Latest Posts:

Mostrando las entradas con la etiqueta materia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta materia. Mostrar todas las entradas

16 de febrero de 2015

¿Existió el Big Bang? Proponen que el universo no tuvo principio


Estudios realizados en universidad en Canadá buscan añadir nueva ecuación cuántica a teoría del Bing Bang, demostrando así que el universo no inició en una masa densa. 

La tradicional Teoría del Big Bang que explica el origen del universo podría verse relegada por una nueva teoría basada en una ecuación cuántica. Los estudios, que fueron realizados en la Universidad de Lethbridge cuestionan la conocida teoría ya que es “muy singular”.
Como conocemos, la teoría explica que al inicio había una masa densa infintesimalmente pequeña que, luego de una explosión, se expandió hasta formar el universo como lo conocemos.
La singularidad del Big Bang es el problema más grande de la relatividad general, porque las leyes de la física parecen romperse ahí abajo. No explican qué pasó antes o en su momento como única masa densa”, cuestionó Ahmed Farag Ali, uno de los científicos encargados de la investigación.
Es por ello que Ali se une a Saurya Das y proponen que la nueva teoría cuántica podría demostrar que, en realidad, el universo no tuvo ni inicio ni fin. ¿Cómo lo lograron? Ambos usaron ideas del físico teórico David Bohm, conocido por sus contribuciones a la filosofía de la física. Fue Bohm quien en 1950 exploró la geodesia clásica (el camino más corto entre dos puntos de una superficie curva) con trayectorias cuánticas.
Ali y Saurya Das aplican esta teoría a una ecuación más: la ecuación desarrollada por el físico Amal Kumar Raychaudhuri, pero corregida cuánticamente por científicos. De este modo, aplican esta última ecuación a las que propuso Friedman para explicar la expansión y la evolución del universo.
En la relatividad general, un posible destino del Universo es que comienza a contraerse hasta que se derrumba sobre sí mismo en una gran crisis y se convierte en un punto infinitamente denso, una vez más.
Ali y Das explican que tiene una diferencia clave entre geodesias clásicas y trayectorias de Bohm. Las geodesias clásicas finalmente se cruzan entre sí, y los puntos en los que convergen son singularidades. En cambio, las trayectorias de Bohm nunca se cruzan entre sí, por lo que las singularidades no aparecen en las ecuaciones. Es decir, no hay inicio ni fin.
En términos cosmológicos, los científicos explican que las correcciones cuánticas pueden ser consideradas como una constante cosmológica (sin la necesidad de la energía oscura) y un plazo de radiación. Estos términos mantienen el Universo en un tamaño finito, y por lo tanto le dan una edad infinita.
Fuente:

6 de junio de 2014

Los secretos de la 'catedral de los cristales'

La llaman 'la catedral de los cristales'. En el año 2000, dos mineros la descubrieron por casualidad a 300 metros de profundidad en el estado de Chihuahua (México), y alberga unos espectaculares pilares de yeso, tan inmensos que para admirarlos hay que levantar la cabeza. Algunos de estos cristales alcanzan nada más y nada menos que 11 metros de alto y uno de ancho.

Desde su hallazgo, esta insólita caverna translúcida de minerales no ha parado de atraer las miradas de geólogos procedentes de todos los rincones del planeta. Pero es un equipo español del Instituto Andaluz de Ciencias de La Tierra del CSIC el que está liderando la investigación de estos colosales cristales que todavía continúan creciendo en la cueva de Naica.

Ahora, los análisis realizados por estos científicos españoles, dirigidos por el cristalógrafo Juan Manuel Ruiz, han dado sus frutos porque, además de desvelar todos los detalles del proceso natural de cristalización del yeso, también señalan sus posibles aplicaciones en la industria de materiales. Los resultados de su trabajo se acaban de publicar en la revista Chemical Society Reviews.

Las técnicas empleadas por los investigadores, con ayuda de colegas japoneses y franceses, son novedosas y han permitido conocer todas las claves de la formación de los cristales. «Hasta ahora se sabía muy poco sobre cómo crecen los cristales a estas velocidades de tiempo», explica a EL MUNDO Fermín Otálara, uno de los investigadores del Instituto de Ciencias de la Tierra que tuvo la oportunidad de bajar a la cueva en 2001.

El artículo completo en:

El Mundo Ciencia

19 de mayo de 2014

Cómo producir grafeno con la batidora de nuestra cocina

El asunto parece complicado, pero según un estudio publicado en la revista Nature, es posible la producción de pequeñas láminas de grafeno con la batidora que tenemos en la cocina.



Las delgadas láminas de carbono son el material más fuerte del mundo, además de ser buen conductor de la electricidad y muy flexible. Sus aplicaciones parecen infinitas, como pantallas táctiles flexibles o sistemas de tratamiento de agua. El problema viene en conseguir grandes cantidades de escamas de grafeno de buena calidad a un precio aceptable.

El estudio de la revista Nature describe como una batidora, funcionando a alta potencia (unos 400 vatios), al que se le ha añadido medio litro de agua, entre 10 y 25 mililitros de detergente y entre 20 y 50 gramos de polvo de grafito y haciéndola funcionar unos 10-30 minutos, da como resultado un gran número de escamas micrométricas de grafeno suspendidas en el agua.

El experimento muestra lo simple del método para la producción de grafeno en cantidades industriales. El producto obtenido se puede comercializar como polvo seco o como líquido para pulverizar sobre otros materiales.

Las escamas no son de tan alta calidad como las producidas por los ganadores del Premio Nobel de Química 2010, Andre Geim y Kostya Novoselov de la Universidad de Manchester. Tampoco son tan grandes como las hojas de grafeno que actualmente se están produciendo en algunos laboratorios, pero dejando aparte aplicaciones electrónicas de alta gama, las escamas pequeñas son válidas para multitud de aplicaciones.

