unificar la gravitación y el electromagnetismo, y aplicar esta teoría en cosmología. Los autores llegan a la explicación de dos de los principales dilemas de la cosmología actual: por qué el universo no presenta singularidades, a pesar de que la mayoría de modelos estándar predicen su existencia, y por qué la expansión del universo es acelerada, en lugar de ser decelerada como predice la cosmología basada en la teoría de la relatividad general de Einstein.

Para resolver el problema de la constante cosmológica de Einstein, los matemáticos españoles se han basado en la técnica matemática del teleparalelismo, que fue introducida en física por Einstein en los años 20. Los resultados de la investigación muestran un universo primitivo en el cual el Big Bang no existe y que evoluciona hasta nuestro universo actual, en el que una pequeña constante cosmológica actúa contra la gravedad para acelerar su expansión.

La teoría del Big Bang producido de acuerdo a la relatividad general, precedía que el universo tiene que ser de tamaño estático o expandirse con velocidad decreciente. Las observaciones astronómicas de los últimos años, cada vez más precisas, contradicen esta teoría clásica. Los astrónomos Perlmutter, Schmidt y Riess, que obtuvieron el premio Nobel de Física en 2011, ya descubrieron dicha contradicción en 1998. Las observaciones de estos científicos mostraban que el universo se expande con velocidad creciente. Ahora, los investigadores de la UPC han evidenciado esta última teoría con modelos matemáticos.


Fuente:

Muy Interesante 

5 de noviembre de 2012

Jugando a la velocidad de la luz (bueno, a casi a la velocidad de la luz)



A Slower Speed of Light [Windows, Mac] es un juego diseñado por el MIT Game Lab para hacer que la Relatividad sea menos rara de lo que le parece a mucha gente que es. Si esto se puede conseguir jugando… ¿Por qué no?

El objetivo es recoger unas esferas repartidas por el escenario, algo bastante típico. Pero aquí entra en juego la componente física del juego: al tocar cada una de las esferas se reduce la velocidad de la luz del universo en que se desarrolla la acción, de modo que se aproxima a la velocidad del caminar de la persona. Entonces se pueden examinar todas esas cosas raras que suceden debido a los efectos relativistas: el efecto Doppler, la dilatación temporal, las transformaciones de Lorentz y otros.

Tomado de:

4 de noviembre de 2012

La prueba que necesitaba Einstein está en tu bolsillo

¿Tienes un teléfono con GPS en tu bolsillo? Entonces tienes la prueba de que Einstein tenía razón cuando enunció su teoría de la relatividad especial y general.


Moneda alemana conmemorativa sobre la obra de Albert Einstein.

Pero, ¿qué me estás contando? Sí, ya sé que suena un poco loco, pero vamos a ir por partes y explicar primero grosso modo cómo funciona un GPS.

Cómo funciona un GPS (in a nutshell)

El sistema de posicionamiento global funciona gracias a un conjunto de satélites, en concreto 24, formando una  constelación que nos permite tener en todo momento 4 “a la vista”. Además hay 7 satélites de reemplazo. Los satélites orbitan alrededor de la tierra emitiendo continuamente datos sobre su posición y tiempo. Y es que un satélite del sistema GPS es básicamente un reloj atómico que da vueltas alrededor de nuestro planeta. Los satélites contienen además unos propulsores para realizar correcciones en su órbita.


Constelación de satélites GPS

Por otro lado, existe una serie de estaciones de seguimiento en tierra, además de una estación base, desde las que se controla el funcionamiento de los satélites y se les envía instrucciones cuando hay que hacer correcciones.

Finalmente tenemos el terminal de usuario. En este caso, se trata de un receptor que “escucha” en el ancho de banda correspondiente a las señales GPS (1575.42 MHz para la señal civil) y realiza los cálculos necesarios para obtener su posición.

Todo el sistema de satélites y estaciones base ha sido creado y mantenido por el departamento de defensa de EEUU; esta es una de las razones por las que la UE está preparando ahora su sistema Galileo, que será compatible con GPS y, aparte de evitar la dependencia de este sistema, permitirá una mejor localización en zonas cercanas a los polos. Actualmente, el servicio GPS es muy poco fiable cuando se usa en latitudes cercanas a los polos.

Qué información envía un satélite y cómo se usa

Los satélites GPS emiten a varias frecuencias, pero vamos a centrarnos en la que nos importa a los civiles, ya que el resto están codificadas y son de uso gubernamental y militar.

La señal civil de GPS consta de paquetes (frames) de 1500 bits (±188 bytes) que a su vez se dividen en 5 subpaquetes (subframes) de 300 bits cada uno.


Formato de un paquete de datos usado por GPS

En cada subframe se envía la siguiente información:
  • Subframe 1: información de salud del satélite y valores de corrección para el cálculo de posición.
  • Subframe 2 y 3: “efemérides” del satélite. Aquí van entre otras cosas los datos de órbita del satélite, el tiempo de su reloj atómico cuando emitió la señal, datos de configuración… Todo lo necesario para realizar los cálculos de posición.
  • Subframe 4: (almanac) información de los satélites auxiliares y otros datos.
  • Subframe 5: (almanac) información resumida de efemérides y salud del resto de 24 satélites del sistema principal.
De esta forma, en cada envío del satélite recibimos los subframes del 1 al 3 completo y una de las 25 partes de las que consta la información completa de los subrames 4 y 5. Para el cálculo de posición realmente lo que vamos a necesitar son los 3 primeros subframes. La información recibida en los campos almanac es necesaria, pero tiene un vigencia muy larga y casi siempre es válida la que ya tiene almacenada nuestro dispositivo.

El ancho de banda con el que se envía esta señal es de 50bps, es decir, se necesitan 30 segundos para recibir un frame completo. El satélite emite continuamente estos paquetes, por lo que un mensaje completo de 25 frames se completaría en unos 13 minutos.

Los primeros satélites se pusieron en órbita entre 1978 y 1985. El acceso civil al servicio se permitió a partir de 1983, aunque ha habido periodos de indisponibilidad, como durante la guerra del golfo (1990-1991). En 1993 se autorizó el uso civil libre de cargo, es decir, gratis.

