Latest Posts:

4 de enero de 2013

Fibonacci, la representación de Zeckendorf y la conversión entre kilómetros y millas

La sucesión de Fibonacci, llamada así por el matemático italiano Leonardo de Pisa, Fibonacci (que la presentó en su obra Liber Abaci), es posiblemente una de las sucesiones numéricas más conocidas por los matemáticos y los no matemáticos. Y no es para menos, dada la gran cantidad de propiedades interesantes que posee y la manía que tiene de aparecer en los lugares más insospechados, además de por su relación con \phi, el número áureo. Pero es posible que un objeto matemático como éste nunca sea totalmente conocido, siempre esconda algo. Hoy vamos a hablar de una interesante propiedad de esta sucesión que es poco conocida y que está relacionada con representaciones de números enteros positivos.

Sabemos que todo entero positivo puede representarse de forma única como suma de potencias de 2. De hecho es en esta propiedad en la que se basa el sistema de numeración binario, en el que cada número entero positivo se representa de una única forma con una sucesión de ceros y unos, correspondiendo un 1 a cada potencia de 2 que aparece en la representación y un 0 a cada potencia de 2 que no aparece. Por ejemplo, el 46 se representa de forma única como suma de potencias de 2 de la forma


46=32+8+4+2=2^5+2^3+2^2+2^1,

por lo que 46 en binario es:

46=101110_{(2}.
Edouard Zeckendorf 
¿Qué tiene que ver esto de las representaciones de números enteros con los números de Fibonacci? Para responder a esta pregunta primero tenemos que introducir en esta historia al médico y matemático belga Edouard Zeckendorf, que además fue miembro del ejército belga y prisionero de guerra de 1940 a 1945. Él fue quien demostró el siguiente resultado, conocido como teorema de Zeckendorf:
Teorema de Zeckendorf:
Todo número entero positivo puede representarse de forma única como suma de números de Fibonacci (esto es, elementos de la sucesión de Fibonacci) distintos, de tal forma que dicha representación no contiene dos números de Fibonacci consecutivos.
Esta representación se denomina representación de Zeckendorf del número entero positivo en cuestión.
Vamos, que podríamos representar cada número entero positivo de una forma parecida a como lo hacemos con las potencias de 2 pero con números de la sucesión de Fibonacci, que, por cierto, no está de más recordar


F_n=\begin{cases} 1 & \mbox{si } n=0 \\ 1 & \mbox{si } n=1 \\ F_{n-1}+F_{n-2} & \mbox{si } n \geq 2 \end{cases},

asignando un 1 a una posición si el número de Fibonacci correspondiente aparece en la representación (como F_0=F_1=1, para evitar problemas nos quedamos uno de ellos nada más, F_1, para las representaciones) y un 0 a una posición si el número de Fibonacci correspondiente no está en ella. En el ejemplo que aparece un poco más adelante se verá más claro todo eso.

Zeckendorf publicó su resultado en The Fibonacci Quarterly en 1972, aunque al parecer lo conocía desde 1939. Puede accederse gratuitamente a su artículo en A generalized fibonacci numeration (aquí podéis ver las correcciones de algunas erratas que contenía dicho artículo).

¿Cómo encontramos la representación de Zeckendorf de un número entero positivo n? Pues, a priori es muy sencillo:
Tomamos el número de Fibonacci más grande de entre los que son menores que n y se lo restamos a n. Si queda cero es que el propio n era un número de Fibonacci, y si no es así repetimos el proceso las veces que sea necesario hasta que una de las restas dé cero.
Vamos a hacerlo también con el 46, del que hace un rato calculamos la expresión en binario:
  • Como 46 no está en la sucesión de Fibonacci, su representación de Zeckendorf no es él mismo. Tomamos el número de Fibonacci más grande que sea menor que 46, que es el 34, que por tanto estará en la representación.
  • Restamos: 46-34=12. Como 12 no es un número de Fibonacci buscamos el mayor elemento de la sucesión que sea menor que él, que es el 8. Entonces este 8 también estará en la representación.
  • Restamos: 12-8=4. Como 4 no está en la sucesión, buscamos el mayor número de Fibonacci que sea menor que él, que es el 3, que por tanto también estará en la representación.
  • Restamos: 4-3=1, que sí es un número de Fibonacci, por lo que también hay que tomarlo.
  • La representación queda como sigue:

  • 46=34+8+3+1=10010101_{(F}
Cuanto menos curioso.
 
