Latest Posts:

Mostrando las entradas con la etiqueta celulas. Mostrar todas las entradas
Mostrando las entradas con la etiqueta celulas. Mostrar todas las entradas

10 de marzo de 2020

Comer poco alarga la vida

Una investigación aporta la descripción más detallada de los beneficios de la restricción calórica para frenar el envejecimiento.

Los investigadores Concepción Rodríguez y Juan Carlos Izpisúa, del Instituto Salk

Desde hace décadas, los científicos conocen el secreto para hacer que casi cualquier animal viva mucho más de lo normal. Pueden hacer que un ratón duplique sus años de vida y que un macaco viva tres más de lo normal. El equivalente en personas sería vivir nueve años más y, además, con mucho menos riesgo de sufrir enfermedades asociadas al envejecimiento: cáncer, alzhéimer, diabetes. El problema es que el precio a pagar puede ser demasiado alto para muchos: comer menos, en concreto quitarse en torno a un 30% de las calorías diarias.

El 26 de febrero de 2020 se publicó el estudio más detallado que se ha realizado nunca para aclarar qué le sucede a un cuerpo cuando se somete a esta restricción calórica. Sus resultados apuntan muchas claves de qué genes y moléculas son culpables del envejecimiento y trazan nuevas vías para conseguir posibles fármacos que consigan algo a priori imposible: parar el tiempo, detener el envejecimiento.

“Este estudio muestra que el envejecimiento es un proceso reversible”, explica el investigador Juan Carlos Izpisúa (Hellín, 1960), uno de los autores principales del trabajo. “Hemos mostrado que determinados cambios metabólicos que llevan a una aceleración del envejecimiento se pueden reprogramar de una manera relativamente sencilla, reduciendo nuestra ingesta calórica, con la finalidad no ya de extender nuestras vidas, sino, mucho más importante, de que nuestra vejez sea más saludable”, resalta este farmacólogo y biólogo molecular que trabaja en el Instituto Salk (EE UU).
El trabajo ofrece el atlas celular más detallado del envejecimiento en un mamífero y los efectos beneficiosos de moderar la dieta. El equipo se ha servido de la nueva tecnología de análisis genético célula a célula para analizar unas 200.000 células de nueve órganos y tejidos diferentes de ratas. En un grupo había roedores que comían lo que querían y en el otros animales que comían un 30% menos calorías.

Los investigadores usaron solo ratas adultas a las que estudiaron desde los 18 a los 27 meses de edad, lo que en humanos equivaldría a un seguimiento entre los 50 y los 70 años. Esto es importante, pues los estudios realizados en primates han mostrado que los beneficios de comer menos son solo patentes en individuos adultos, a la mitad —más o menos— de sus vidas.

Los resultados, publicados este jueves en Cell, aportan un catálogo completo de todos los cambios que suceden con la edad y la dieta tanto dentro de cada célula como en la comunicación entre estas.

El artículo completo en: El País (España)

También puede leer unh resumen en Vitónica


12 de noviembre de 2019

Los hongos solo tienen sexo si han comido y están a oscuras

Los hongos tienen hambre no se reproducen sexualmente. Sí, así es, y este descubrimiento podría ayudar a combatir patógenos micóticos al interferir en su evolución, según un estudio científico publicado este lunes en la revista PLOS. 


Esta investigación encaró “problema fundamental de la biología básica que puede tener repercusiones en el control de los hongos que causan enfermedades tanto en humanos como en las plantas”, señaló Gustavo Goldman de la Universidad de Sao Paulo (Brasil).

El equipo investigador, que incluyó a científicos de las Universidades de Sao Paulo y de Bath (Reino Unido), logró caracterizar por primera vez a un grupo de receptores único para los hongos, que les impiden reproducirse sexualmente.

El blanco de esta investigación fue el hongo Aspergillus nidulans que solo tiene sexo cuando está bien alimentado y se encuentra a oscuras. La reproducción sexual recombina el ADN de los progenitores para crear una descendencia genéticamente diversa que se disemina rápidamente en el entorno como esporas.

Esta diversidad y esta capacidad para propagarse son factores importantes en la adaptación de los hongos a ambientes nuevos, ya sea para la difusión de enfermedades o en la evolución de su resistencia a los fungidas.