Y cómo se calcula la posición

Las órbitas de los satélites están calculadas para que en todo momento podamos tener disponible la señal de cuatro satélites en cualquier punto de la Tierra. El método usado para realizar el cálculo de la posición se llama trilateración.

Cada satélite, como hemos dicho anteriormente, emite sus datos de posición en el espacio, y el valor de tiempo de su reloj atómico cuando se emitió la señal. Si nuestro aparato estuviera sincronizado con esa hora atómica, podría calcular el tiempo que ha tardado en llegar la señal a su posición.

Mediante un cálculo que tiene en cuenta el retraso que sufrirá la luz por el efecto de la atmósfera, se puede calcular la distancia que ha recorrido la señal en ese tiempo: r(t). Con ese dato tendremos una primera esfera (en este caso de ejemplo una circunferencia) con centro en la posición del satélite y radio igual a la distancia recorrida por la señal.

 

Con la señal de un segundo satélite se puede realizar el mismo cálculo, con lo que obtendremos dos puntos en los que se cruzan las circunferencias (si tuviéramos esferas obtendríamos una elipse en su intersección).

Con la señal de un tercer satélite, conseguimos un solo punto en el que coinciden las tres circunferencias, que será nuestra posición si estuviéramos haciendo el cálculo en 2 dimensiones. Cuando hacemos en cálculo en 3 dimensiones en este punto tendríamos 3 esferas y dos puntos de intersección, por lo que necesitaríamos una cuarta esfera para obtener un solo punto.

¿Nuestro GPS tiene la hora atómica para poder realizar este cálculo? En principio no, la hora atómica, o mejor dicho la diferencia de tiempo entre la hora interna de nuestro GPS y la hora atómica de los satélites es un parámetro más a calcular.

Así tenemos los valores para cada uno de los satélites y nuestro GPS deberá calcular sus propios valores para .

Cuatro incógnitas, cuatro ecuaciones y cuatro satélites, parece que la cosa cuadra. No obstante hemos dicho que se puede llegar a hacer el cálculo con tres satélites.

Cuando tenemos 3 satélites y por tanto tres esferas para realizar el cálculo, tenemos dos puntos candidatos a ser la posición de nuestro GPS, pues bien, uno estará en el espacio y otro en la superficie de la tierra, así que es fácil descartar uno de los dos.

El cálculo no es tan sencillo como puede parecer, ya que hay que tener en cuenta la desviación de la onda electromagnética que emite el satélite por la atmósfera y el retraso que se produce al viajar en un medio distinto del vacío; además, la señal puede rebotar en objetos cercanos al receptor y puede recibirse más de una vez. El aparato que realiza el cálculo de posicionamiento tiene que tener en cuenta todas estas fuentes de error y finalmente el cálculo de la posición no se hace con una simple resolución de 4 ecuaciones de 4 incógnitas, sino que se utilizan técnicas de análisis numérico.

Tu propio reloj atómico

Hemos dicho que además de las tres coordenadas de posición, se calcula también una cuarta que es el tiempo. Esta cuarta coordenada es el tiempo atómico mantenido por el sistema GPS. Todos los satélites están sincronizados y cuando se realiza un posicionamiento el dispositivo GPS en cuestión pasa a estar sincronizado con estos. Pues bien, esta es una utilidad muy importante para muchos laboratorios que realizan investigaciones en las que la precisión en el tiempo es muy importante. En lugar de instalar un reloj atómico, es suficiente con instalar un receptor GPS en el laboratorio y de esa forma mantener sincronizados sus relojes continuamente con la hora atómica del sistema GPS.

¿Por qué no funciona el GPS dentro de edificios y túneles?

La transmisión se realiza a 1575.42 MHz, una frecuencia que no permite que la señal atraviese obstáculos como edificios o montañas, aunque algunos GPS en dispositivos móviles pueden resolver este problema obteniendo su posición mediante triangulación de antenas móviles.

¿Por qué el GPS en mi móvil es tan rápido y el de mi coche tan lento cuando lo enciendo?

Los móviles con GPS normalmente llevan una modalidad denominada A-GPS o GPS asistido. Lo que hacen es aprovechar su conexión a internet para obtener datos de configuración de los satélites de una forma más rápida que si tuvieran que obtenerlos a través de los propios satélites. Además, pueden utilizar funciones de la red para mejorar el cálculo de la posición o incluso realizarlo.

En cambio, un GPS sin conexión a internet depende únicamente de la señal de los satélites para obtener la información de efemérides almanac, necesarios para los cálculos. La información de efemérides tiene una validez de 2-6 horas y si no está disponible necesitamos esperar unos 45 segundos para que se descargue por completo en nuestro dispositivo. La información de almanac tiene una vigencia mayor, pero de perderla necesitaremos más de 12 minutos para recibirla al completo.

Todo esto está muy bien, pero ¿qué pasa con Einstein?

Al principio hablábamos de Einstein, y es que Albert tiene mucho que decir en el funcionamiento del GPS.
Como hemos dicho, cada satélite del sistema esta continuamente emitiendo su órbita, coordenadas y el tiempo que marca su reloj atómico. Pues bien, la clave está en el reloj y en la velocidad del satélite y su altura.

La teoría de la relatividad especial tiene como consecuencia que un reloj que viaja a una velocidad mayor que otro reloj, atrase respecto a este último.

La teoría de la relatividad general tiene como consecuencia que los relojes que se encuentran en un campo gravitatorio mayor (más afectados por la fuerza de la gravedad) atrasan respecto a los que se encuentran en uno menor.

Un satélite del sistema GPS da varias vueltas al día a la Tierra a una gran velocidad (unos 12.000 km/h), por lo que su reloj atrasa respecto a uno situado en la Tierra al ir a mayor velocidad que este último. Por otro lado, el satélite se encuentra menos afectado por la gravedad terrestre que uno situado en la superficie, así que irá más rápido el reloj del satélite que uno situado en la Tierra. En concreto, los satélites GPS orbitan a una altura de unos 20.000 km.

Sumando los dos efectos, el resultado final es que un reloj en una de las órbitas del sistema GPS es más rápido que un reloj en la superficie terrestre (el efecto gravitatorio es mayor que el producido por la velocidad). En concreto, el adelanto es de unos 38 milisegundos al día. Parece un adelanto bastante ridículo, pero lo parece menos si sabemos que un error de esta magnitud en el tiempo lleva al sistema de GPS a un error de 10 km en la posición a lo largo de un día.