Esta representación de Zeckendorf también puede servir para definir una operación poco conocida: la denominada multiplicación de Fibonacci. Se define de la siguiente forma:
Dados dos números enteros positivos a, b cuyas representaciones de Zeckendorf son las siguientes:

a=\displaystyle{\sum_{i=0}^k F_{c_i}} \quad b=\displaystyle{\sum_{j=0}^l F_{d_j}}

con c_i, d_j \geq 1, definimos la multiplicación de Fibonacci de a y b, que denotaremos a \circ b, así:
a \circ b= \displaystyle{\sum_{i=0}^k \sum_{j=0}^l F_{c_i+d_j}}
Veamos un ejemplo. Vamos a hacer la multiplicación de Fibonacci de 7 y 14, esto es, 7 \circ 14. Para ello, calculamos las representaciones de Zeckendorf de cada uno de ellos:

7=5+2=F_4+F_2 y 14=13+1=F_6+F_1
Entonces:

\begin{matrix} 7 \circ 14=F_{1+2}+F_{1+4}+F_{6+2}+F_{6+4}= \\ =F_3+F_5+F_8+F_{10}= 3+8+34+89=134 \end{matrix}
Es fácil comprobar que esta operación es conmutativa (reordenando las sumas). Lo que es sorprendente es que también sea asociativa, hecho que probó Donald Knuth (parece que este señor tiene que estar siempre relacionado con cosas raras, como la notación de Knuth).

Y también podemos extender la sucesión de Fibonacci a índices negativos, consiguiendo así una forma de representar todo número entero (sea positivo y negativo) de forma única. Echadle un ojo a los trabajos de Zeckendorf y a los enlaces y podréis encontrar más información.

Para terminar, vamos a ver una manera de pasar de kilómetros a millas, y viceversa, usando esta representación. La clave está en el hecho de que la sucesión de los cocientes de cada número de Fibonacci entre el justo anterior converge al número áureo \phi=(1+\sqrt{5})/2 \approx 1,618 y que una milla son aproximadamente 1,609 kilómetros.

¿Cómo podemos usar esto para nuestro objetivo? Muy sencillo. Supongamos que queremos expresar 72 millas en kilómetros. Lo que tenemos que hacer es encontrar la representación de Zeckendorf de 72 y después sustituir cada número de Fibonacci que aparezca en ella por el inmediatamente superior. La representación de Zeckendorf de 72 es

72=55+13+3+1
Según lo anterior, esto nos dice que 72 millas serán, aproximadamente

89+21+5+2=117   kilómetros.

Si queremos pasar de kilómetros a millas hacemos lo mismo, pero en este caso sustituimos cada número de Fibonacci por el anterior.

Tomado de:

Gaussianos 

Experimento permite controlar una cucaracha por Twitter

tweetroach

La artista Brittany Ransom creó a la “cucaracha Twitter”, un insecto que puede ser controlado por los mensajes que recibe en su cuenta, @TweetRoach. Basta enviar un mensaje con un comando para darle instrucciones a la cucaracha.

La cucaracha está equipada con una mini-mochila electrónica conocida como RoboRoach, que estimula los nervios en las antenas de la cucaracha, permitiendo hacer que el insecto doble a la izquierda o a la derecha presionando un botón. Ransom trabajó con este aparato, agregando además un Arduino y su propio software para unir a la cucaracha a Twitter.

De esta manera, basta enviar un mensaje mencionando a @TweetRoach indicando #TweetRoachLeft o #TweetRoachRight para hacer que doble a la izquierda o a la derecha.

La cucaracha no está todo el día conectada, sino que utiliza la mochila por cortos periodos de tiempo durante los cuales está disponible para los usuarios de Twitter, explicó Ransom a CNET. Para no volver loca a la cucaracha, el sistema además está programado para recibir un sólo comando cada 30 segundos.

El plan de Ransom con este extraño proyecto es observar si la cucaracha puede aprender a adaptarse e ignorar el efecto de la mochila, haciendo un paralelo a la sobre-estimulación digital en la que vivimos los seres humanos hoy



Tomado de:

FayerWayer

Maravilloso: La belleza de los cuadrados mágicos

Los cuadrados mágicos, inocentes cuadrados con números que esconden propiedades tan interesantes. Pero no todos son iguales, ni mucho menos. Los hay muy simples, que cumplen con las propiedades justas para llamarlos mágicos, y también los hay que tienen características interesantes para dar y tomar.

