Latest Posts:

Mostrando las entradas con la etiqueta estructuras. Mostrar todas las entradas
Mostrando las entradas con la etiqueta estructuras. Mostrar todas las entradas

3 de enero de 2019

Las termitas han construido la mayor estructura del planeta

Durante milenios, un minúsculo insecto ha levantado una de las mayores estructuras jamás creadas por el ser vivo. Una especie de termitas, considerada una plaga en la ciudad, ha excavado millones de montículos en el nordeste de Brasil. Aunque conocidos por los lugareños, su extensión real no se ha podido determinar hasta que la deforestación y los satélites han desvelado su grandeza: más de 230.000 kilómetros cuadrados salpicados de montones de tierra repartidos de forma regular, casi matemática.


"Los montículos siempre estuvieron bien escondidos entre la vegetación de secano de la región (la catinga) y en general apenas se pueden ver. Los de fuera solo los han podido observar después de que alguna porción de tierra fuera deforestada para pastos", dice el investigador de la Universidad Estatal de Feira de Santana (Brasil) y coautor del estudio, Roy Funch. "Algunos locales pensaban que los habían levantado termitas, hormigas u otra criatura similar. Pero para muchos, simplemente estuvieron ahí, formaciones naturales hechas por Dios que siempre habían existido", añade.

Siempre no, pero sí al menos desde hace más de 3.800 años. La datación de una muestra de murundus (como se conoce a estos montículos en la zona) indica que muchos de ellos llevan milenios ahí, lo que los convierte en una de las estructuras de origen biológico más antiguas. Y tampoco son obra divina, sino de la Syntermes dirus, una termita. Mejor dicho, de colonias y colonias de ellas. Pero no son sus nidos. Es la tierra que los insectos excavan mientras buscan hojas caídas con las que alimentar a la colonia.

El artículo completo en: El País (España)

10 de enero de 2014

¿Cuánto puede durar una estructura en el desierto antes de ser engullida por la arena?

Casa de Anakin

La casa de Anakin está a punto de ser cubierta completamente por la arena del desierto.

Ampliar imagen

Las edificaciones no se hunden sino que son cubiertas por la arena que el viento arrastra.

Sin ninguna planta que la sujete, la arena acaban formando unas dunas en forma de herradura llamadas barján o duna en media luna.

Cada partícula de arena asciende desde la base hasta alcanzar la cresta, hasta que cae por la escarpada cara de deslizamiento al otro lado. Esto quiere decir que el barján se mueve lentamente en dirección del viento unos 15 metros al año.

En Túnez, el set de la casa de Anakin, utilizada en la película la Guerra de las Galaxias Episodio I, está medio enterrado y en cinco o seis años quedará completamente cubierto por la arena.

Fuente:

BBC Ciencia

2 de diciembre de 2013

Diez tecnologías que se inspiraron en la naturaleza


A finales de la década de 1990, la escritora estadounidense de ciencias naturales Janine Benyus acuñó el término “bionímica” para referirse a las innovaciones inspiradas en la flora y la fauna. Los orígenes modernos de la Biomímica, también conocida como Biomimética o Biónica, suelen atribuirse al ingeniero Richard Buckminster Fuller, aunque previamente también se han dado casos de desarrolladores que intuitivamente se basaron en la naturaleza para alcanzar algún hallazgo.

La bionímica postula que, con 3.800 millones de años de evolución de la vida en la Tierra, la naturaleza ya ha encontrado soluciones para muchos de los desafíos a los que nos enfrentamos los seres humanos en la actualidad. A continuación, diez ejemplos en los los desarrolladores se han inspirado en soluciones alcanzadas por la naturaleza a través del azaroso sistema de prueba-error de la selección natural:

1. Torre Eiffel

El fémur humano es el hueso más largo, fuerte y voluminoso del cuerpo. Además tiene un cabeza que ni es ósea ni es sólida, sino una red de pequeños puntales que se sostienen cruzando la curva natural del fémur. El ingeniero Gustave Eiffel estudió esqueletos y aplicó los resultados en la Torre Eiffel de París, construida en 1889.