Este artículo se elaboró con información de: La República (Perú), Deustche Well y Televisa


11 de noviembre de 2019

Científicos de IMUGENE descubren un virus que mata todos los tipos de cáncer conocidos

Los científicos de la farmacéutica Imugene, empresa que trabaja en inmunoterapia contra el cáncer, revelan cómo actúa este nuevo virus concebido en un laboratorio.

Señalan que pronto empezarán a hacer pruebas en humanos.


Un equipo de científicos liderados por Yuman Fong ha diseñado un nuevo virus basado en la viruela de la vaca, el cuál ha demostrado tener la capacidad de eliminar células que producen todos los tipos conocidos de cáncer.

El tratamiento se llama CF33, y ha sido desarrollado por la empresa australiana de biotecnología Imugene, que ha autorizado su innovación para combatir el cáncer. La vacuna es un virus de ADN bicatenario de la familia Poxviridae.


Después de que el profesor Fong realizó una serie de estudios y diseñó el virus, se comprobó que podía reducir toda clase de tumores en ratones. Por ello, viajó a Australia para planificar las pruebas en humanos, que estiman que comenzarán a principios del año 2020.

En décadas pasadas se utilizaron virus para el cáncer, pero fracasaron porque eran demasiado tóxicos. Otros tratamientos solo pueden tratar tipos de cáncer en células específicas como la piel o el tejido hepático. “El problema era que si se lograba que virus fuera lo suficientemente tóxico como para matar el cáncer, preocupaba que también matara al hombre”, advirtió Yuman Fong.

Al parecer estamos cerca a la cura para el cáncer, pero la gran pregunta es ¿los costos de esta medicina serán elevados o estarán al alcance de todos los bolsillos? Si los precios son elevados este medicamento estaría fuera del alcance de las grandes mayorías. 

Con información:



10 de junio de 2019

Edvard Moser, el Nobel que descubrió el GPS de nuestros cerebros

El paciente HM

Cuando tenía 7 años, Henry Molaison se dio un golpe en la cabeza y se fracturó el cráneo. 

Tres años después empezó a tener unas convulsiones que cada vez se volvieron más intensas y frecuentes, a pesar de la medicación.

Para cuando cumplió los 27 años ya no podía tener una vida normal.

Es por eso que, en 1953, Molaison aceptó formar parte de un procedimiento experimental en el que le extirparon los dos hipocampos del cerebro.

La operación funcionó y el hombre dejó de tener convulsiones. Incluso su coeficiente intelectual aumentó.

Pero entonces los médicos se dieron cuenta de que, en el proceso, habían dañado su memoria. El joven no podía recordar si había desayunado o cómo llegar hasta el baño.

Olvidaba las caras y nombres del personal médico y, lo que era más perturbador, debían decirle una y otra vez que su tío había muerto.

El trágico desenlace de su cirugía dio inicio a cinco décadas de estudios que lo inmortalizaron como el paciente "HM", el más famoso de la historia de la neurociencia.

Molaison no llegaría a verlo, pero su caso derivó en un descubrimiento crucial sobre el funcionamiento del cerebro y la memoria.

No en vano le valió el premio Nobel de Medicina al neurocientífico noruego Edvard Moser.


Filosofía y ciencia

"El espacio y tiempo son propiedades totalmente fundamentales de nuestra propia experiencia subjetiva", dice Edvard Moser.

"Es difícil mantener cierto entendimiento del mundo si no podemos colocar las cosas en algún lugar del espacio y organizar los eventos en un tiempo", agrega.

"Por eso, cuando estas habilidades se pierden, de alguna manera nos perdemos a nosotros mismos".

La propia Academia Sueca reconoció al anunciar su premio en 2014 que había logrado resolver "un problema que ha ocupado a filósofos y científicos durante siglos".

El GPS del cerebro
 
"El premio Nobel fue por descubrir las células que forman parte del sistema que nos permite saber dónde estamos y encontrar el camino" para ir de un lugar a otro, explica Moser.

En otras palabras, se trata de células que funcionan como el "GPS interno" del cerebro.

Pero el galardón no lo recibió en solitario, sino que lo compartió con el estadounidense John O'Keefe y la noruega May-Britt Moser.

El apellido Moser no es una extraña coincidencia.
Edvard y May-Britt no solo forman parte del selecto club de los laureados por la Academia Sueca, sino que además son parte de uno todavía más reducido: el de los cinco matrimonios Nobel.

Un camino difícil

A pesar de no haber crecido en una familia ni un lugar con tradición académica (un poblado de 500 habitantes en Noruega), a través de su ávido consumo de libros descubrió la ciencia y se apasionó por ella.