Por aquí ya hemos hablado sobre cuadrados mágicos. Vimos qué era un cuadrado mágico numérico (la suma de las filas, las columnas y las diagonales es siempre la misma), qué era la constante mágica en cuadrados mágicos con los números del 1 al n2 y métodos para construirlos. Hoy vamos a ver muchos cuadrados mágicos, pero no de los habituales, no de los simples. Vamos a ver cuadrados mágicos numéricos que cumplen muchas más propiedades que los habituales; también veremos algunos en los que el producto (en vez de la suma) es la operación protagonista; y hasta alguno que no es numérico.

Espero que después de admirar todas estas maravillas matemáticas la magia que desprenden estos cuadrados haya penetrado en vuestras mentes para quedarse ahí para siempre.


El cuadrado mágico de Durero

De éste ya hemos hablado en Gaussianos:



Aparece en el grabado de Durero Melancolia I. La suma de las filas, las columnas y las diagonales es 34, número que puede encontrarse en muchas otras combinaciones de números del propio cuadrado. No os perdáis el post que le dediqué no hace mucho: El cuadrado mágico del pintor.

El cuadrado mágico de la Sagrada Familia

En la Sagrada Familia de Barcelona tenemos otro cuadrado mágico interesante, que fue diseñado para la llamada Fachada de la Pasión por el escultor Josep María Subirachs. Es éste:



Es del estilo al de Durero, pero se han rebajado algunos números para forzar que la constante mágica del cuadrado sea 33, lo que hace que haya números repetidos. Hay diversas interpretaciones para ello, como que se hizo porque es la edad a la que muere Jesucristo, uno de los personajes principales de la obra literaria “La Biblia”, o que está relacionada con la masonería. Sea como fuere, este cuadrado mágico también es muy interesante, y de él han hablado, por ejemplo, en la trébede y en Microsiervos.

Cuadrados mágicos de productos

Pero no solamente de sumas viven los cuadrados mágicos. También los hay en los que el productos de los elementos de cada fila, columna o diagonal dan el mismo resultado, como éste, donde esos productos dan todos 216.



o el que nos presentó Javier Cilleruelo en el tercer desafío RSME-El País.

Cuadrados alfamágicos

Y no solamente de números viven los cuadrados mágicos, sino también de letras. Bueno, de la cantidad de letras, como ocurre en este cuadrado que nos enseñaron en Futility Closet:


Es un cuadrado mágico habitual con los números que contiene. Pero, además, si sustituimos cada número por la cantidad de letras que tiene su nombre en inglés, el resultado es otro cuadrado mágico. Este problema también se trató en la serie de desafíos RSME-El País por parte de Jose Luis Carlavilla, profesor en la UCLM, en el desafío 22. Y de él también han hablado en este post de Simplemente números.

Un cuadrado mágico con letras

Decíamos que las letras, en lo que se refiere al número de letras del “nombre” de los números, también tienen su hueco en el mundo de los cuadrados mágicos. Pero las letras en sí también tiene su lugar reservado en este apasionante mundo. El caso más conocido es, sin duda alguna, el Cuadrado Sator, en el que aparecen las palabras latinas SATOR, AREPO, TENET, OPERA y ROTAS formando el siguiente cuadrado mágico:
 
(Imagen tomada de aquí)
 
Yo no conozco más casos de este tipo. Si alguien sabe de alguno más que lo comente.

Mezclando suma y producto en un cuadrado mágico

Hemos visto cuadrados mágicos que lo son usando la suma y otros que lo son usando producto. ¿Y las dos a la vez? Sí amigos, hay cuadrados mágicos que lo son con la suma y también con el producto. Os dejo este ejemplo, sacado del grandioso blog Futility Closet. En él, que podéis ver aquí, la suma de los elementos de cada fila, columna y diagonal es 840, y el producto de los elementos de cada fila, columna y diagonal es 2058068231856000:



Mezclando sumas con potencias

Y también los hay dobles por sumas y potencias, como éste otro que he tomado también de Futility Closet. En él la suma de los elementos de cada fila, columna y diagonal es 260, y a elevar al cuadrado todos los elementos obtenemos otro cuadrado mágico donde la suma de los elementos de toda fila, toda columna y las dos diagonales es 11180:



Maravilloso cuadrado mágico en homenaje a Martin Gardner

Precioso homenaje el que le da Richard Wiseman a nuestro siempre querido y admirado Martin Gardner en forma de cuadrado mágico. Grandioso vídeo:




El cuadrado mágico del 19 y las expresiones decimales
Ni siquiera las expresiones decimales se libran. En este caso le toca a las expresiones decimales de las fracciones k/19, con 1 \le k \le 18:

Todas las filas, columnas y diagonales del cuadrado formado por estos números suman 81. No me digáis que no es impresionante. Y, de nuevo, es Futility Closet quien no lo enseña en este post.