Vía |Nature

Fuente:

Xakata Ciencia

25 de abril de 2014

Generan electricidad moviendo una gota líquida sobre grafeno



Desde principios del siglo XIX, se sabe que se genera una diferencia de potencial eléctrico cuando un líquido iónico se mueve a través de un canal fino bajo un gradiente de presión. Se publica en Nature Nanotechnology que el movimiento de una gota de agua salada (solución iónica) sobre una tira de grafeno produce una tensión de unos pocos milivoltios. La diferencia de potencial en este fenómeno electrocinético es proporcional a la velocidad y al número de gotas, decreciendo cuando crece el número de capas de grafeno.

Más aún, a la inversa, al aplicar una tensión en los extremos de la tira de grafeno con un gota encima, la gota se mueve. La impulsa un cambio de su forma debido al movimiento de iones de la parte trasera a la parte delantera de la gota. En la figura se muestra una gota con una solución salina 0,6 Molar de NaCl con ángulo en la zona delantera de θA~91,9° y en la trasera de θR~60.2° (estos ángulos dependen del ión disuelto). El artículo presenta cálculos teóricos del fenómeno mediante la teoría del funcional densidad (DFT) que indican que la gota se comporta como un pseudocondensador que se carga en la parte trasera a través de la interfaz con el grafeno y se descarga en la parte delantera.

El artículo técnico es Jun Yin, Xuemei Li, Jin Yu, Zhuhua Zhang, Jianxin Zhou, Wanlin Guo, “Generating electricity by moving a droplet of ionic liquid along graphene,” Nature Nanotechnology, AOP 6 Apr 2014.

Lea el artículo completo en:

NAUKAS 

Lea en los archivos de Conocer Ciencia:

Grafeno: El material del futuro

Grafeno: De la mina de un lápiz a las grandes transnacionales

24 de abril de 2014

Bombas atómicas, átomos y... bikinis

Cuando vemos pasear por la playa a una chica en bikini, lo último que se nos viene a la cabeza es una bomba atómica. O un átomo. Sin embargo, el bikini está íntimamente relacionado con esos términos.



Desde 1946 a 1958, los estadounidenses llevaron a cabo ensayos con bombas atómicas en el atolón de Bikini, ene el océano Pacífico. Y precisamente en 1946, el diseñador francés Jacques Heim diseñó un traje de baño de dos piezas al que bautizó como “átomo”. En realidad, el nombre nada tenía que ver con las bombas atómicas, sino porque el átomo era la porción más pequeña de materia, y aquella pieza de ropa era realmente pequeña.

Si hoy en día al bikini no le llamamos átomo (lo cual sería ciertamente divertido, y probablemente la prenda acabaría formando parte del vestuario de cualquier geek) es porque otro modisto rival, Louis Reard, sólo tres semanas más tarde que Heim, lanzó al mercado su propia colección de bañadores de dos piezas. Reard bautizó su ropa como “bikini” porque aquella palabra estaba de moda en todos los titulares de prensa a raíz de las pruebas nucleares en el atolón Bikini (después de todo, un buen geek debería amar al bikini igualmente).

Como las pruebas nucleares, la prenda de ropa también generó mucha polémica por lo escandalosa que resultaba. Pero entre 1950 y 1960, el bikini se fue imponiendo, sobre todo a raíz de que Brigitte Bardot lo vistiera para la película Y Dios creó a la mujer (1956). En 1962, Ursula Andress emergió de las aguas con un bikini en la primera película de James Bond, James Bond contra el doctor No, erigiéndose así en la primera chica Bond.

Por cierto, lo que todos conocen como bocadillo caliente de jamón york y queso o sandwich mixto caliente, en Cataluña se denomina bikini, pero nada tiene que ver con el atolón Bikini. El nombre procede de Sala Bikini, que abrió sus puertas en 1953 en la Avenida Diagonal de Barcelona, y que se hizo famosa por comercializar este tipo de bocadillo tal y como explica Alfred López.

Vía | Ciencia Popular

Fuente:

Xakata Ciencia

23 de abril de 2014

¿Por qué se cristaliza la miel?


Miel

La miel se cristaliza entre los 10 y 15º C.


La miel es una solución supersaturada de glucosa y fructosa. Esto es inherentemente inestable y por lo tanto, con el tiempo, tiende a cristalizarse de forma natural.

La glucosa es menos soluble que la fructosa así que se cristaliza primero.

La miel hecha de flores con contenido más alto de glucosa en su néctar, incluidos el diente de león y la colza, se cristaliza más rápido.

La miel comercial es calentada y filtrada para retirar los pequeños cristales y granos de polen que actúan como semillas para el crecimiento de cristales, así que éstas pueden permanecer líquidas por más tiempo.

La temperatura de almacenamiento también es un factor.

La miel se cristaliza más rápidamente a entre 10º C y 15º C.

Fuente:

BBC Ciencia

22 de abril de 2014

Grafeno + Agua Salada = Electricidad

El grafeno es una sustancia formada por carbón puro, compuesta por átomos dispuestos en un patrón regula hexagonal similar al grafito, pero con un grosor de un átomo de espesor y un peso de 0,77 miligramos por metro cuadrado. Puede saber más sobre el grafeno aquí.


Las aplicaciones del grafeno parecen ser ilimitadas, desde ordenadores a cubiertas de edificios, vendajes o componentes electrónicos. Recientemente se ha descubierto que si fluye sobre el grafeno agua salada, el resultado es electricidad.