El ajuste sobre los satélites se lleva a cabo reduciendo la frecuencia a la que funcionan los relojes atómicos para ajustar esos 38 milisegundos de adelanto.

Antes de los satélites GPS, la NASA ya había hecho una prueba para demostrar el adelanto de un reloj atómico en un campo gravitatorio menor:

Y no hace mucho se lanzó Gravity Probe B, que demostró otras consecuencias de la teoría de la relatividad general.

Gran parte de la historia de la física en el sistema de posicionamiento

Hemos visto, que para calcular nuestra posición con el sistema GPS se usan las teorías de la relatividad general y especial de Einstein, las leyes de Kepler (para el cálculo de órbitas), los conocimientos sobre la desviación de las ondas electromagnéticas en distintos medios (para calcular la desviación de las señales por la acción de la atmósfera) e incluso se tiene en cuenta el efecto doppler en los terminales, ya que se están moviendo y por tanto ese movimiento afecta a la forma en la que se recibe la señal.

En definitiva, cuando encendemos un GPS estamos ante una maravilla de la tecnología y una demostración del conocimiento físico que tenemos desde Kepler hasta Einstein. Como dijo Newton en una ocasión: “Si he visto más lejos es porque estoy sentado sobre los hombros de gigantes”.

Fuente:

31 de octubre de 2012

Una de dos: O la información es mas rápida que la luz, o todo el Universo está relacionado entre sí

20120801012312I[1]

El entrelazamiento cuántico debe ser una de los fenómenos más sorprendentes de la física: Al enlazar dos o más partículas en un solo estado cuántico, cuando posteriormente se observa el estado de una de las partículas, uno puede prever el estado de la otra partícula sin importar la distancia que las separe. Es como si una supiera lo que hace la otra instantáneamente y se comunicaran entre sí.

Lo interesante es que numerosos experimentos han demostrado que las dos partículas ‘comunican’ su estado entre dos lugares de medición distintos a una velocidad que superaría a la de la luz. La explicación estándar a este fenómeno –la no-localidad– es considerar que las partículas entrelazadas son realmente un sólo sistema cuántico, aunque estén muy separadas. Es una idea que incomoda a muchos (incluso a Albert Einstein) pero que preserva el principio de la relatividad.

Para encontrar otra explicación, muchas ideas se han propuesto en las ultimas décadas, las que en su mayoría caían en la categoría de variables escondidas que no podemos observar directamente mediante experimentos, por lo que no habríamos podido ocupar este fenómeno para la comunicación.

Sin embargo, un nuevo análisis de un equipo de académicos que publicó la revista Nature Physics nos indicaría que cualquier explicación a este fenómeno inevitablemente nos abriría a la posibilidad de comunicaciones mas rápidas que la luz, pues el entrelazamiento cuántico no puede traspasar información, a cualquier velocidad –incluso si es inaccesible por medio de la experimentación porque es interna–, sin involucrar también otros tipos de interacciones que sí violarían la teoría de la relatividad.

Esto es debido a que hay dos opciones: O existen estas variables escondidas y el entrelazamiento cuántico implica intercambiar información a una velocidad mayor a la de la luz, desafiando a la relatividad; o no hay influencias invisibles por lo que las existentes pueden ser infinitamente rápidas, lo que implicaría que el Universo completo es no-local, o sea que todos sus puntos se pueden conectar entre sí instantáneamente.

Uno de los miembros del equipo de académicos, el profesor de la Universidad de Ginebra, Nicolas Gisin, asegura que “nuestros resultados nos dan la idea de que, de alguna forma, las correlaciones cuánticas surgen desde afuera del espacio-tiempo“. Algo nada menor.


Fuente:

FayerWayer

27 de octubre de 2012

¿Qué verías si viajaras a la velocidad de la luz?

Velocidad de la luz

Como un tubo sería la visión de nuestro entorno si viajáramos a la velocidad de la luz.

Einstein se hizo a sí mismo esta pregunta cuando tenía 16 años y en su búsqueda de una respuesta desarrolló la teoría de la relatividad. 

Según ella, la velocidad de la luz es una constante universal, por lo tanto, la misma para cualquier observador.

Eso implica que las duraciones y los intervalos de tiempo no son absolutos, sino que varían de acuerdo a cómo los objetos se mueven en relación con otros, así la medida de la velocidad de la luz siempre arroja el mismo resultado.

Luego de la publicación en 1905 de estas asombrosas ideas de Einstein, hubo un extenso debate sobre el impacto visual de estos resultados.

Los argumentos se centraron en si los efectos previstos –como la contracción de las duraciones- podían ser observados, dado que ambos efectos en sí mismos y cualquier intento por observarlos serían afectados por la velocidad de la luz.

Tomó décadas llegar a respuestas definitivas, pero ellas apuntan a que la forma, brillo y color de los objetos son afectados.

Por ejemplo, si un observador caminara por la calle a una velocidad cercana a la de la luz, vería los edificios de ambos lados encorvándose hacia arriba, creando la sensación de ir viajando por un tubo. Entre tanto, hacia adelante se visualizaría blanco brillante mientras hacia atrás todo se desvanecería hacia la oscuridad.

Fuente:


Contenido relacionado

26 de septiembre de 2012

¿Como se “pesa” una partícula?

En física de partículas hay partículas ligeras y partículas pesadas, un electrón con 0.5 MeV/c2 sería una partícula ligera, el bosón de Higgs con 126 GeV/c2 (126 000 MeV/c2) sería una partícula bastante pesada. Al protón lo encontraríamos en la mitad de estos dos con alrededor de 1 GeV/c2. Pero, ¿de que masas estamos hablando, cuanto es en kilogramos? y más aun ¿cómo se miden?


Veamos el extremo inferior ¿cuanto ‘pesa’ un electrón? Si cogiéramos una balanza y consiguiéramos medir su masa veríamos que esta es de 9 10-28 gramos o lo que es lo mismo 0.0000000000000000000000000000009 kg. Podéis ir a comprobar vuestra balanza en casa que seguro que no llega a esta precisión (si el manual dice lo contrario esta mintiendo). La medición más precisa que se ha realizado midió hasta los yoctogramos (un yoctogramo es 10-24 gramos) y fue realizada por un equipo del Institut Català de Nanotecnologia. Por medio de un sensor formado por nanotubos consiguieron medir la masa de un átomo de Xenón (54 protones y 77 neutrones). Consiguieron medir su masa con precisión de un protón (1.7 yoctogramos). Esto es realmente impresionante, pero es aun mucho mayor que el electrón. 

