07 Jun 2023 undefined comments

El tamaño de las partículas es ínfimo y de plásticos muy comunes, como polietileno y acrílico. Se detectaron trazas de micropartículas de plástico en 6 de cada 10 muestras de semen de hombres sanos ...

Read More
02 Jun 2023 undefined comments comments

Un informe cuantifica los límites climáticos, naturales y de contaminantes que aseguran el mantenimiento seguro y justo de la civilización.Un amplio grupo de científicos identificó en 2009 nueve lí...

Read More
08 Mar 2023 undefined comments comments comments

Aquí van las razones geográficas y socioeconómicas por las que el río más largo y caudaloso del mundo nunca tendrá una estructura que sirva para cruzar de orilla a orilla.Cuando vemos en algún doc...

Read More
07 Mar 2023 undefined comments comments comments comments

El 43,7% de loretanos no tiene acceso al servicio de agua potable o tratada. Es el mayor déficit en todo el país, según el INEI, y afecta principalmente a la niñez de las zonas rurales de la región...

Read More
06 Mar 2023 undefined comments comments comments comments comments

Perú se ubica en la escala de desigualdad por encima de México. El informe señala que el 1% de la población más rica del mundo concentra entre el 25% y 30% de los ingresos totales de su país...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments

Al principio de su historia, el planeta rojo habría sido probablemente habitable para los metanógenos, microbios que viven en hábitats extremos de la Tierra.El Marte noáquino habría sido un hábitat...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments comments

La astrofísica del Centro de Astrofísica Harvard & Smithsonian en Cambridge, detalló que se trata de un fenómeno completamente nuevo ya que “estamos observando la evolución estelar en tiempo r...

Read More
13 Aug 2022 undefined comments comments comments comments comments comments comments comments

El dispositivo podría suministrar energía constante a una amplia variedad de aparatos electrónicos alimentándose de la transpiración humana.Investigadores de la Universidad de Massachusetts Amherst...

Read More

Latest Posts:

26 de septiembre de 2012

¿Como se “pesa” una partícula?

En física de partículas hay partículas ligeras y partículas pesadas, un electrón con 0.5 MeV/c2 sería una partícula ligera, el bosón de Higgs con 126 GeV/c2 (126 000 MeV/c2) sería una partícula bastante pesada. Al protón lo encontraríamos en la mitad de estos dos con alrededor de 1 GeV/c2. Pero, ¿de que masas estamos hablando, cuanto es en kilogramos? y más aun ¿cómo se miden?


Veamos el extremo inferior ¿cuanto ‘pesa’ un electrón? Si cogiéramos una balanza y consiguiéramos medir su masa veríamos que esta es de 9 10-28 gramos o lo que es lo mismo 0.0000000000000000000000000000009 kg. Podéis ir a comprobar vuestra balanza en casa que seguro que no llega a esta precisión (si el manual dice lo contrario esta mintiendo). La medición más precisa que se ha realizado midió hasta los yoctogramos (un yoctogramo es 10-24 gramos) y fue realizada por un equipo del Institut Català de Nanotecnologia. Por medio de un sensor formado por nanotubos consiguieron medir la masa de un átomo de Xenón (54 protones y 77 neutrones). Consiguieron medir su masa con precisión de un protón (1.7 yoctogramos). Esto es realmente impresionante, pero es aun mucho mayor que el electrón. 

Entonces, ¿cómo conseguimos medir el electrón que es mil veces menos pesado?

Para ello tenemos que recurrir a la más famosa ecuación de Einstein, la que nos dice que energía es igual a masa E=mc2. Bueno, en realidad no ha esta ecuación sino a la más general:


E^2 = (\vec{p} c)^2 + (m c^2)^2


donde E es la energía de la partícula, \vec{p} es el momento m \vec{v}, m es la masa y c es la velocidad de la luz.  Si para una partícula conocemos cada uno de los valores (energía y momento) podemos usando la ecuación calcular su masa. Esto es lo que se hace en los detectores de partículas. Como ya vimos en la entradas anteriores (event displays I y event displays II) los detectores están diseñados para conseguir medir con gran precisión estos dos valores de forma que podemos calcular la masa como : 


m = \displaystyle\frac{1}{c^2} \sqrt{ E^2 - (\vec{p} c)^2}


para mayor información en como se miden E y \vec{p}, ver las entradas. Pero pondré un pequeño ejemplo de como se han medido las masas de la mayoría de los iones. Para ello lo más fácil sería utilizar un espectrómetro de masas (abajo). Este dispositivo se basa en el uso de campos eléctricos y magnéticos conocidos. Si introducimos una partícula cargada dentro de un campo eléctrico esta sufrirá una aceleración debido al campo. Si además suministramos un campo magnético su dirección se cambiará (física general). La curvatura de la trayectoria depende de la relación masa / carga, con lo que conocida su carga podemos obtener la masa con gran precisión.

 

Pero esto no funcionaría con una partícula como el bosón de Higgs o los bosones Z / W, estas partículas son inestables, viven muy poco tiempo y se desintegran rápidamente. No podemos producirlas y hacerlas pasar por un espectrómetro de masas a nuestra voluntad. Tampoco podemos utilizar la formula de arriba ya que su vida es tan corta que no permite medir su energía y momento. ¿Como se hace entonces? Bueno, para ello tenemos que aplicar las leyes de conservación. Sabemos que la energía y el momento se conservan en los procesos físicos. Buscaremos las partículas en las que se desintegró el bosón (o la partícula inestable que queremos medir). Estas partículas tienen que ser estables de otro modo nos encontramos con el mismo problema que antes. Para estos productos de desintegración, que llamaremos (1) y (2), mediremos su energía y momento.  Podremos entonces calcular la masa de la partícula inicial como :


m_Z^2=\Big(\displaystyle\frac{E_1}{c^2}+\displaystyle\frac{E_2}{c^2} \Big)^2-\Big(\displaystyle\frac{\vec{p_1}}{c}+\displaystyle\frac{\vec{p_2}}{c}\Big)^2


así pues hemos obtenido la masa de la partícula inestable, a este valor se lo conoce como masa invariante

Así se reconstruyeron y descubrieron los bosones Z y W por ejemplo. En la actualidad el bosón Z se crea en grandes cantidades en el LHC. Su masa es conocida con gran precisión y también los productos de su desintegración. Si observáramos al bosón Z desintegrarse veríamos que el 3% de las veces se desintegra a dos electrones. Si consiguiéramos aislar los sucesos donde el bosón se ha desintegrado en electrones y calculáramos la masa invariante obtendríamos el gráfico de abajo. En los datos de las colisiones no es posible aislar completamente del resto las colisiones donde se ha producido un bosón Z. Hay procesos que pueden dar también dos electrones sin ser el resultado de la desintegración del bosón. Esto significa que si utilizáramos datos reales de colisiones en vez de una simulación como es este caso, el pico sería más difícil de distinguir.



 

Fuente: 

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0