Los últimos avances científicos en el campo de la energía hidroeléctrica, han ido en la línea de empujar los fluidos iónicos a través de un gradiente de presión. El problema es que los gradientes de presión son complicados de generar, por lo que el proceso no es factible para generar grandes cantidades de electricidad. Pero por el contrario, si se arrastra agua salada sobre grafeno se obtiene electricidad, sin la necesidad de emplear un gradiente de presión.

Al empujar el agua sobre el grafeno, su carga se desequilibra. Los electrones de grafeno son desabsorbidos en un punto y absorbidos en otro, generando electricidad por sí mismo.

La velocidad con la que el agua salada se arrastra sobre el grafeno tiene un impacto directo sobre la generación de la electricidad. Cuanto más rápida se desliza el agua más electricidad se obtiene. Por otra parte si se aumenta el flujo del agua, también se incrementa la energía producida.

Actualmente el proceso se genera a nivel nanométrico, pero el sistema podría ser ampliado para su uso a nivel doméstico o industrial.

Vía | Nature

Fuente:

Xakata Ciencia

Lea en los Archivos de CXonocer Ciencia:

Grafeno: el nuevo material más ligero del mundo

Grafeno: el material del futuro

Grafeno: de la mina de un lápiz a las grandes transnacionales


15 de abril de 2014

El MIT logra desarrollar los primeros "materiales vivos"

Un grupo de investigadores del MIT han desarrollado una forma de crear materiales vivos que pueden combinar materiales convencionales con una “biopelícula” de células bacterianas que confiere a esa combinación propiedades interesantes.



Esos materiales son por ejemplo capaces de responder a su medioambiente, producir moléculas biológicas complejas y dar a los objetos construidos con esos materiales capacidades como las de “conducir la electricidad o emitir luz“.

Timothy Lu, un profesor de Ingeniería Eléctrica y Ingeniería Biológica, explicaba cómo este tipo de materiales podrían ser utilizados en el futuro para desarrollar sensores de diagnóstico, materiales autorreparables o células solares.

La base del trabajo de Lu y sus colegas es el uso de la bacteria E. coli ya que ésta produce biopelículas que contienen las llamadas “fibras curli”, que permiten a las bacterias “acoplarse” a todo tipo de superficies. 

Programando esas células para producir diferentes tipos de fibras, los investigadores pudieron crear nanocables de oro, películas de material conductor, o cristales diminutos con propiedades de mecánica cuántica. Las aplicaciones, afirman sus creadores, son muy diversas, y se podrían aplicar en campos como la generación de energía o la agricultura, donde por ejemplo podrían lograr hacer que los residuos agrícolas se convirtieran en biocombustibles.

Más información | MIT

Fuente:

Xakata Ciencia

3 de abril de 2014

Ua E. coli capaz de alimentarse de citrato.

Hace 25 años un científico estadounidense llamado Richard Lenski comenzó un experimento de evolución en el laboratorio con un único ejemplar de Escherichia coli, la bacteria más estudiada de la historia y uno de los seres vivos mejor conocidos. De ese único ejemplar extrajo 12 líneas diferentes de bacterias, que desde entonces se reproducen separadas las unas de las otras, dividiéndose y reproduciéndose; 58.000 generaciones de separación a estas alturas. Es el 'Long Term E. Coli Evolution Experiment' (experimento de evolución a largo plazo de E. coli), y está empezando a dar resultados. Lo que ocurre es que los resultados no son simples, y subrayan la complejidad del proceso evolutivo y, de rebote, la brillantez de quien supo desentrañarlo por primera vez, un tal Darwin. Porque las cosas no son sencillas ni siquiera con un organismo relativamente simple en un entorno perfectamente controlado como éste. Contrariamente a lo que defienden los creacionistas, la evolución se puede ver en el laboratorio, pero hay que saber mirar. Y la historia comienza hace 11 años, en 2003, cuando de repente apareció en una de las líneas algo que no debía existir: una E. coli capaz de alimentarse de citrato. Algo que por definición E. coli no puede hacer; en términos bacteriológicos casi la aparición de una nueva especie.

Para entonces habían pasado 33.000 generaciones desde el inicio del experimento, así que los científicos comenzaron a trabajar para descubrir de qué modo esa cepa de E. coli había conseguido dar semejante salto evolutivo. Y que les haya llevado 11 años de trabajo nos puede dar una pista sobre lo que encontraron: que la historia era muy, pero que muy compleja. Afortunadamente cada 500 generaciones congelan una muestra de las bacterias, así que podían volver atrás y analizar qué pasó y cuándo. Hacia la generación 31.500 descubrieron que se había producido el primer cambio: una duplicación en un gen denominado citT que permite a E. coli alimentarse de citrato en ausencia de oxígeno, que cambió el control de una de las copias, haciendo que el gen permaneciese activo incluso en ambiente aerobio. Sucesivas mutaciones en las siguientes 1.500 generaciones mejoraron esa capacidad, permitiendo a esta cepa convertirse en devoradora de citrato. Pero la cosa no era tan sencilla, porque simplemente trasplantar el nuevo gen citT a las bacterias ancestrales no las hacía capaces de comer citrato. Había algo más; algo que había pasado antes de la generación 31.500.