2. Puentes en suspensión

Los cables de los puentes en suspensión fueron inspirados por los tendones, pues éstos se componen de múltiples fibras musculares retorcidas entre sí que proporcionan resistencia y flexibilidad. Los constructores de puentes copiaron este modelo natural en los cables de carga que permiten a los puentes colgantes abarcar largas distancias, como es el caso del Golden Gate, que además es uno de los epicentros mundiales del suicidio.

3. Velcro


En la década de 1940, el ingeniero suizo George de Mestral quedó fascinado con los pequeños cardos de puntas ganchudas de las bardanas que se habían enganchado en su perro y en su ropa después de un paseo. Velcro es una marca registrada en 1951. En 1959, los telares fabricaban ya 60 millones de metros de Velcro al año. Y su uso se hizo tan popular que desplazó en muchas prendas y complementos a los cordones, las cremalleras y los botones. También la NASA los popularizó al usarlo en sus trajes espaciales.

4. Plástico antirreflectante

Los ojos de las polillas no reflejan la luz gracias a unas diminutas protuberancias, y por ello pasan más desapercibidas para los depredadores. Los científicios quieren imitarlas para mejorar la visibilidad de las pantallas y reducir el brillo, así como para aumentar la potencia de las placas solares.

5. Tela inteligente

Imitando las escamas de las piñas, que se abren y cierran en función del calor o del frío, Julian Vincent, profesor de biomimética en la Universidad inglesa de Bath, desarrolló en 2004 una tela con una capa de pequeñas puntas de lana que se adaptan a las fluctuaciones de la temperatura corporal para mantener cómodo al usuario.

6. Tren bala


Los trenes bala Shinkansen de Japón circulan a más de 300 kilómetros por hora. A semejante velocidad, al entrar en un túnel, las ondas de presión atmosférica producían un ruido ensordecedor que hacía vibrar las ventanillas. El ingeniero Eiji Nakatsu, descubrió que ya había un ser vivo que se enfrentaba habitualmente a cambios súbitos en la resistencia del aire: el martín pescador.

Este pájaro se lanza del aire, que es un medio de baja resistencia, al agua, que opone más resistencia, y salpica sólo unas cuantas gotas. Los ingenieros rediseñaron la nariz del tren bala inspirándose del pico del martín pescador, y así redujeron el ruido y el consumo de energía eléctrica.

7. Superficie de las lanchas

Una nueva cubierta exterior imita a la piel de tiburón en las lanchas, con pequeños rectángulos y púas, para así impedir que se adhieran algas y percebes.

8. Ahorro energético

Las mariposas Morpho se encuentran principalmente en América del Sur, así como en México y América Central. Además de que son muy fáciles de atrapar, estas mariposas se distinguen por sus alas de color azul iridiscente. Sin embargo, si se trituran las alas, se obtiene solo un polvo opaco. El tono tornasolado es una ilusión óptica llamada “color estructural”: una interferencia entre haces de luz a causa de la cual solamente se reflejan algunos colores. El estudio de esta propiedad ha derivado en aplicaciones para monitores de ordenador, agendas electrónicas, teléfonos inteligentes y vestimenta hecha con fibras de poliéster y nailon que “reflejan” toda la gama del arco iris sin necesidad de colorantes.

9. Alas transformables

Ingenieros de la Universidad del estado de Pennsilvania han desarrollado unas alas para aviones que cambian de forma dependiendo de la velocidad y duración del vuelo, basándose en ciertas especies de aves que utilizan este sistema para realizar vuelos más eficientes.

10. Superpegamento

Biólogos del Laboratorio Nacional de Ingeniería y Medio Ambiente de Idaho (Estados Unidos) clonaron cinco proteínas de mejillón para desarrollar un adhesivo natural resistente al agua. Los mejillones producen una resina con propiedades adhesivas que podría compararse a cualquier superpegamento comercial.
Vía | SeleccionesA | Eroski Consumer

Fuente:

FayerWayer

21 de noviembre de 2013

¿Cuál es el puente más largo del mundo?

Puente en China

Es el Gran Puente de Danyang-Kunshan.