Cumplió con el servicio militar obligatorio, hizo algunos cursos de matemáticas y estadística, se doctoró en neuropsicología y comenzó un periplo internacional por distintos laboratorios.

"Creo que venir de un lugar donde no había nada más me ayudó a tener una perspectiva diferente y original sobre los problemas".

A lo largo de esos años, May-Britt se convertiría en su esposa, pero también en su compañera de investigación y cofundadora del Instituto Kavli para Sistemas de Neurociencia en la Universidad Noruega de Ciencia y Tecnología en Trondheim, en el centro del país.

Y si bien los Moser ahora están divorciados, sus carreras siguen profundamente interrelacionadas.

Espacio y tiempo

"El intrincado sistema de mapeo del espacio que derivó en el descubrimiento de la célula red en 2005 y el premio en 2014 fue apenas el principio", afirma Moser.

En estos años, por ejemplo, descubrieron que esas células "no solo se encargan del espacio, sino también del tiempo, por lo que hay un cambio a medida que el tiempo pasa".

"Ahora sabemos también que el espacio y tiempo son elementos de los recuerdos que son almacenados en este sistema".

Hasta han dado inicio a lo que llaman la "fase dos" de sus investigaciones: "Entender la enfermedad de Alzheimer y, ojalá, contribuir al desarrollo de algún tipo de tratamiento".
"El área del cerebro que contiene todas estas células especializadas y registra el pasaje del tiempo suele ser la primera área que se daña en el alzhéimer", dice el Nobel.

Esta enfermedad, que aún no tiene cura, afecta a entre el 60 y 70% de personas con demencia, que son nada menos que 50 millones alrededor del mundo, según la Organización Mundial de la Salud.

Tomado de BBC Mundo

5 de junio de 2019

¿Cuál es la mayor célula biológica del mundo?


Llevo toda la vida contestando mal. Ayer mismo, cuando mis hijos me preguntaron cuál era la célula más grande del mundo contesté: el huevo de avestruz. ¡Mal! Puede que en efecto este “pedazo” de huevo, de hasta 15 centímetros de largo y 1,4 kilos de peso sea la célula más pesada del mundo, pero hay varias células biológicas más grandes en extensión. (Recordemos que el término “grande” se refiere a tamaño, no a peso).

¿Ejemplos de células más grandes? Pues cualquier célula nerviosa de un animal grande. Un calamar gigante por ejemplo, podría contar con neuronas de hasta 12 metros de largo, lo cual supera en 80 veces a la altura de un huevo de avestruz. Las jirafas cuentan también con nervios que recorren la totalidad de su cuello, el cual puede llegar a medir dos metros de largo.
Pero tampoco hace falta buscar animales tan exóticos, los humanos también tenemos neuronas mucho más largas que un huevo de avestruz. Mi admirado Xurxo Mariño así lo reconoció, al determinar que las neuronas que componen el nervio ciático son las más largas del cuerpo humano, ya que pueden superar el metro al ir desde la punta de los dedos del pie hasta la base de la espina dorsal. Hay que recordar que pese a que una neurona humana mide menos de 0,1 milímetros, en el sistema nervioso periférico cada fibra nerviosa en toda su longitud es una prolongación de una sola célula nerviosa, razón por la que puede considerarse parte de la misma.

No obstante, habrá quien quiera argumentar que, en términos de volumen, un huevo de avestruz sigue siendo comparativamente más grande que las células nerviosas, que pueden ser muy largas pero son extremadamente delgadas (del orden de 10 micrones o menos). ¡De nuevo mal! Incluso ignorando a las neuronas y sus extensiones nerviosas, hay otro tipo de células más grande que el huevo de avestruz: algas extremadamente grandes como la Caulerpa taxifolia. En efecto, este alga que puede llegar a crecer hasta los 3 metros de longitud o más, es en términos anatómicos un organismo unicelular a pesar de sus cientos de ramificaciones (similares a hojas), que “intuitivamente” le hacen parecer superficialmente una planta vascular.
La Caulerpa (y otras algas con características similares) es un tipo de célula que contiene numerosos núcleos, razón por la que a menudo se la descarta cuando emprendemos la búsqueda de la célula biológica más grande del planeta. Por cierto, pese a no ser originaria de nuestros mares, este alga se ha hecho tristemente famosa al invadir el Mediterráneo, y se la conoce popularmente como un alga asesina. Es una pena que no podamos comérnosla, como se hace en Indonesia con su pariente la grapa de mar (Caulerpa lentillifera), otro organismo unicelular multinucleado que según dicen tiene un sabor picante.