Así que a sus congeladores regresaron los científicos, a tratar de localizar ese otro cambio imprescindible. Y la cosa no era fácil: para la generación 33.000 había 79 mutaciones más acumuladas. Muchos análisis después llegó el sorprendente resultado: muy pronto en la evolución de esta cepa se había producido un cambio en un gen llamado dctA, que se ocupa de bombear fuera de la célula una molécula llamada succinato. Resulta que el equilibrio químico de la célula depende del equilibrio entre citrato y succinato de tal modo que cuando la bacteria capta citrato debe expulsar succinato para compensar. Sin el cambio en dctA el ‘nuevo’ citT no funciona, por lo que no ofrece ninguna ventaja a las bacterias que lo portan. Pero cuando se combinan los dos en el orden correcto sucede algo que parece magia: aparece una nueva forma de vida capaz de alimentarse de una molécula que sus ancestros no son capaces de digerir. Lo verdaderamente sorprendente es que seamos capaces de comprender de qué modo ocurre, de tal modo que no sea necesario invocar lo sobrenatural o lo divino. Un proceso natural, automático, elegante y bello que a lo largo del tiempo da lugar a la increíble diversidad y belleza que tenemos a nuestro alrededor. Algo ciertamente a celebrar.

Fuente:

RTVE Blog de Ciencias

¿Dónde se esconde la materia oscura?

  • Forma el 90% de la materia que existe en el Universo
  • Los científicos saben que existe pero no han logrado detectarla
  • Las primeras evidencias de su existencia se remontan a los años 70
Abell 1689, uno de los mayores cúmulos de galaxias que se conoce

Hace unos días el telescopio Hubble capturó la imagen de Abell 1689, uno de los mayores cúmulos de galaxias que se conoce.

Los físicos teóricos no les salen las cuentas. Según sus cálculos, el Universo debería tener más materia de la que han observado. La materia convencional, es decir, la que forma la pantalla del ordenador que estás usando, tu cuerpo, una montaña, las estrellas o los planetas, solo supone el 10% de la materia total del Universo. ¿Dónde está el 90% que falta?

La materia que falta es la denominada materia oscura. Se llama oscura porque no podemos verla. Los científicos han comprobado que, al contrario que con la materia ordinaria, la oscura no se puede detectar con los procesos asociados a la luz, es decir, porque no absorbe ni emite radiaciones electromagnéticas. Por eso, aunque hace más de 70 años los físicos teóricos calcularon su existencia aún no han logrado localizarla.

Los científicos saben que está ahí, aunque no puedan verla, por sus efectos sobre estructuras enormes, como las galaxias. Fue en los años treinta del siglo pasado cuando el astrónomo suizo Fritz Zwicky notó una anomalía: las galaxias del enorme cúmulo de Coma se movían como si tuviesen mucha más masa que la observable.

A grandes rasgos, las galaxias que forman un cúmulo están reunidas gracias a la atracción gravitatoria que se produce entre ellas. Sin embargo, la cantidad de materia convencional que hay en cúmulo de Coma no es suficiente para generar la atracción necesaria para mantener atrapadas a las galaxias. Zwicky concluyó que la masa que falta para agruparlas debía existir aunque no la viera.

En los setenta, la astrónoma estadounidense Vera Rubin volvió a toparse con el mismo dilema. En esta ocasión no podía explicar sin recurrir a la existencia de la materia invisible el movimiento de rotación de las estrellas de las galaxias espirales.

Hoy en día, detectar esa materia y averiguar de qué está hecha es uno de las grandes misiones de la comunidad científica. En un litro de aire se estima que hay tres partículas de materia oscura. Es una cifra tan baja que es extremadamente difícil localizarla.

Hay decenas de proyectos en marcha que intentan detectar materia oscura. Los más destacados están situados en laboratorios subterráneos para evitar que lleguen los rayos cósmicos que son fuente de neutrinos, partículas tan parecidas a las de materia oscura que podrían confundirse. Allí los científicos han colocado sensores enfriados a una temperatura cercana al cero absoluto, la más baja que existe, para que evitar que vibren.

Uno de ellos es el Experimento Criogénico de Búsqueda de la Materia Oscura (el CDMS, por sus siglas en inglés). Se lleva a cabo en la mina Soudan, en Minnesota (Estados Unidos). Otros se desarrollan en un laboratorio bajo una montaña Gran Sasso (Italia), a 1,5 kilómetros de profundidad.

Atraviesan todo lo que se les ponga delante

Los dos grupos buscan unas partículas hipotéticas llamadas Partículas Masivas de Interacción Débil (WIMPS). No se puede asegurar que existan, pero por sus características, si existieran resolverían el misterio de la materia oscura. Precisamente también por sus características son muy difíciles de detectar. Son mucho más pequeñas que un átomo por lo que atraviesan todo aquello que se les ponga por delante. Se mueven tan despacio que si por algún casual chocan con el núcleo de un átomo del detector, la perturbación sería mínima. Por eso los detectores deben ser extremadamente sensibles.

Fuera de la Tierra también hay proyectos que buscan materia oscura, como el telescopio Fermi de la NASA que busca fuentes de rayos gamma, que pueden ser producto de la aniquilación de dos partículas de materia oscura. Otra misión es Euclides de la Agencia Espacial Europea, un telescopio aún en construcción que está previsto poner en órbita en 2020. Cartografiará la forma, el brillo y la distribución tridimensional de 2000 millones de galaxias, que cubren más de un tercio del firmamento. Así, el telescopio se remontará hasta el primer cuarto de la historia del Universo. En su labor, espera encontrar pistas sobre el misterio de la materia oscura.

En España investiga la materia oscura desde el punto de vista teórico el proyecto MultiDark, Método de Multimensajeros para la Detección de la Materia Oscura, coordinado por la Universidad Autónoma de Madrid y el Instituto de Física Teórica IFT. Desarrollan tres líneas de investigación complementarias: buscan las partículas candidatas a constituir la materia oscura, estudian cómo éstas forman los halos galácticos y contribuyen al desarrollo de experimentos que puedan detectarlas.