Tiene 164.800 metros y está en China, entre Shanghai y Nanjing, en el este de la provincia de Jiangsu.

Curiosamente, el segundo y el tercer puente más largos también están en China.

El segundo, con 113.700 es el Gran Puente de Tianjin. Comienza en el sureste de Pekín, cruza dos distritos de Langfang hasta llegar a la ciudad de Tianjin.

El tercero se llama el Gran Puente de Weinan Weihe y mide 79.732 metros.

Fuente:

El Mundo Ciencia

21 de agosto de 2012

Crean un material más duro que el diamante


Investigadores del Instituto Carnegie han inventado un nuevo material que amalgama estructuras cristalinas y caóticas del carbono para crear algo más duro que el diamante.

Para crear el nuevo material –que asumimos que rompió la escala de Mohs– el equipo de Carnegie construyó con los átomos de carbono una estructura esférica llamada carbono-60, luego conectaron todas estas esferas rellenando los espacios vacíos con un solvente llamado xileno y comenzaron a presionar el material para hacerlo más fuerte.

Bajo una presión de 320.000 atmósferas (o 230.400.000 mm Hg) algunas de las esferas de carbono-60 comienzan a colapsar en racimos de átomos de carbono mientras que otras mantienen su estructura, formando una red de enlaces extremadamente fuertes. El resultado es una forma de carbono jamás antes vista que mezcla estructuras cristalinas y caóticas que sólo habían sido teorizadas anteriormente por los geólogos.

“Hemos creado un nuevo tipo de material de carbono que es comparable al diamante en su incapacidad para ser comprimido”, aseguró el jefe del proyecto Lin Wang. “Una vez creado bajo estas presiones extremas, este material puede existir en condiciones normales, lo que significa que puede ser usado para una amplia gama de aplicaciones prácticas”.

Fuente:

20 de agosto de 2012

La estructura algebraica del Universo


Para el profano toda la matemática es lo mismo y, sin embargo, no todas las matemáticas son creadas iguales. Existe una rama de ellas que es tremendamente abstracta, tanto que sólo los matemáticos especializados en ella le encuentran algún sentido: el álgebra abstracta. Paradójicamente el universo parece recogerse en ella.

El álgebra como abstracción comenzó su camino a finales del siglo XVIII y floreció en el XIX. Sin embargo, cada uno de sus pasos se encontró con la incomprensión de la mayoría de los matemáticos con mentalidades más clásicas (enfocadas a la geometría) o más modernas (fascinadas por el análisis y sus aplicaciones en física e ingeniería). Este fue el caso de Abel, Ruffini, Galois o Grassmann. El caso de este último es muy ilustrativo: hoy día cualquier estudiante universitario que haya tenido un curso de matemáticas ha estudiado a Grassmann sin saberlo, es lo que llamamos álgebra lineal. Grassmann en su día tuvo que abandonar las matemáticas por la incomprensión de un Cauchy, un Möbius o un Hamilton y dedicarse a su otra pasión, el sánscrito, lo que, esta vez sí, le granjeó un doctorado honorífico por la Universidad de Tubinga. Y es que esas abstracciones suyas de vectores y espacios vectoriales no tenían utilidad alguna, no digamos ya grupos, anillos o cuerpos.

En 1960 Eugene Wigner escribió un ensayo titulado “La irrazonable efectividad de las matemáticas en las ciencias naturales” en el que se maravillaba de que estos productos de la pura abstracción humana, estos grupos y matrices, estos espacios y variedades, terminasen siendo imágenes de cosas reales o procesos reales en el mundo real. Y es que la revolución de la física de la primera mitad del siglo XX encontró apoyo en las ideas más abstractas del siglo XIX para la descripción tanto del universo a gran escala como del interior del átomo. De hecho, las física más especulativa del siglo XXI también se apoya en los aspectos más abstractos del álgebra del siglo XX. Veamos, a título de ilustración y sin ánimo de ser exhaustivos, algunos ejemplos.