Me enteré al leer el Quora.

Tomado de: Mailkenais Blog

26 de diciembre de 2018

Elizabeth Blackburn: “La pobreza acorta los telómeros”

La Nobel de Medicina investiga la conexión entre la longevidad, las enfermedades y las estructuras que protegen los cromosomas.


Hay almejas que viven más de 500 años y tiburones antárticos que sobrepasan los 400. En cuanto a los humanos, la persona más longeva conocida fue la francesa Jeanne Calment, que vivió 122, aunque técnicamente se desconoce si hay algún límite de edad para los humanos. Si se le pregunta a la científica Elizabeth Blackburn (Australia, 1948) responderá que puede haber pistas en los telómeros, unas fundas protectoras de los cromosomas que se suelen comparar a las que hay en la punta de los cordones para impedir que se deshilachen.

La longitud de los telómeros está relacionada con el número de veces que una célula se podrá dividir para tener hijas. Hay un mecanismo natural por el que una enzima llamada telomerasa reconstruye los telómeros que se han acortado demasiado. Blackburn ganó el Nobel de Medicina en 2009 por codescubrir estas estructuras y la proteína que los protege. Desde entonces, estudios con humanos han demostrado una conexión entre los telómeros cortos y enfermedades crónicas y también con otras agresiones como el estrés; por ejemplo, hay madres que se tienen que hacer cargo de hijos enfermos y tienen telómeros más cortos que las de hijos sanos.

Blackburn también es famosa por haber llevado la contraria al expresidente de EE UU George Bush. En 2004 no fue renovada como miembro del consejo de asesores en bioética, según ella por oponerse a la postura del presidente a la investigación con células madre, de la que ella fue acérrima defensora.
En 2017 vivió otro pequeño terremoto ajeno a la ciencia cuando tres científicas del prestigioso Instituto Salk de California (EE UU), del que era presidenta, denunciaron a la institución por el acoso que sentían por parte de algunos hombres. Poco después la científica anunció su dimisión del cargo, que se hizo efectiva el verano pasado.

De visita en Madrid para participar en una gala de mujeres y ciencia organizada por el CNIO (Centro Nacional de Investigaciones Oncológicas) y por la iniciativa Constantes y Vitales, la bióloga molecular habla de telómeros y aborda la cuestión del acoso.

Pregunta. ¿Qué se ha demostrado científicamente  sobre la relación entre los telómeros, la salud y la longevidad?

Respuesta. Hemos demostrado que cuando los telómeros se desgastan y acortan aumenta la probabilidad de sufrir alguna de las enfermedades crónicas relacionadas con el envejecimiento. Sabemos también que la velocidad con la que se degradan varía mucho de persona a persona, por lo que intentamos estudiar desde un punto de vista estadístico cuáles son los factores que les afectan. Es interesante porque aunque los genes juegan un papel, son los factores externos y los hábitos de vida los que hacen más contribución. Básicamente reduces esos impactos haciendo caso de lo que te decían tus padres: duerme bien, come bien, ten una buena actitud, no fumes, no bebas demasiado, come una dieta mediterránea y haz ejercicio. El estrés crónico debido a situaciones sociales como una situación económica mala, la pobreza, acorta los telómeros. Tenemos que empezar a pensar en nuevas políticas sociales en términos de cuánto afectan a los telómeros. Si miras a un nivel de poblaciones generales ves efectos cuantificables y los políticos que toman las decisiones podrían cambiar mucho de esos factores.

P. Usted creó una empresa que mide la longitud de los telómeros. ¿Aconseja a la población general que lo hagan?

R. No, no lo necesitan. Como individuos esta información no tiene tanto valor. Por ejemplo, recordemos el caso del tabaco. ¿De dónde venía la información que demostró que era malo para la salud? De estudios de población que demostraban que los fumadores tenían más cáncer de pulmón. Sabemos que fumar es una mala idea desde el punto de vista social y también individual, pero no porque tengamos una biopsia de pulmón para saberlo.


20 de octubre de 2018

Logran eliminar el VIH en seis pacientes con trasplantes de células madre

Científicos del Instituto de Investigación del Sida IrsiCaixa de Barcelona y del Hospital Gregorio Marañón de Madrid han logrado eliminar el virus de la sangre.