Descubrir dónde se esconde esta materia invisible será un hito de la cosmología que tendrá más repercusión aún que el hallazgo del ya archiconocido bosón de Higgs. Quien la encuentre merecerá sin duda el Premio Nobel.

Otro ingrediente oscuro

La energía oscura es otro ingrediente enigmático del Universo. No se sabe cuál es su origen. Junto a la materia oscura suman el 96% del Universo. Esta energía es la fuerza que acelera la expansión del Universo. Su existencia se propuso en 1998 para justificar el hecho de que el Universo está acelerándose, en lugar de frenarse bajo la atracción gravitatoria de la enorme cantidad de materia que contiene. El descubrimiento de esta aceleración cósmica fue reconocido con el Premio Nobel de Física en el año 2011.

Tomado de:

RTVE Ciencia


22 de marzo de 2014

La energía limpia e inagotable está un paso más cerca

Un experimento en EEUU avanza hacia la obtención de energía de la fusión nuclear, una de las noticias destacadas de esta semana.

Esta semana, científicos de EEUU han anunciado que, por primera vez, han logrado obtener más energía que la invertida en un proceso de fusión nuclear. Este fenómeno es el que alimenta las estrellas como el Sol y dominarlo en la Tierra supondría poder extraer energía limpia e inagotable. El proceso aún está en pañales, pero el logro de los estadounidenses del instituto, que ya avanzamos en Materia hace unos meses, supone un importante paso hacia el diseño de futuras centrales de fusión dentro de unas décadas. Europa es el epicentro de ITER, un proyecto internacional para construir  el primer reactor experimental de fusión nuclear en Cadarache (Francia).


Preamplifier_at_the_National_Ignition_FacilityAmpliar
La Instalación Nacional de Ignición / NIF
Sin embargo, este hallazgo, publicado en Nature, sale de la Instalación Nacional de Ignición (NIF), la mayor apuesta nacional de EEUU por lograr fusión usando hidrógeno y potentes haces de rayos láser. De cualquier forma, este paso es aún inicial y aún quedan décadas de desarrollo antes de que se pueda controlar el proceso de fusionar núcleos atómicos para usar la energía resultante en nuestros hogares.

Fuente:

Materia

13 de enero de 2014

Ola de frío en EE.UU. - Botellas de agua y pompas de jabón que se congelan...

A las ya de por sí espectaculares imágenes del temporal que asola prácticamente todo Estados Unidos, se suman estas otras. Son más domésticas, pero no por ello menos elocuentes. 

Una vecina de Illinois, Sharon Samuelson, enviaba este vídeo que colgaba en su canal el digital redeyechicago. Una botella que, al sacarla del pack, se congela al instante.

En las redes sociales hay quien ha cuestionado la autenticidad del fenómeno. Pero nadie ha dicho que esto haya ocurrido en la calle y la 'hemeroteca' de Youtube muestra casos similares de aguas muy frías, líquidas, que se congelan con solo un golpe al sacarlas de la nevera o meterlas dentro de casa.

En algunos de estos casos, como el de la botella que se congela al instante, lo que suele ocurrir es que el agua, sobre todo si el pura, se mantiene estable y líquida por debajo de cero grados. No se disparan los cristales de hielo hasta que se agitan los núcleos de moléculas (o 'semillas') a partir de los cuales se pueden formar estos cristales en cadena. Es lo que se conoce como 'sobrefusión'

Fenómenos extraordinarios que no son nuevos. 'Minnesota Cold' es un canal muy popular en América que cuelga acontecimientos como pompas de jabón que se congelan; la solidificación de una camiseta casi al instante y su posterior rotura en pedazos; o una divertida estampa en que el videoblogger se desliza, cual trineo, en una toalla congelada.

Vea el vídeo (cortesía de El Mundo, de España)


9 de enero de 2014

Cuando hace mucho frío la ropa mojada no se seca... ¡se congela!

Los habitantes de los diferentes estados como Nueva York, New Jersey, Connecticut, Boston, han tenido que soportar el frente de frío de diferentes maneras.

Algunos como Tom Rauen, en el estado de Iowa, decidió realizar un experimento con un polo de la empresa de estampados Evisiontees, el cual consistió en mostrar cómo se congela una polo en 60 segundos, según consigna el medio británico Metro.

El video de la demostración fue subido a YouTube, y en las imágenes se puede ver efectivamente cómo Rauen toma el polo mojado y la expone al frío, que en ese momento era de -20º, congelándose en sólo 60 segundos.

El video, publicado este lunes, comenzó a viralizarse rápidamente y ya alcanza las 17 mil visitas.



Con información de:

2014: Las cataratas del Niágara quedaron congeladas

El vórtice polar en Estados Unidos ha paralizado totalmente más de la mitad del territorio de este país.
 
Se trata de la peor ola de frío en décadas, por lo mismo, que las autoridades de salud indicaron que existe riesgo de hipotermia y pidieron a la población que en caso de salir a la calle vayan apropiadamente vestidos.
Los habitantes de los diferentes estados como Nueva York, New Jersey, Connecticut, Boston, han tenido que soportar el frente de frío 
 
Las cataratas de Niágara están ubicadas en la frontera entre Estados Unidos y Canadá. Estas cataratas son las más voluminosas de América del Norte. Por ellas pasa toda el agua de los Grandes Lagos. Y debido a la intensa ola de frío de los EE.UU. ¡estas cataratas se han congelado! Vean:
 
 
Más imágenes en:
 

30 de diciembre de 2013

¿Por qué son simétricos los copos de nieve y los cristales de hielo?


Quizá no muchas, pero alguna vez habrá visto de cerca cristales de hielo, o los copos de nieve que los contienen. Sus formas son de una belleza extraordinaria. Son simétricos, transparentes y reflejan la luz como las joyas caras. Pero mejor que ellas, pues introducen elementos aleatorios que eliminan el aburrimiento de las formas perfectas.