Teoría especial de la relatividad (1905)

Las mediciones del espacio y el tiempo realizadas en un marco de referencia pueden ser “traducidas” a mediciones hechas en otro (que se mueve, por supuesto, a una velocidad constante con respecto al primero) mediante la transformación de Lorentz. Estas transformaciones pueden incluirse en un modelo como rotaciones de un sistema de coordenadas en un cierto espacio de cuatro dimensiones. En otras palabras, un grupo deLie (1870).

Teoría general de la relatividad (1916)

El espacioteimpo de cuatro dimensiones se curva (distorsiona) por la presencia de materia y energía. Para describir este fenómeno adecuadamente hemos de recurrir al cálculotensorial, iniciado por Hamilton (1846), desarrollado por Ricci-Curbastro (1890) basándose en Riemann y Grassmann, y popularizado por Levi-Civita (1900).

Mecánica cuántica matricial (1925)

Cuando el joven Werner Heisenberg estaba trabajando con las frecuencias de las radiaciones emitidas por un átomo que “salta” de un estado cuántico a otro, se encontró mirando varios cuadros de datos que tenían como característica que el número de la columna n-ava de la fila m-ava representaba la probabilidad de que un átomo “saltase” del estado m al estado n. La lógica de la situación le indicaba que tenía que multiplicar estos cuadros entre sí y sugirió la única técnica adecuada para hacerlo. Pero, cuando intentó llevar a cabo la multiplicación efectiva, se encontró con la sorpresa de que no era conmutativa. Multiplicar el cuadro A por el cuadro B no era lo mismo que multiplicar el cuadro B por el cuadro A. ¿Qué estaba pasando? Su suerte fue que investigaba en la Universidad de Gotinga y Emmy Noether y David Hilbert le explicaron muy amablemente la teoría de matrices que Cayley ya recogía en un libro de texto (1858), y las contribuciones posteriores de Hamilton, Frobenius y Cauchy, entre otros.

Hadrones y quarks (1964)
Para comienzo de los años 60 del siglo XX los físicos habían descubierto todo un mundo de partículas subatómicas llamadas hadrones. Murray Gell-Mann, a la sazón un joven investigador en el Instituto de Tecnología de California, se dio cuenta de que las propiedades de los hadrones, si bien no seguían un patrón lineal evidente, adquirían sentido como parte de un grupo de Lie, uno que aparece cuando estudiamos las rotaciones en un espacio bidimensional cuyas coordenadas sean números complejos. Trabajando con esta idea y los datos, Gell-Mann se dio cuenta de que su primera impresión era superficial. El grupo equivalente de 3 dimensiones complejas explicaba muchas más cosas pero requería de la existencia de partículas que aún no se habían observado. Gell-Mann se fió de su intuición, sus datos y las matemáticas y publicó lo que había encontrado. Las partículas que había predicho Gell-Mann dieron en llamarse quarks.

Teoría de cuerdas (1985)

Trabajando con algunas ideas de Riemann, Erich Kähler propuso en los años 30 del siglo XX una familia de variedades que tienen una propiedades generales muy interesantes. Cada superficie de Riemann, por ejemplo, es una variedad de Kähler. Entre 1954 y 1957 Eugenio Calabi identificó una subclase de variedades de Kähler y conjeturó que su curvatura debía tener un tipo de simplicidad muy interesante. Esta conjetura de Calabi fue demostrada por Shing-tung Yau en 1977.

En 1985 el grupo de investigación de Edward Witten se refirió a esta subclase de variedad como Calabi-Yau en un trabajo en el que identificaban su lisura (suavidad, ausencia de irregularidades), la simplicidad de su curvatura, como el trasfondo ideal en el que ubicar los movimientos de las cuerdas que, según la teoría, nuestros instrumentos interpretan como toda la variedad de partículas subatómicas y fuerzas, incluida la gravedad. El hecho de que la variedad de Calabi-Yau tenga 6 dimensiones parece muy raro, pero resulta que 3 de ellas están “plegadas” desde nuestra perspectiva macroscópica, de la misma forma que una maroma de barco manifiestamente tridimensional parece unidimensional a una distancia suficiente.