Cuadrado mágico con números primos

¿Y si le pedimos a todos los elementos de un cuadrado mágico que sean primos? ¿Obtendremos alguno? ¡Claro! Por ejemplo éste:

En él todos los elementos son números primos y la suma de cada fila, columna y diagonal es 258.
En MathForum han hablado sobre él y también sobre muchísimas otras cosas relacionadas con cuadrados mágicos (enlace muy recomendable).

Construyendo un cuadrado mágico a partir de otro

Curiosísima manera de construir un cuadrado mágico a partir de otro que nos muestran en este post del gran blog Juegos de Ingenio. De éste no digo nada más, os dejo que lo veáis por vosotros mismos.
El monstruo 13×13
Y, cómo no, nuestro gran amigo Tito Eliatron también se ha unido en algún momento a la fiebre de los cuadrados mágicos. Lo hizo con este monstruoso cuadrado mágico 13×13 que esconde una gran cantidad de propiedades interesantes:

Si tomamos el 3×3 central obtenemos un cuadrado mágico, si tomamos el 5×5 central también, y el 7×7, y el 9×9 y el 11×11…y, además, la constante mágica de cada uno de ellos es la del inmediatamente inferior más 10874. Todavía estoy con la boca abierta.

El twist

Y de nuevo Futility Closet aparece en esta serie de cuadrados mágicos. En este caso es para enseñarnos este cuadrado mágico twist, con contante mágica 157, que cumple que al girarlo 90º nos da también un cuadrado mágico con la misma constante:

El cuadrado mágico de Benjamin Franklin
Y aquí tenemos otro de esos cuadrados mágicos que uno no llega a entender cómo se descubren, o cómo se construyen, dada la tremenda cantidad de propiedades que contiene. Es el denominado cuadrado de Franklin:
y también nos lo enseñaron en este post de Futility Closet. Su constante mágica es 260 (aunque las diagonales no suman eso), pero, como decíamos, encierra una gran cantidad de curiosidades dignas de mención. Por ejemplo, cada mitad de una fila y de una columna suma 130, los cuatro números de las esquinas y los cuatro números centrales también suman 130, la suma de los elementos de cada cuadrado 2×2 que tomemos es 130 (¿¿??), los cuatro elementos de una diagonal ascendente junto con los cuatro de la correspondiente descendiente también sman 260…y seguro que hay más propiedaes interesantes ocultas.

Y el remate final: cuadrados mágicos con figuras geométricas

Los hay de números (de todos los tipos habidos y por haber), de letras (tanto de cantidades de letras como de letras en sí)…¿Por qué no de figuras geométricas?

En la galería de Geomagic Squares aparecen muchísimos, como el de la figura superior (en Microsiervos también hablaron sobre ellos). Realmente curiosos, ¿verdad?

Y, para terminar, os dejo uno de estos con figuras geométricas que habría venido muy bien para el día de San Valentín. Un bonito cuadrado mágico de figuras y corazones que pudimos ver el año pasado en SpikedMath:

Creo que no podréis negar que es maravilloso.

Fuente:

Gaussianos

¿1+1=dolor físico?





Podría ser el caso para los que odian las matemáticas. Según un nuevo estudio, la simple idea de tener que resolver un problema matemático hace que se activen los centros del dolor en cerebros con miedo a los números.

 

Investigadores de la Universidad de Chicago han medido la actividad neuronal de 28 adultos, la mitad de ellos con alta ansiedad declarada hacia las matemáticas. Cada uno recibió una serie de preguntas de lenguaje y de matemáticas (algunas se encuentran más abajo) mientras se les practicaba una resonancia.
 
Ver vídeo del banco de cerebros
 
El resultado fue que cuando el grupo con ansiedad detectaba un problema matemático reaccionaban la ínsula posterior y la corteza cingulada media, las partes del cerebro que perciben el dolor, igual que si la mano del sujeto en cuestión se quemara en una estufa caliente. Los participantes sin ansiedad no registraron tal respuesta.
 