Las moléculas de agua tienen dos átomos de hidrógeno y uno de oxígeno. Los hidrógenos están unidos con el oxígeno por un par de líneas que forman un ángulo de 104,45 grados. Las moléculas a su vez se enlazan entre sí, con fuerzas pequeñas, formando hexágonos. De ellos salen radios sobre los que crecen nuevos hexágonos, repitiéndose unas cuantas veces en una estructura entre fractal y cristalina.

Su belleza deriva de la simetría. Nos gustan los cristales, conjuntos ordenados de moléculas que reflejan y parecen guardar la luz que nos permite verlos. Los cristales de hielo se forman cuando el vapor de agua pasa directamente a la fase sólida y se deposita sobre una superficie ya muy fría, como un río helado. O en la alta atmósfera, sobre partículas sólidas de polvo, sal o sulfatos.

Cómo la de otros cristales, su belleza procede de cómo transforman la luz que cae sobre ellos. En los cuentos tradicionales de los países del norte es común que aparezcan varitas mágicas que desprenden una luz misteriosa. ¿La luz de los cristales de hielo? ¡La naturaleza es única a todos los niveles!

Fuente:

El Mundo Ciencia

9 de diciembre de 2013

Experimentos: Creando plasma con uva y un microondas





Con sólo una uva cortada por la mitad y colocada en un horno microondas durante unos segundos, puede visualizarse el cuarto estado de la materia: el plasma (los otros son líquido, sólido y gaseoso). Consiste en un gas ionizado, una especie de gas donde los átomos o moléculas que lo componen han perdido parte de sus electrones o todos ellos.


Las uvas están llenas de electrolito, un líquido rico en iones que conduce la electricidad. Cada mitad de la uva actúa como una despensa de electrolito, conectadas por un fino y débil sendero conductor (la piel). Las microondas provoncan que los iones perdidos en la uva viajen hacia adelante y atrás rápidamente entre las dos mitades. A medida que hacen esto, la corriente vierte su exceso de energía hacia el puente de piel, el cual se calienta a altas temperaturas y finalmente estalla en una llamarada. En este momento, el arco de electrones que viajan a través de la llama y sobre el vacío entre las mitades, ioniza el aire y lo convierte en plasma originando los brillantes relámpagos que se pueden observar.


Fuente:

Xakata Ciencia

4 de diciembre de 2013

Científicos crean balas de luz, que podrían reemplazar al láser

En esta nueva forma, la luz podría viajar por distancias y tiempos mucho mayores sin disiparse, lo que abre el camino a nuevas y mejores tecnologías


La cantidad de aplicaciones que tienen los láser son sorprendentes: son utilizados en tratamientos quirúrgicos, en la fabricación y corte de metales y tecnologías, como elemento guía en excavaciones y armamento militar y como medio de transmisión de información entre otras, pero tienen un defecto: el paso del tiempo y el aumento de la distancia los debilita hasta disiparlos.

Pero los científicos P. Panagiotopoulos, D.G. Papazoglou, A. Couairon y S. Tzortzakis, quienes trabajan en distintas instituciones griegas y francesas, lograron crear “balas láser”, las cuales pueden desplazarse distancias y tiempos mucho más largos que los haces de luz actuales. Es más, el control de estas “balas láser” es tan eficiente que pueden ser utilizados como medio de transporte de cantidades de información mucho más grandes que los métodos actuales, con lo cual se podría generar una nueva revolución óptica.

Estas “balas láser” son en realidad llamadas “discos Airy” (por el astrónomo George Biddell Airy, quien describió la curvatura de la luz del arcoíris), los cuales salen de la fuente original y se curvan en el aire tomando una forma parabólica muy similar a la de una bala. Después de disparadas, estas “balas láser” mantienen una intensidad estable a lo largo de su viaje por el espacio, independiente que la fuente original cambie la intensidad o potencia de luz.

De hecho la compresión del disco de airy produce un alto nivel de intensidad de luz, mucho mayor a la de los actuales láseres, lo que permitiría mejorar significativamente cada una de las tecnologías que hoy en día necesitan de la luz.

¿Cómo se traduce en aplicación? Bueno, podría ser un medio ideal para continuar avanzando en teletransportación y computación cuántica, ya que la manipulación de qubits sería mucho más simple. Podría mejorar todo tipo de aplicaciones ópticas, y comunicaciones (en la tierra y en el espacio). Podrían utilizarse estas “balas láser” para atacar regiones específicas del cuerpo humano en procedimientos médicos y quirúrgicos que hoy son muy complejos, y en sí, en prácticamente todas las tecnologías que utilizamos hoy en día.

Pero también podría combinarse con otro avance desarrollado hace algún tiempo, la "materia de luz", ¿sería posible transformar estas balas láser en materia solida? la idea es increíblemente interesante.

Link: Phys.org
Tomado de:

5 de noviembre de 2013

Hackean la tercera ley de Newton acelerando la luz por sí misma

Rompiendo la ley de que toda acción tiene una reacción, científicos lograron que los fotones se aceleraran sin interacción externa ni pérdidas por contacto entre si.


La tercera ley de Newton dice básicamente que para toda acción hay una reacción. Por ejemplo, si golpeas una pared con el puño, tu puño recibirá exactamente la misma cantidad de fuerza contra sí mismo (lo cual implica que no es muy inteligente hacerlo). Un estudio realizado en la Universidad Erlangen-Nuremberg de Alemania asegura haber encontrado una forma de "hackear" esta aseveración, utilizando luz. Este hackeo depende de dos conceptos que intentaré explicar: masa efectiva y masa negativa.