Entonces, ¿cómo conseguimos medir el electrón que es mil veces menos pesado?

Para ello tenemos que recurrir a la más famosa ecuación de Einstein, la que nos dice que energía es igual a masa E=mc2. Bueno, en realidad no ha esta ecuación sino a la más general:


E^2 = (\vec{p} c)^2 + (m c^2)^2


donde E es la energía de la partícula, \vec{p} es el momento m \vec{v}, m es la masa y c es la velocidad de la luz.  Si para una partícula conocemos cada uno de los valores (energía y momento) podemos usando la ecuación calcular su masa. Esto es lo que se hace en los detectores de partículas. Como ya vimos en la entradas anteriores (event displays I y event displays II) los detectores están diseñados para conseguir medir con gran precisión estos dos valores de forma que podemos calcular la masa como : 


m = \displaystyle\frac{1}{c^2} \sqrt{ E^2 - (\vec{p} c)^2}


para mayor información en como se miden E y \vec{p}, ver las entradas. Pero pondré un pequeño ejemplo de como se han medido las masas de la mayoría de los iones. Para ello lo más fácil sería utilizar un espectrómetro de masas (abajo). Este dispositivo se basa en el uso de campos eléctricos y magnéticos conocidos. Si introducimos una partícula cargada dentro de un campo eléctrico esta sufrirá una aceleración debido al campo. Si además suministramos un campo magnético su dirección se cambiará (física general). La curvatura de la trayectoria depende de la relación masa / carga, con lo que conocida su carga podemos obtener la masa con gran precisión.

 

Pero esto no funcionaría con una partícula como el bosón de Higgs o los bosones Z / W, estas partículas son inestables, viven muy poco tiempo y se desintegran rápidamente. No podemos producirlas y hacerlas pasar por un espectrómetro de masas a nuestra voluntad. Tampoco podemos utilizar la formula de arriba ya que su vida es tan corta que no permite medir su energía y momento. ¿Como se hace entonces? Bueno, para ello tenemos que aplicar las leyes de conservación. Sabemos que la energía y el momento se conservan en los procesos físicos. Buscaremos las partículas en las que se desintegró el bosón (o la partícula inestable que queremos medir). Estas partículas tienen que ser estables de otro modo nos encontramos con el mismo problema que antes. Para estos productos de desintegración, que llamaremos (1) y (2), mediremos su energía y momento.  Podremos entonces calcular la masa de la partícula inicial como :


m_Z^2=\Big(\displaystyle\frac{E_1}{c^2}+\displaystyle\frac{E_2}{c^2} \Big)^2-\Big(\displaystyle\frac{\vec{p_1}}{c}+\displaystyle\frac{\vec{p_2}}{c}\Big)^2


así pues hemos obtenido la masa de la partícula inestable, a este valor se lo conoce como masa invariante

Así se reconstruyeron y descubrieron los bosones Z y W por ejemplo. En la actualidad el bosón Z se crea en grandes cantidades en el LHC. Su masa es conocida con gran precisión y también los productos de su desintegración. Si observáramos al bosón Z desintegrarse veríamos que el 3% de las veces se desintegra a dos electrones. Si consiguiéramos aislar los sucesos donde el bosón se ha desintegrado en electrones y calculáramos la masa invariante obtendríamos el gráfico de abajo. En los datos de las colisiones no es posible aislar completamente del resto las colisiones donde se ha producido un bosón Z. Hay procesos que pueden dar también dos electrones sin ser el resultado de la desintegración del bosón. Esto significa que si utilizáramos datos reales de colisiones en vez de una simulación como es este caso, el pico sería más difícil de distinguir.



 

Fuente: 

15 de septiembre de 2012

Confirman al 99,996% que la energía oscura es real

Comentario de "Conocer Ciencia": 

En el fondo vienen a decir que la "energía oscura" es símplemente que la gravedad funciona de un modo diferente al que se creía (que es lo que señalan al final del artículo). O sea que "energía oscura" es una especie de eufemismo para no decir directamente que probablemente tendrán que cambiar algunas cosas.
 
Que una cosa es que digan que la ciencia sea objetiva y está dispuesta a cambiar sus conocimientos establecidos y otra es que los egos de algunos científicos lo admitan (numerosos casos a lo largo de la historia de la ciencia, por cierto, Einstein incluído).
 
Lo de la materia y la energía oscura son como el éter y el flogisto del s. XIX o la constante cosmológica del s.XX 

Ahora los dejo con la noticia vía Europa Press:

Energía oscura
Foto: NASA/ESA/JPL-CALTECH/YALE/CNRS
   
Astrónomos de la Universidad de Portsmouth (Reino Unido) han llevado a cabo un estudio que señala que la energía oscura, que procede de la misteriosa sustancia que se cree que ha participado en la aceleración de la expansión del Universo, existe realmente. Concretamente, su estudio apunta a que las probabilidad de su existencia son de un 99,996 por ciento.
   
Hace una década, los astrónomos observaron el brillo de las supernovas distantes y se dieron cuenta de que la expansión del universo parece estar acelerándose. Esta aceleración se atribuye a la fuerza de repulsión asociada con la energía oscura que, según las teorías actuales se cree que forma 73 por ciento del cosmos.
   
A pesar de que los investigadores que hicieron este descubrimiento, Saul Perlmutter, Brian P. Schmidt y Adam G. Riess, recibieron el Premio Nobel de Física en 2011, la existencia de la energía oscura continúa siendo un tema de debate entre la comunidad científica.
   
Hasta ahora se han utilizado numerosas técnicas para confirmar la realidad de la energía oscura. Una clara evidencia de esta energía proviene del Sistema de Detección Integrado Sachs-Wolfe. Esta teoría señala que el fondo cósmico de microondas, la radiación del calor residual del Big Bang, se ve por todo el cielo, de manera que esta radiación se volvería un poco más azul a su paso por los campos gravitatorios de grumos de materia, un efecto conocido como corrimiento al rojo gravitacional.
   