Es más, según el coautor del estudio Ian Lyons, «la ansiedad solo se registró durante la anticipación, no cuando resolvían los problemas, lo que sugiere que no son las matemáticas en sí lo que duele, si no el pensar en ellas».
 

Estudios anteriores mostraron que los acontecimientos psicológicamente estresantes, como el fin de una relación amorosa, pueden provocar molestias físicas. Este estudio, publicado la semana pasada por Lyons y Sian Beilock en la revista PLOS ONE, podría ser el primero en demostrar que la simple anticipación puede manifestarse en el cerebro a través del dolor.
 

«Se trata de una interpretación psicológica», declara Lyons. «Las matemáticas no son más que números en un papel, no pueden hacerte daño».
  
Y añadió: «A las personas con altos niveles de ansiedad hacia las matemáticas se les suelen dar mal los problemas de este tipo, y suelen elegir carreras profesionales alejadas de las matemáticas».
  
¿Podría desarrollarse esta reacción?
  
«Creemos que no», afirma Lyons. «Las matemáticas son un invento cultural relativamente reciente, no tienen más que algunos miles de años, por lo que las respuestas parecen impulsadas por experiencias directas. Si esas experiencias han sido malas, la persona identifica la idea de las matemáticas como algo amenazador, e incluso doloroso».
 

Lyons cree que los resultados de su estudio podrían aplicarse más allá de las matemáticas. «No nos sorprendería verlos con otras fobias, como el vértigo, por ejemplo, u otros tipos de ansiedad».
 

¿Hay algo para calmar el dolor cerebral de esas personas?
 

«El primer paso es superar la ansiedad», afirma Lyons, y estamos ante un caso en el que la práctica no ayuda: «Hacer montones de problemas matemáticos no es una buena idea, pero sí lo es encontrar la forma de sentirse más cómodo con la idea».
 
¿Tu miedo a las matemáticas se refleja en tu cerebro?
 
Haz la prueba para comprobarlo (Nota: en el experimento real se presentaron los problemas de uno en uno. Los participantes debían resolver cada problema en cinco segundos y no podían utilizar un borrador, debían resolverlos en la cabeza).

1) ¿Son 8×9-16=56?
2) ¿Son 7×8-19=37?
3) ¿Son 5×9-16=27?
4) ¿Son 8×5-19=23?
5) ¿Son 6×7-17=27?
6) ¿Son 9×4-17=19?
 
 
 Respuestas.
  1. si
  2. si
  3. no
  4. no
  5. no
  6. si
 
 
Jeremy Berlin para National Geographic

Tomado de:

National Geographic

Geometría: ¿Cuán grande es un punto?

by
ball


NOTA: lo que sigue es un resumen del magnífico artículo: “How Big is a Point?” de Richard J. Trudeau [1].

“Un punto es lo que no tiene partes”.

En el lenguaje de los matemáticos griegos, “parte” viene a significar “dimensión”.

Es decir, Euclides imaginaba un punto como una entidad que no tiene longitud, ni altura, ni anchura.

No sé si lo han notado, pero es un concepto MUY profundo.

De hecho, choca contra nuestra intuición y sentido común.

Normalmente, cuando se introduce el concepto de punto, se suele poner como ejemplo el pensar en un círculo (aunque sería más conveniente pensar en una esfera) cuyo diámetro es muy, muy, muy, muy pequeño en relación al resto de elementos que lo rodean. Es una aproximación muy empleada en Física: la luna es un punto, en comparación al sol. El sol es un punto, en comparación con la galaxia. Yo soy un punto, en comparación con la Tierra.

De este modo, nuestra intuición cede un poco y estamos algo más cómodos, ya que tenemos un modo de “visualizar” este objeto tan extraño que carece de dimensiones.

El problema viene cuando uno se topa con un segmento. Es decir, un trozo de línea con una longitud determinada (p. ej., 1 cm.).

Un segmento está compuesto por puntos.

Entonces, ¿cómo diablos adquiere LONGITUD un segmento? ¿Cómo es posible que “poniendo un punto al lado del otro” APAREZCA de repente una nueva dimensión? ¡La “suma” (finita o infinita) de longitudes CERO no puede dar lugar a una longitud FINITA!

La respuesta es que dichas objecciones no responden a la LÓGICA, sino a la INTUICIÓN.