Los fotones son partículas que se mueven a la velocidad de la luz y que no poseen masa, pero pueden llegar a tener “masa efectiva”. La masa efectiva es un efecto que se observa cuando un fotón traspasa un cristal. Dependiendo del cristal, los fotones pueden perder velocidad proporcionalmente a la pérdida de energía, o simplemente rebotar completamente con el impacto, lo cual es como si en esas condiciones tuviesen masa (podrías también pensarlo como el efecto que produce el bosón de Higgs). La masa efectiva se crea por efectos de campos magnéticos y eléctricos.

La “masa negativa” es simplemente la masa inferior a 0. Esta masa negativa interactúa con el mundo de una manera totalmente distinta a la convencional, moviéndose más rápido mientras menos energía usa, e inclusive reaccionando al inverso de la gravedad. Retomando el primer ejemplo, si golpearas una pared con tu puño, en vez de recibir la fuerza de vuelta, esta fuerza aceleraría tu puño otra vez, atravesándola completamente. Por cierto, la masa negativa no es un concepto demostrado en la actualidad.

Es más, dependiendo de la longitud de onda de la luz de un pulso láser y la estructura de un cristal específico, los fotones pueden adquirir “masa efectiva negativa”. Pero para que un fotón con estas características interactúe con otro fotón con masa positiva se requeriría de un cristal tan denso que absorbería totalmente la luz antes de que se junten uno con otro.

El experimento que “hackeó” a Newton


pulsos_


Los científicos alemanes lograron crear pulsos láser de masa efectiva positiva y negativa. Posteriormente los lanzaron en un circuito de fibra óptica infinito (similar a un 8) con un “punto de contacto” en el cual los fotones podrían interactuar. Cuando los pulsos opuestos se encontraban en el punto de contacto, ellos se aceleraban en la misma dirección, pasando por los detectores del sistema cada vez en lapsos de tiempo más cortos.

"Teniendo este circuito puedes hacerlos girar para siempre, lo que es equivalente a tener cristales gigantescamente densos" dijo Dragomir Neshev, científico de la Universidad Nacional de Australia.

Los electrones y semiconductores también pueden tener masa efectiva, por lo que este sistema podría ser usado para acelerar los procesos en la computación y electrónica en general. Con esta tecnología se podrían crear mejores resoluciones de pantallas y monitores, mejorar las comunicaciones ópticas y un sinfín de aplicaciones en el futuro. Lo difícil, sin lugar a dudas, sería poder compatibilizar esas futuras tecnologías con las actuales, pero seguro habrá tiempo (y probablemente un largo tiempo) para encontrar una solución.

Pero más interesante aun, ¿cómo interactúa la masa negativa con otros conceptos del universo?, ¿Podría relacionarse con la materia creada de luz hace poco tiempo?

Link: Newscientist

Tomado de:

FayerWayer

9 de octubre de 2013

Crean nuevo estado de la materia que se parece a una espada láser de Star Wars

Investigadores lograron crear moléculas de fotones.



Un grupo de científicos de Harvard y el Instituto Tecnológico de Massachusetts (MIT) lograron hacer que los fotones se juntaran para formar moléculas, un estado de la materia que hasta ahora era solo teórico. La materia resultante se parece a los sables láser que hemos visto en Star Wars.


El trabajo fue publicado en la revista Nature, y desafía décadas de conocimiento sobre la naturaleza de la luz. Los fotones han sido descritos tradicionalmente como partículas sin masa, que no interactúan entre sí. Si enfrentas un láser a otro, simplemente se atraviesan.

Las "moléculas fotónicas", sin embargo, no se comportan como los lásers tradicionales. "No es una mala analogía comparar esto a los sables de luz. Cuando estos fotones interactúan entre sí, están empujando contra y desviándose unos a otros. La física de lo que sucede en estas moléculas es similar a lo que vemos en las películas", afirmó el profesor de física de Harvard, Mikhail Lukin.

Lo que hemos hecho es crear un tipo especial de medio en el cual los fotones interactúan entre sí tan fuertemente que comienzan a actuar como si tuvieran masa, y se juntan para formar moléculas. Este tipo de estado unido de fotones ha sido discutido fuertemente en la teoría por bastante tiempo, pero hasta ahora no había sido observado", comentó.

Para hacer que los fotones normalmente sin masa se junten, los investigadores no usaron la Fuerza sino átomos de rubidio y una cámara al vacío. Luego usaron lásers para enfriar la nube de átomos hasta un nivel apenas superior al cero absoluto. Usando lásers muy débiles, dispararon fotones individuales a la nube de átomos. Al ingresar a esta nube fría, la energía del fotón excita a los átomos en su camino, provocando una desaceleración del fotón. Al ir avanzando, esa energía pasa de átomo en átomo y luego abandona la nube junto al fotón.

"Cuando el fotón abandona el medio, su identidad se preserva. Es el mismo efecto que vemos en la refracción de la luz en un vaso de agua. La luz entra en el agua, entrega parte de su energía al medio, y dentro existe como luz y materia combinadas, pero cuando sale, sigue siendo luz. El proceso que ocurre es el mismo, solo que un poco más extremo. La luz es desacelerada considerablemente y mucha más energía es entregada que lo que ocurre en la refracción", explicó Lukin.

Al disparar dos fotones dentro de la nube, los investigadores descubrieron que ambos salieron juntos, como una sola molécula. "Es una interacción fotónica mediada por la interacción atómica. Eso hace que estos dos fotones se comporten como una molécula, y cuando abandonan el medio es más probable que lo hagan juntos que como fotones individuales", señala Lukin.