En 1996, dos investigadores canadienses llevaron esta idea al siguiente nivel. Su trabajo sugiere que los astrónomos pueden buscar estos pequeños cambios en la energía de la luz (fotones) comparando la temperatura de la radiación con mapas de galaxias en el universo local.
   
De este modo, en ausencia de la energía oscura no habría correspondencia entre los dos mapas (el de fondo de microondas cósmico distante y el de la distribución de galaxias relativamente cercano), pero si esta existiera supondría el efecto contrario: los fotones del fondo cósmico de microondas ganarían energía al pasar por grandes trozos de masa.
   
El Sistema de Detección Integrado Sachs-Wolfe, utilizado por primera vez en 2003 fue considerado inmediatamente como una prueba fehaciente de que la energía oscura existe, de hecho fue nombrado 'descubrimiento del año' por la revista 'Science'.
   
Sin embargo, también ha tenido sus detractores, que indicaban que la señal de energía oscura obtenida era demasiado débil, por lo que algunos científicos sugirieron que podría ser consecuencia de otras fuentes, como el polvo de la Vía Láctea.
   
Ahora, el nuevo estudio, publicado en 'Monthly Notices' de la Royal Astronomical Society,  ha investigado, a lo largo de dos años, esta teoría y ha examinado todos los argumentos en contra del Sistema de Detección Integrado Sachs-Wolfe. En este trabajo, el equipo ha mejorado los mapas utilizados en la obra original y, gracias a este análisis se ha llegado a la conclusión de que existe una probabilidad del 99,99 por ciento de que la energía oscura sea responsable de las partes más calientes de los mapas del fondo cósmico de microondas.
   
El autor principal del trabajo, Giannantonio Tommaso, ha apuntado que, además "este trabajo también habla de las posibles modificaciones a la teoría de Einstein de la relatividad general".
   
A su juicio, "la próxima generación de fondo de microondas cósmico, y los futuros estudios de galaxias, deberían proporcionar la medición definitiva, ya sea la que confirma la relatividad general, incluyendo la energía oscura, o incluso más intrigante, exigiendo una comprensión completamente nueva de cómo funciona la gravedad".

Fuente:


25 de agosto de 2012

El universo no es un fractal, según un nuevo estudio

Artículo publicado por Natalie Wolchover el 22 de agosto de 2012 en SPACE.com

Las estrellas se apiñan en galaxias, las galaxias se unen para formar cúmulos, y los cúmulos se agolpan en supercúmulos. Los astrónomos que estudian los volúmenes cada vez mayores del cosmos han quedado sorprendidos una y otra vez al descubrir la acumulación de materia a escalas cada vez mayores.

Esta distribución de materia, como si fuesen matrioskas, les ha llevado a preguntarse si el universo es un fractal: un objeto matemático que tiene el mismo aspecto en cualquier escala, ya te acerques o te alejes. Si el patrón fractal continúa sin importar lo lejos que vayas, esto tendría profundas implicaciones para la comprensión del universo por parte de los científicos. Pero ahora, un nuevo estudio astronómico refuta esta idea.



Fractal © by paul mccoubrie

El universo tiene apariencia fractal a muchas escalas de distancia, pero en cierto punto, la forma matemática colapsa. Ya no hay más matrioskas – es decir, cúmulos de materia que contengan menores cúmulos de materia – mayores de 350 millones de años luz.

El hallazgo procede de Morag Scrimgeour del International Centre for Radio Astronomy Research (ICRAR) en la Universidad de Australia Occidental en Perth, y sus colegas. Usando el Telescopio Anglo-Australiano, los investigadores fijaron la posición de 200 000 galaxias que llenan un volumen de 3000 millones de años luz de lado. El estudio, conocido como WiggleZ Dark Energy Survey, estudió la estructura del universo a unas escalas mayores que ningún otro estudio anterior.

Los investigadores encontraron que la materia se distribuye de forma extremadamente equitativa por el universo en escalas de distancia extremadamente grandes, con pocas señales de patrones fractales.

Scrimgeour explica el proceso que llevó a esta conclusión. “Colocamos esferas imaginarias alrededor de galaxias en el [estudio WiggleZ] y contamos el número de galaxias en cada esfera”, explica. “Queríamos comparar esto con una distribución homogénea aleatoria” — una en la que las galaxias están dispersas equitativamente por el espacio —”por lo que generamos una distribución aleatoria de puntos y contamos el número de galaxias aleatorias dentro de las esferas con el mismo tamaño”.

Los investigadores compararon entonces el número de galaxias de WiggleZ dentro de las esferas con el número de galaxias aleatorias dentro de esferas similares. Cuando las esferas contenían pequeños volúmenes de espacio, las galaxias de WiggleZ estaban mucho más agrupadas dentro de ellas respecto a las galaxias aleatorias. “Pero conforme se agrandaban las esferas, esta proporción tendía a 1, lo que significa que contamos el mismo número de galaxias en Wigglez que en galaxias aleatorias”, comenta Scrimgeour.

Y esto significa que la materia se distribuye de forma homogénea por el universo en grandes escalas de distancia y, por tanto, que el universo no es un fractal.

Si tuviese forma fractal, “implicaría que toda nuestra descripción del universo podría ser incorrecta”, apunta Scrimgeour. De acuerdo con la historia aceptada del universo, no hay suficiente tiempo desde el Big Bang, hace 13 700 millones de años, para que la gravedad genere unas estructuras tan grandes.

Además, la suposición de que la materia está distribuida homogéneamente a lo largo del universo ha permitido a los cosmólogos modelar el universo usando la teoría general de la relatividad de Einstein, que relaciona la geometría del espacio-tiempo con la dispersión uniforme de materia en su interior.
Así pues, ambas suposiciones están a salvo.

El artículo que detalla los hallazgos aparecerá en un futuro ejemplar de la revista Monthly Notices of the Royal Astronomical Society Journal.

Fuente:

20 de agosto de 2012

La estructura algebraica del Universo


Para el profano toda la matemática es lo mismo y, sin embargo, no todas las matemáticas son creadas iguales. Existe una rama de ellas que es tremendamente abstracta, tanto que sólo los matemáticos especializados en ella le encuentran algún sentido: el álgebra abstracta. Paradójicamente el universo parece recogerse en ella.