Una vez dije en una conferencia que la física del futuro, la descripción del universo que compartirán nuestros nietos, existe ya en la facultad de matemáticas. Eso sí, puede que la distribución no sea isótropa, y haya algo más concentración en los departamentos de álgebra.
 
Fuente:
 

23 de enero de 2012

Reciclaje creativo: el templo del millón de botellas



Los que os tomáis el reciclaje muy en serio quizá deberíais peregrinar al templo budista de Wat Pa Maha Chedi Kaew . Este templo se halla a unos 600 kilómetros al noroeste de Bangkok, en la provincia de Sisaket. Los lugareños llaman al templo budista con la abreviatura Wat Kuan Lad, que significa Templo del millón de botellas. Y es lo que parece, un templo construido con botellas vacías.

La idea se remonta a 1984. Los creativos budistas constructores del templo, tras mucha meditación, se dieron cuenta de que levantarlo con botellas les reportaría toda suerte de beneficios. A saber: que la construcción sería barata, pues sólo haría falta reciclar botellas a tutiplén; que los edificios serían, gracias a la transparencia caleidoscópica de las botellas, muy luminosos y vistosos, como si todas las paredes estuvieran construidas con las cristaleras emplomadas de una catedral; y que obtendrían un gran plus económico a raíz del turismo que generaría un templo tan original. Así que se pusieron manos a la obra.

En poco tiempo, los monjes recolectaron botellas que eran donaciones llegadas de todos los rincones del país. Hasta que sumaron un millón y medio de envases. Muchas de estas botellas fueron de cerveza, aunque para el budismo es pecado tomar alcohol: las Heineken son verdes, las Chang son marrones. Todo un ejemplo de reciclaje en mitad de la selva tailandesa. Cuantas más botellas consigamos, más edificios montaremos, aseguró el abad Kataboonyo.

Absolutamente todas las estancias del templo fueron levantadas entonces con botellas unidas entre sí con cemento, incluidas una torre de agua y hasta baños para los turistas. Gracias a la transparencia de las botellas, la limpieza es muy sencilla. Por aprovechar, también aprovecharon los tapones de las botellas, que fueron empleados para crear murales y mosaicos. Un templo que literalmente ha sido construido con basura reciclada que bien podría estar en un vertedero. Un templo ecológico, low-cost y de diseño llamativo, sobre todo cuando brilla el sol.

La idea puede parecer nueva, pero se tiene constancia de la construcción de muros de botellas en diferentes países del mundo desde al menos 1907, y cada vez podemos encontrar más ejemplos, como la cúpula de botellas recicladas del techo del Centro de Tecnología Alternativa (CAT) en Machynlleth, País de Gales, que recuerda al cuerpo de un puercoespín.

Fuente:

Xakata Ciencia

18 de abril de 2011

Los asombrosos secretos de la ingeniería ósea en animales, o cómo soportar más peso con un esqueleto ligero


Un equipo del Imperial College de Londres y el RVC (Royal Veterinary College) recolectó muestras de fémures de las colecciones de museos y parques zoológicos británicos. Estos huesos pertenecían a 90 especies diferentes, incluyendo al elefante asiático, la musaraña etrusca, el correcaminos, el cocodrilo, el emú, el pavo, el leopardo y la jirafa.


Michael Doube (Imperial College de Londres) y sus colaboradores analizaron cómo el tamaño del animal se correspondía con la formación de cierta retícula estructural dentro del fémur. Y han descubierto que esa retícula tiene una geometría que es diferente dependiendo del tamaño corporal de la especie.

Las características de esa retícula estructural dentro de los huesos de los animales grandes les ayudan a soportar sus notables pesos, sin que los huesos sean más gruesos ni más densos. Usar esta estructura ahorra una valiosa energía en los animales más grandes porque no tienen que desarrollar, mantener y transportar tejido óseo extra.

Este nuevo conocimiento de cómo se estructuran los fémures podría ser usado para diseñar una nueva clase de materiales estructurales resistentes y ligeros, que podrían servir para mejorar la carrocería de automóviles y otros vehículos.

Fuente:

Solo Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0