Científicos del Instituto de Investigación del Sida IrsiCaixa de Barcelona y del Hospital Gregorio Marañón de Madrid han logrado que seis pacientes infectados por el VIH hayan eliminado el virus de su sangre y tejidos tras ser sometidos a trasplantes de células madre.

La investigación, que publica este lunes la revista 'Annals of Internal Medicine', ha confirmado que los seis pacientes que recibieron un trasplante de células madre tienen el virus indetectable en sangre y tejidos e incluso uno de ellos ni siquiera tiene anticuerpos, lo que indica que el VIH podría haber sido eliminado de su cuerpo.


Potencial desaparición del VIH

Los pacientes mantienen el tratamiento antirretroviral, pero los investigadores creen que la procedencia de las células madre —de cordón umbilical y médula ósea— así como el tiempo transcurrido para lograr el reemplazo completo de las células receptoras por las del donante —18 meses en uno de los casos— podrían haber contribuido a una potencial desaparición del VIH, lo que abre la puerta a diseñar nuevos tratamientos para curar el sida.

Fuentes:

El Confidencial (España)

BBC Mundo

10 de octubre de 2018

Modelos matemáticos para entender el funcionamiento del sistema inmunológico

Las ecuaciones diferenciales son claves en los modelos de poblaciones empleados para estudiar y comprender los procesos de enfermedades autoinmunes.

Los linfocitos T son células que forman parte del sistema inmune del cuerpo humano. Sus procesos de creación y maduración son especialmente delicados, ya que cualquier fallo puede derivar en problemas graves para el individuo, como leucemias y otras enfermedades autoinmunes. En los últimos años, las ecuaciones diferenciales han resultado ser la clave de los modelos matemáticos de poblaciones empleados para estudiar y comprender estos procesos.

Los linfocitos T participan en la respuesta inmune adaptativa, la segunda etapa de acción del sistema inmunológico para proteger al organismo de las infecciones causadas por virus, bacterias y toda clase de patógenos. Se crean en la médula ósea, a partir de células madre hematopoyéticas. Estas células se convierten en precursoras de los linfocitos T mediante la selección tímica, un proceso de diferenciación celular que dura aproximadamente tres semanas y tiene lugar en el timo.


En cada instante del proceso, cada una de las células puede (1) morirse, (2) dividirse y dar lugar a dos células hijas, o (3) diferenciarse y dar origen a una célula diferente. Es muy importante entender dónde y cuándo recibe cada timocito una señal que le indica la opción que ha de seguir. Estas señales dependen tanto de las células epiteliales del timo, en particular del tipo de moléculas (antígenos) que tengan en su membrana celular, como del tipo de receptor T que el timocito muestre en su superficie. Es precisamente la interacción entre los receptores T de un timocito y los antígenos de las células epiteliales lo que determina su futuro.

Si la interacción es de gran afinidad bioquímica, el timocito ha de morir por apoptosis (muerte celular programada); si la afinidad es muy pequeña o nula, la muerte es por ``negligencia”; en el caso de afinidades intermedias, el timocito sufre un proceso de diferenciación y continúa la maduración. Para cuantificar la cinética de la selección tímica se introducen tasas de muerte (la frecuencia con la que un timocito recibe una señal de muerte) y tasas de diferenciación o proliferación (la frecuencia con la que recibe una señal de diferenciación o de división celular). Conocer estas tasas permitiría predecir, por ejemplo, el tiempo medio que un timocito pasa en cada fase del proceso de maduración tímica.

Sin embargo, no es posible determinar de manera experimental estos parámetros, ya que requeriría observar la trayectoria de cada pre-linfocito T en el timo del individuo estudiado, y las técnicas de microscopía actuales solamente permiten hacerlo durante una hora como máximo, lo que es un periodo muy inferior a las escalas de tiempo del proceso tímico.

Las matemáticas brindan herramientas precisas para describir poblaciones de células y sus cambios en el tiempo, mediante modelos deterministas de poblaciones. En esencia, estos modelos describen la evolución temporal de la población. Si se supone que a tiempo inicial la población consta de un cierto número de individuos, la ecuación describe cuántos habrá un poco después, si la población cambia por migración, por muerte o por nacimiento de nuevos individuos. Cada modelo de población depende de lo que se suponga como mecanismos de migración (por ejemplo, un flujo constante o no de individuos), de muerte y de nacimiento.

Lea el artículo completo en: El País (España)

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0