El álgebra como abstracción comenzó su camino a finales del siglo XVIII y floreció en el XIX. Sin embargo, cada uno de sus pasos se encontró con la incomprensión de la mayoría de los matemáticos con mentalidades más clásicas (enfocadas a la geometría) o más modernas (fascinadas por el análisis y sus aplicaciones en física e ingeniería). Este fue el caso de Abel, Ruffini, Galois o Grassmann. El caso de este último es muy ilustrativo: hoy día cualquier estudiante universitario que haya tenido un curso de matemáticas ha estudiado a Grassmann sin saberlo, es lo que llamamos álgebra lineal. Grassmann en su día tuvo que abandonar las matemáticas por la incomprensión de un Cauchy, un Möbius o un Hamilton y dedicarse a su otra pasión, el sánscrito, lo que, esta vez sí, le granjeó un doctorado honorífico por la Universidad de Tubinga. Y es que esas abstracciones suyas de vectores y espacios vectoriales no tenían utilidad alguna, no digamos ya grupos, anillos o cuerpos.

En 1960 Eugene Wigner escribió un ensayo titulado “La irrazonable efectividad de las matemáticas en las ciencias naturales” en el que se maravillaba de que estos productos de la pura abstracción humana, estos grupos y matrices, estos espacios y variedades, terminasen siendo imágenes de cosas reales o procesos reales en el mundo real. Y es que la revolución de la física de la primera mitad del siglo XX encontró apoyo en las ideas más abstractas del siglo XIX para la descripción tanto del universo a gran escala como del interior del átomo. De hecho, las física más especulativa del siglo XXI también se apoya en los aspectos más abstractos del álgebra del siglo XX. Veamos, a título de ilustración y sin ánimo de ser exhaustivos, algunos ejemplos.

Teoría especial de la relatividad (1905)

Las mediciones del espacio y el tiempo realizadas en un marco de referencia pueden ser “traducidas” a mediciones hechas en otro (que se mueve, por supuesto, a una velocidad constante con respecto al primero) mediante la transformación de Lorentz. Estas transformaciones pueden incluirse en un modelo como rotaciones de un sistema de coordenadas en un cierto espacio de cuatro dimensiones. En otras palabras, un grupo deLie (1870).

Teoría general de la relatividad (1916)

El espacioteimpo de cuatro dimensiones se curva (distorsiona) por la presencia de materia y energía. Para describir este fenómeno adecuadamente hemos de recurrir al cálculotensorial, iniciado por Hamilton (1846), desarrollado por Ricci-Curbastro (1890) basándose en Riemann y Grassmann, y popularizado por Levi-Civita (1900).

Mecánica cuántica matricial (1925)

Cuando el joven Werner Heisenberg estaba trabajando con las frecuencias de las radiaciones emitidas por un átomo que “salta” de un estado cuántico a otro, se encontró mirando varios cuadros de datos que tenían como característica que el número de la columna n-ava de la fila m-ava representaba la probabilidad de que un átomo “saltase” del estado m al estado n. La lógica de la situación le indicaba que tenía que multiplicar estos cuadros entre sí y sugirió la única técnica adecuada para hacerlo. Pero, cuando intentó llevar a cabo la multiplicación efectiva, se encontró con la sorpresa de que no era conmutativa. Multiplicar el cuadro A por el cuadro B no era lo mismo que multiplicar el cuadro B por el cuadro A. ¿Qué estaba pasando? Su suerte fue que investigaba en la Universidad de Gotinga y Emmy Noether y David Hilbert le explicaron muy amablemente la teoría de matrices que Cayley ya recogía en un libro de texto (1858), y las contribuciones posteriores de Hamilton, Frobenius y Cauchy, entre otros.

Hadrones y quarks (1964)
Para comienzo de los años 60 del siglo XX los físicos habían descubierto todo un mundo de partículas subatómicas llamadas hadrones. Murray Gell-Mann, a la sazón un joven investigador en el Instituto de Tecnología de California, se dio cuenta de que las propiedades de los hadrones, si bien no seguían un patrón lineal evidente, adquirían sentido como parte de un grupo de Lie, uno que aparece cuando estudiamos las rotaciones en un espacio bidimensional cuyas coordenadas sean números complejos. Trabajando con esta idea y los datos, Gell-Mann se dio cuenta de que su primera impresión era superficial. El grupo equivalente de 3 dimensiones complejas explicaba muchas más cosas pero requería de la existencia de partículas que aún no se habían observado. Gell-Mann se fió de su intuición, sus datos y las matemáticas y publicó lo que había encontrado. Las partículas que había predicho Gell-Mann dieron en llamarse quarks.

Teoría de cuerdas (1985)

Trabajando con algunas ideas de Riemann, Erich Kähler propuso en los años 30 del siglo XX una familia de variedades que tienen una propiedades generales muy interesantes. Cada superficie de Riemann, por ejemplo, es una variedad de Kähler. Entre 1954 y 1957 Eugenio Calabi identificó una subclase de variedades de Kähler y conjeturó que su curvatura debía tener un tipo de simplicidad muy interesante. Esta conjetura de Calabi fue demostrada por Shing-tung Yau en 1977.

En 1985 el grupo de investigación de Edward Witten se refirió a esta subclase de variedad como Calabi-Yau en un trabajo en el que identificaban su lisura (suavidad, ausencia de irregularidades), la simplicidad de su curvatura, como el trasfondo ideal en el que ubicar los movimientos de las cuerdas que, según la teoría, nuestros instrumentos interpretan como toda la variedad de partículas subatómicas y fuerzas, incluida la gravedad. El hecho de que la variedad de Calabi-Yau tenga 6 dimensiones parece muy raro, pero resulta que 3 de ellas están “plegadas” desde nuestra perspectiva macroscópica, de la misma forma que una maroma de barco manifiestamente tridimensional parece unidimensional a una distancia suficiente.

Una vez dije en una conferencia que la física del futuro, la descripción del universo que compartirán nuestros nietos, existe ya en la facultad de matemáticas. Eso sí, puede que la distribución no sea isótropa, y haya algo más concentración en los departamentos de álgebra.
 