El descubrimiento podría ser usado en la computación cuántica al permitir que los fotones interactúen entre sí, o bien darle otros usos que se inventen más adelante.

Tomado de:

FayerWayer

24 de septiembre de 2013

La composición de la materia (I)



Aire, agua, tierra y fuego han sido los materiales que, desde la edad de piedra, el ser humano a reconocido y utilizado. No fue hasta el inicio de la ciencia moderna, con la escuela Jónica, en la antigua Grecia, que el ser humano no se planteó cual era la composición básica de todo lo que lo rodeaba.
Fue Leucipo de Mileto(1), maestro de Demócrito, quien en el siglo V e.a.(2) fundó la escuela atomista, la cual afirmaba que la realidad estaba formada por partículas infinitas, indivisibles, de formas variadas y siempre en movimiento llamadas átomos, que significa “indivisible” («ἄτομον» - «sin partes»). Afirmaban que la materia estaba formada por partículas materiales indestructibles, desprovistas de cualidades y que no se distinguen las unas de las otras más que por la forma y dimensión(3).
Siempre su asocia la idea de la primera teoría atómica a John Dalton (4) y, no sin razón. Pero a decir verdad fué Mijail Vasílievich Lomonósov quien, en unos artículos escritos entre 1743 y 1744 ( “Sobre las partículas físicas intangibles que constituyen las sustancias naturales” y “Sobre la adhesión de los corpúsculos”) recupera este concepto de átomo y lo plasma de forma evidente en un tercer artículo donde utiliza en término mónada (acuñado por Leibniz), con el título “Sobre la adhesión y la posición de las mónadas físicas”.
John Dalton (4), alimentandose de las ideas de Leucipo de Mileto y, conocedor de los trabajos de Lomonósov, propone de nuevo una teoría atómica pero, esta vez, con bases científicas. Esta ley fué formulada para explicar porqué ciertas reacciones químicas se daban solamente, en proporciones constantes (la denominada Ley de las proporciones constantes(5) ). Dalton explicó su teoría en base a seis enunciados simples:
  1. La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.
  2. Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de diferentes elementos tienen pesos diferentes. Comparando los pesos de los elementos con los del hidrógeno tomado como la unidad propuso el concepto de peso atómico relativo .
  3. Los átomos permanecen sin división, aún cuando se combinen en las reacciones químicas.
  4. Los átomos, al combinarse para formar compuestos guardan relaciones simples.
  5. Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.
  6. Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.
Dados los conocimientos actuales, el modelo atómico de Dalton puede parecernos insuficiente e, incluso, un poco infantil, pero constituyó el primer intento basado en evidencias y pruebas científicas de explicar como y porqué estaba constituida la materia. Eso sin contar que serviría de base para todos los modelos posteriores que, sin duda, han resultado cruciales en el avance científico y técnico de la actualidad.


Varios átomos y moléculas representados en A New System of Chemical Philosophy (1808 de John Dalton )
 
A finales del siglo XIX hay dos descubrimientos clave en el avance de nuestro conocimiento de la composición de la materia. Por un lado, en 1896, Henri Becquerel(6) descubriría la radiactividad trabajando con sales de uranio. Descubrió que al colocar sales de uranio sobre una placa fotográfica en una zona oscura, esta se ennegrecía, debido a que la radiación emitida por el uranio atravesaba elementos opacos a la luz ordinaria.
Al año siguiente, Joseph John Thomson(8), descubriría el electrón. Determinó que la materia estaba constituida por una parte positiva y otra negativa. Y en 1898(7), el matrimonio Curie descubrirá el Polonio y el Radio.
Con toda esta serie de eventos, el propio Joseph John Thomson, en 1903, propondrá su propio modelo atómico, en el que se incluyen por primera vez la polaridad de cargas, existiendo una carga positiva y otra carga negativa. Su modelo es popularmente conocido como el “modelo del puding de pasas” ya que propone que el átomo es una esfera de carga positiva, con los electrónes “incrustados” por toda su superficie, de forma uniforme, de forma similar a como veríamos las pasas en un punding.


Modelo atómico de Thomson

Pero este modelo, que aunaba las virtudes del modelo de Dalton, con los resultados obtenidos con los tubos de rayos catódicos (la existencia de una carga negativa), chocaba frontalmente con la teoría de la dispersión de Rutherford(9) (también conocida como dispersión de Couloumb - 1909). Esta teoría explicaba la dispersión de partículas eléctricamente cargadas, al acercarse a un centro de dispersión que también estaba cargado eléctricamente (experimento de Rutherford(10)). Con este experimento se llegó a la conclusión de que la carga positiva y la mayor parte de la masa del átomo debía estar concentrada en un pequeño espacio en el centro del átomo.
Un año después de que Joseph John Thomson desarrollara su teoría atómica, en 1904, Hantaro Nagaoka(11) desarrolló un modelo planetario, en el que consideraba que existia un centro cargado positivamente, muy masivo, mientras que los electrónes lo rodeaban orbitando a una distancia y unidos a él por fuerzas electrostáticas, de forma similar a como veríamos los anillos con Saturno.
El propio Nagaoka desecharía su propia teoría en 1908, pese a que el antes mencionado experimento de Rutherford diera confirmación experimental a su teoría. Nagaoka consideró que los anillos se repelerían entre sí, dando lugar a un modelo inestable.
El propio Rutherford, en el artículo que escribió, proponiendo la existencia de un núcleo atómico, cita a Nagaoka, como base de su teoría. Como veremos más adelante, esta es la base del modelo de Bohr (también conocido como modelo atómico) y que resultaría fundamental para los siguientes modelos actuales.

Fuente:

Enamorado de la Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0