Veamos.

La frase “poner un punto al lado del otro” CARECE DE SENTIDO. ¿Cómo vamos a poner un punto “AL LADO DE” otro, si un punto NO TIENE DIMENSIONES?

En general, ése es uno de los mayores problemas de las analogías. Al hacer la analogía de un punto como una canica muy pequeña, uno OLVIDA el concepto original. Y lo que es peor, si APLICAMOS dicha analogía a otros conceptos basados en el concepto de punto, podemos llegar a CONCLUSIONES ERRÓNEAS.

Vale. Ya hemos aceptado que una línea está formada DE ALGÚN MODO QUE NO SOMOS CAPACES DE IMAGINAR por puntos.

Ahora bien, ¿cómo APARECE la nueva DIMENSIÓN? ¿Cómo aparece la LONGITUD a partir de algo que CARECE DE LONGITUD?

La respuesta es que la objección anterior sigue BASADA en la INTUICIÓN, no en la LÓGICA.
Pensamos que la LONGITUD de un segmento viene dada DE ALGÚN MODO por la “SUMA” de LONGITUDES más pequeñas, y que dichas longitudes más pequeñas tienen que provenir de las longitudes de los puntos. Pero como los puntos NO TIENEN LONGITUD, llegamos a una contradicción. Y por tanto, creemos que NO ES POSIBLE crear un segmento a partir de puntos.

Fijémonos en la palabra “SUMA” del párrafo anterior.

De forma implícita estamos empleando el concepto “SUMA” desde un punto de vista ARITMÉTICO.
Además, nuestro concepto INTUITIVO de “SUMA” (cardinal de la unión de conjuntos) sólo es aplicable a SUMAS FINITAS.

Es decir, nuestra INTUICIÓN no es capaz de “visualizar” una “SUMA” DE INFINITOS ELEMENTOS.
Bueno, quizás a las personas que hayan estudiado series, les sea más fácil aceptar que se pueden “SUMAR” infinitos elementos. Sin embargo, el meollo de la cuestión es que la suma de series que uno suele tener en mente está formada por una cantidad INFINITO NUMERABLE de elementos. Y aquí estamos hablando de una “SUMA” NO CONTABLE de elementos. Estamos en el ámbito CONTINUO, no en el discreto. 

No hablamos de SUMATORIOS sino de INTEGRALES.

Ajá. Ya casi estamos llegando al final.

El modo en que se suele introducir la INTEGRAL es como una SUMA INFINITA DE TÉRMINOS INCONTABLES. Algo así como una generalización del SUMATORIO.

Pero esto es otra vez una INTERPRETACIÓN INTUITIVA del CONCEPTO de INTEGRAL.

Así que abandonemos de una vez la INTUICIÓN y empleemos la LÓGICA.

Olvidemos el concepto INTUITIVO de SUMA.

Y aceptemos el hecho de que un segmento está formado por puntos. Y que la LONGITUD de un segmento APARECE por la COMBINACIÓN DE UN CONJUNTO INFINITO NO NUMERABLE de PUNTOS.

Es decir, olvidemos los conceptos ARITMÉTICOS y vayamos a conceptos GEOMÉTRICOS.

Si formamos un triángulo rectángulo con catetos de longitud 1, la hipotenusa ha de
tener longitud \sqrt 2.


Es decir un número IRRACIONAL.

Algo que produjo una “conmoción” en la forma de pensar al trabajar con los números hasta entonces.
Algo que parecía ILÓGICO y por tanto NO RACIONAL.

Porque durante mucho tiempo se creía que uno podía formar figuras geométricas con
materiales REALES y que las longitudes guardaban relaciones enteras entre sí.


Y así, se pensaba que se podía formar un triángulo con “canicas”, y que habría un número CONTABLE de canicas formando el triángulo. Y que las proporciones entre número de canicas eran relaciones RACIONALES.

El descubrimiento de la IRRACIONALIDAD de \sqrt 2 significaba que, en CONTRA de lo que siempre se había dado por hecho, EXISTEN pares de segmentos que NO TIENEN UNA MEDIDA COMÚN. No existe una “canica”, por muy pequeña que sea, que mida ambas longitudes.

Por lo que concluyeron (agárrense y asómbrense de la capacidad matemática y lógica
de los griegos) que la EXISTENCIA del número \sqrt 2 SIGNIFICABA que los PUNTOS NO PUEDEN TENER DIMENSIÓN.