Fuente:
 

6 de julio de 2012

Queen y su canción sobre la Teoría de la Relatividad


En el disco A Night At The Opera, publicado por la legendaria banda Queen en 1975, hay una canción que cuenta una historia de amor con un final triste como consecuencia de la Teoría de la Relatividad de Einstein.

La canción en cuestión es '39, compuesta por el guitarrista de la banda, Brian May. En el disco de estudio es él quien la canta pero en los recitales solía hacerlo Freddie Mercury mientras Brian la interpretaba con una guitarra acústica de doce cuerdas.


 Quienes tengan buen oído para el inglés no van a tener muchas dificultades en comprender la letra, principalmente en esta versión que no tiene más instrumentos. De todas formas, me tomé la libertad de traducirla al español y pedirle ayuda a una amiga traductora para que me corrija algunas asperezas. Mi versión era terrible, pero no tanto como las que se encuentran en Google que traducen Milky Ways como mares lechosos en lugar de Vía Láctea, el nombre de nuestra galaxia.


En el año 39
Se reunieron aquí los voluntarios
En tiempos en que las tierras escaseaban
Desde aquí partió la nave hacia la azul y soleada mañana
El paisaje más dulce alguna vez visto

Y la noche siguió al día
Y los narradores contaron
Que el grupo de almas valientes
Durante muchos días solitarios
Navegó por los mares de la Vía Láctea
Sin mirar atrás, sin asustarse, sin llorar

¿No escuchas mi llamado
aunque estés a tantos años de distancia?
¿No me escuchas llamándote?
Escribe tus cartas en la arena
Para el día que tome tu mano
En la tierra que nuestros nietos conocieron

En el año '39
Llegó una nave desde lo azul
Los voluntarios llegaron a casa ese día
Y trajeron buenas noticias
De un mundo recién nacido
A pesar de que sus corazones pesaban tanto
Ya que la Tierra es vieja y gris
Pero, mi amor, esto no puede ser
Tantos años han pasado
Aunque yo soy solo un año más grande
Los ojos de tu madre me lloran desde los tuyos
¿No escuchas mi llamado
aunque estés a tantos años de distancia?
¿No me escuchas llamándote?
Escribe tus cartas en la arena
Para el día que tome tu mano
En la tierra que nuestros nietos conocieron

¿No oyes mi llamado
aunque estés a tantos años de distancia?
¿No me escuchas llamándote?
Todas tus cartas en la arena
No pueden curarme como lo hace tu mano.
Por lo que me queda de vida, ten piedad.


Es una historia de amor un tanto extraña, y no vamos a terminar de comprenderla si no vimos por lo menos alguna vez un documental sobre la Relatividad. El personaje del relato es un astronauta que se embarca en un viaje de exploración que para él dura un año, y cuando vuelve a la Tierra se encuentra con que aquí transcurrió un siglo. El argumento científico de la desventura del astronauta es el fenómeno de la dilatación del tiempo, predicho por Einstein en 1905 en su Teoría de la Relatividad Especial: el tiempo no transcurre de forma absoluta en todo el Universo sino que es relativo, y el reloj de un observador se hace más lento mientras viaja más rápido, y sobre todo si se acerca a la velocidad de la luz (300.000 kilómetros por segundo), para detenerse por completo si logra alcanzarla.

Nuestro amigo Albert había planteado este fenómeno cuando elaboró la teoría que lo hizo famoso, e incluso se planteó el mismo problema que cuenta '39, en lo que llamó la Paradoja de los Gemelos. La idea era que resultaba cuanto menos extraño que si la Teoría era correcta, si uno de dos gemelos se sube a una nave espacial y se va a viajar por el Universo a velocidades relativísiticas (cercanas a la de la luz), cuando volviese a Tierra se encontraría con que el tiempo transcurrió diferente para él, y el hermano que se quedó aquí sería más viejo.



En 1971, el físico Joseph Hafele y el astrónomo Richard Keating se propusieron verificar experimentalmente este fenómeno y colocaron varios relojes atómicos en diferentes aviones en vuelos comerciales, mientras que dejaron otros iguales en Tierra. Los relojes atómicos miden los segundos basados en contar la vibración de algún elemento específico, cifra que no varía, y por eso pueden medir millonésimas de segundo y atrasarse o adelantarse sólo un segundo cada 30.000 años. El hecho es que estos dos científicos verificaron que los relojes que viajaban en los aviones efectivamente se atrasaban algunas millonésimas de segundo respecto a los que quedaban en tierra y que los que viajaban hacia el oeste lo hacían más (ya que la velocidad del avión se suma a la rotación terrestre). Y todas las variaciones encajaban perfectamente con la predicciones de Einstein de principio de siglo.

El interés de Brian May por la ciencia no era algo ocasional, algo que no muchos saben es que para el momento de publicar este tema en el mismo disco que Bohemian Rhapsody y Love of my Life, el guitarrista ya se había recibido de Físico y publicado dos papers. De hecho, abandonó el Doctorado en Astrofísica para dedicarse a la vida de estrella de rock junto a Freddie y hacer giras por todo el mundo...

En la última década parece haber encontrado algo de tiempo para volver a dedicarse a la ciencia. En 2006, junto a un astrónomo y un periodista científico publicó el libro ¡Bang! la historia completa del Universo. Mientras tanto siguió desarrollando su tesis, y recibió el título de Doctor en Astrofísica en 2008. 


En 2008, luego de recibir el título, publicó un nuevo álbum de la mano de Roger Taylor (el baterista de Queen) y el cantante Paul Rodgers. Para seguir con la línea nerd, el título del álbum es The Cosmos Rocks y tiene 14 temas nuevos. Ese mismo año la banda "Queen + Paul Rodgers" hizo una gira mundial e hizo que algunos fans se enojen porque Queen sin Freddie no es Queen. Pero bueno, los estadios se llenaron igual, y los que tuvimos la mala suerte de haber nacido cuando el mejor cantante de la historia estaba muriendo, no nos perdimos la oportunidad.

Una cosa que faltó mencionar es que Brian además de estrella de rock y astrofísico, es
luthier. La guitarra eléctrica que usa en los recitales se llama Red Special y fue construída por él mismo a partir de un trozo de caoba de la chimenea de la casa de un amigo y con la ayuda de su padre que era Ingeniero Electrónico. La guitarra tiene un sonido único y el Doctor usa una moneda de cobre de seis peniques a modo de púa.

Volviendo al tema de '39, en caso de que haya algún físico entre el público, ¿A qué velocidad debería haber viajado nuestro astronauta durante 1 año para que en el planeta hayan transcurrido 100?

Fuente:

21 de marzo de 2012

Si no quieres envejecer tan rápido, no te subas a una escalera


Einstein ya se dio cuenta: si subes a una escalera, envejecerás más deprisa. Ello se debe a que, cuanto más fuerte sea el campo gravitatorio, más rápido será el movimiento y mayor la dilatación temporal (es decir, más despacio transcurrirá el tiempo).

O sea, que cuanto más lejos estemos de una fuente gravitatoria (es decir, cuanto menos experimentemos la fuerza de la gravedad), más rápidamente transcurrirá el tiempo para nosotros. Al subir una escalera, nos alejamos de la Tierra, y por eso la fuerza de gravedad que actúan sobre nosotros disminuye. Físicos del Instituto Nacional de Estándares y Tecnología (NIST) han demostrado que este efecto también sucede con una diferencia de altura de solo 33 centímetros.

Por ejemplo, si subimos hasta la última planta del Empire State Building, que está a 380 metros de altura, y permaneciéramos allí durante 79 años… perderíamos 0,000104 segundos de nuestra vida.

No es demasiado tiempo, ni siquiera el suficiente para pestañear, pero a mayor altura las cosas pueden ser más significativas. Por ejemplo, en los satélites GPS, que están a una altura de 20.000 km, deben adelantarse los relojes 45 microsegundos al día. Si no se hicieran este tipo de correcciones, en 2 minutos la lectura de un GPS se volvería imprecisa. Al día, habría errores de 10 km al fijar una posición.

Si nos fuéramos a Marte, al ser un planeta más pequeño y ligero que la Tierra, y por tanto con una gravedad inferior (dos quintas partes la nuestra), envejeceríamos más rápido que aquí. De hecho, la superficie de Marte es 3 años más vieja que la superficie de la Tierra debido a la dilatación temporal gravitatoria.

En el extremo contrario, existe un lugar donde envejeceríamos mucho más lentamente. El otro día os hablé de él, en el artículo Comparando una estrella de neutrones con Manhattan. En efecto, una estrella de neutrones es un lugar ideal para mantenerse joven y lozano (respecto a los que vivimos en la Tierra), el lugar donde se irían a mudar los adictos al botox (si pasarían un tiempo en la estrella, y luego volverían a la Tierra para restregarnos su juventud), la residencia de la tercera edad ideal.

Las estrellas de neutrones son tan densas que una simple cucharadita de la materia superdensa de una estrella de neutrones puede pesar cientos de millones de toneladas. La estrella de neutrones más masiva que se ha visto nunca fue referida en 2010 por un grupo internacional de astrónomos: un púlsar que está a 3.000 años luz de la Tierra y que gira sobre sí mismo 317 veces por segundo. Una gravedad tan extrema desemboca en una enorme dilatación temporal. De promedio, el tiempo que experimenta un observador en el espacio por cada 60 minutos que alguien se encuentra en una estrella de neutrones es de 65 minutos.

Fuente:

Xakata Ciencia

24 de febrero de 2012

Un cable flojo parece reivindicar a Einstein

Albert Einstein

Parece que, después de todo, Einstein tenía razón y nada viaja más rápido que la luz.

Los resultados del polémico estudio en el que partículas subatómicas se desplazaban más rápido que la velocidad de la luz podrían explicarse por la mala conexión de un cable, informó la revista Science Insider.

El experimento, efectuado en septiembre pasado, puso en duda un principio fundamental de la física, central en la la Teoría de la Relatividad de Albert Einstein.

Pero, según la revista, el sorprendente hallazgo podría haber sido resultado de una mala conexión entre un computador y el Sistema de Posicionamiento Global (GPS, por sus siglas en inglés), empleado para medir el tiempo de viaje de los partículas.

Para el experimento, se enviaron neutrinos desde el Centro Europeo para la Investigación Nuclear (CERN), ubicado en Ginebra, Suiza, a otro laboratorio sitiado a 730 kilómetros de distancia.

Y al revisar los datos los científicos encontraron que estos parecían completar el viaje 60 milmillonésimas de segundo más rápido que lo que hubiese hecho la luz recorriendo la misma distancia sin ningún obstáculo.

clic Lea: Desconcierto por hallazgo de partícula que parece superar la velocidad de la luz

Al revisar la conexión y medir el tiempo que toman los datos en recorrer la longitud del cable de fibra óptica, sin embargo, los investigadores encontraron que los datos llegan 60 nanosegundos antes de lo esperado.

Y como este intervalo de tiempo se le resta al tiempo total del viaje, eso podría explicar la llegada temprana de los neutrinos en el estudio pasado.

Nuevos estudios

Neutrinos en el CERN

El experimento había sido conducido por el Centro Europeo para la Investigación Nuclear, CERN.

Nuevos datos, sin embargo, serán necesarios para confirmar esta nueva hipótesis.

Y es que el error que pudo haber llevado a los científicos a sobrestimar el tiempo de viaje de los neutrinos también puede haber sido generado por el oscilador electrónico que provee las marcas de tiempo para las sincronizaciones del GPS.

Por eso los científicos de CERN esperan realizar nuevos estudios, con otras tecnologías de fibra óptica, en mayo próximo.

Como explicó en su momento el periodista de la BBC Jason Palmer, varios científicos ya habían manifestado su escepticismo frente al estudio y advertido de la posibilidad de un error, pues el descubrimiento cuestionaba la teoría de Einstein según la cual nada puede viajar más rápido que la luz.

clic Lea: "¿Tenía razón Einstein?: dudan que los neutrinos viajen más rápido que la luz"

Y es que, desde que Einstein reveló sus descubrimientos en 1915, la ciencia no había hecho sino corroborarlos.

Y ahora parece que un cable flojo vuelve a reivindicarlo.

Fuentes:

BBC Ciencia

Lea además:

Dos errores cuestionan la velocidad de los neutrinos

Neutrinos desconectados de la realidad

Contenido relacionado

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0