La posterior evolución de las Matemáticas y de los conceptos de integral y de las forma de “operar” con conjuntos infinito no numerables nos ha dado una mayor comprensión del significado de la palabra “MEDIDA”.

En todo caso, hay que reconocer el enorme genio LÓGICO y GEOMÉTRICO de los matemáticos de la antigua Grecia.

LEAN Y DISFRUTEN DEL ARTÍCULO DE Richard J. Trudeau. ¡YA!

[1] Richard J. Trudeau. “How Big is a Point?“. The College Mathematics Journal, Vol. 14 (1983), pp. 295-300.

Fuente:

Divergiendo

El problema de las distancias enteras en el plano

Que levanten la mano los que crean que “en matemáticas está todo inventado”. Venga, sin miedo que aquí estamos para aprender.

Pues no, las matemáticas son una ciencia muy viva con una gran actividad investigadora (y, por el momento, España está entre los primeros puestos en investigación matemática). Sin embargo, aún quedan muchos problemas para los que no se conoce solución, o para los que se busca una solución mejor.


Hoy contaremos un ejemplo de problema muy fácil de entender, pero aún sin resolver, el problema de las distancias enteras en el plano. Empecemos por la siguiente pregunta:
¿Cuántos puntos se pueden colocar en el plano de manera que la distancia entre cualquier par de puntos sea un número entero?
Así sin más, la respuesta es muy fácil. Piénsalo un poco... ¿La tienes? Bastaría con poner puntos alineados, por ejemplo a lo largo de una recta horizontal, cada uno a distancia 1 del siguiente. Así podríamos colocar infinitos puntos con distancias enteras entre todos ellos.

Infinitos puntos con distancias enteras entre ellos

Y entonces podemos preguntarnos
¿Hay alguna otra manera, que no sea sobre una recta, de colocar infinitos puntos en el plano con distancias enteras entre todos ellos?
En 1945 Erdős (un matemático muy particular) y Anning demostraron que no, que sólo puede haber infinitos puntos con distancias enteras si éstos están alineados. Además, también demostraron que para cualquier número (finito) n, se pueden colocar n puntos en el plano con distancias enteras entre ellos.

Eso sí, para ello tenían que colocar todos los puntos sobre una circunferencia. Así que después de publicar este resultado en 1945, Erdős modificó la pregunta inicial. Lo verdaderamente interesante era:
¿Cuántos puntos se pueden colocar en el plano, sin que haya tres en una misma recta ni cuatro en una misma circunferencia, de manera que la distancia entre cualquier par de puntos sea un número entero?
Vamos a intentar responder a esta pregunta. Con 2 puntos todo el mundo sabe hacerlo...

Dos puntos con distancia entera entre ellos

Ahora inténtalo con 3 puntos. ¿Ya lo tienes? Sirve cualquier triángulo rectángulo cuyas longitudes de los lados formen una terna pitagórica. Por ejemplo:

Tres puntos con distancias enteras entre ellos

Con 4 puntos es un poco más difícil, pero no mucho. Después de un rato pensando, se nos puede ocurrir usar cuatro triángulos como el anterior para obtener:

Cuatro puntos con distancias enteras entre ellos

Con 5 puntos la cosa ya se complica más y no pretendemos que lo resuelvas, pero si quieres puedes comprobar que los puntos de la siguiente figura cumplen la propiedad:


Cinco puntos con distancias enteras entre ellos

Para 6 puntos también se puede hacer, si quieres comprobarlo puedes mirar este enlace.

Para 7 puntos, Kreisel y Kurz encontraron la manera de hacerlo, que puedes ver también en este otro enlace. Lo llamativo es que para ello necesitaron varias buenas ideas y unas cuantas horas de cálculo por ordenador... y su resultado es de 2007. Es decir, más de 60 años después de la pregunta original de Erdős.

¿Y para 8 puntos? Pues, aunque no te lo creas:
Nadie sabe si es posible colocar 8 puntos en el plano, sin que haya tres en una misma recta ni cuatro en una misma circunferencia, con distancias enteras entre todos ellos.
Así que aquí tienes un problema de matemáticas que es bien fácil de entender y que sigue sin resolverse, en el que siguen trabajando investigadores de todo el mundo. ¡¡Y eso que son sólo 8 inofensivos puntos!! 

Fuente:

Cifras y teclas
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0