Latest Posts:

Mostrando las entradas con la etiqueta kepler. Mostrar todas las entradas
Mostrando las entradas con la etiqueta kepler. Mostrar todas las entradas

28 de noviembre de 2015

BBC: ¿Cómo será el fin del mundo?



Los investigadores creen que el proceso está en su inicio. 
 
Por el momento, no es algo que deba preocuparnos. Para que ocurra faltan aún unos 5.000 millones de años.

¿Pero qué pasará con la Tierra cuando se apague el Sol?

Nadie lo sabe a ciencia cierta, pero la destrucción de un sistema solar captada
por primera vez por el telescopio espacial Kepler, de la NASA, nos permite hacernos una idea de cuál podría ser el destino de nuestro planeta en un futuro lejano.

Los investigadores a cargo de la misión descubrieron los restos de un mundo rocoso en vías de descomposición, girando en torno a una enana blanca (el núcleo ardiente que queda de una estrella cuando ésta ya consumió todo su combustible nuclear).

Esta estrella moribunda, del mismo tipo que nuestro Sol y bautizada WD1145+017, está en la constelación de Virgo, a 570 años luz de la Tierra.

Lea: ¿Cómo será el fin de nuestro universo?

Y, según el estudio publicado esta semana por la revista Nature, la disminución regular de la intensidad de su brillo -una caída del 40% que se repite cada 4,5 horas- indica que hay varios trozos de roca de un planeta en descomposición orbitando en espiral a su alrededor.

"Esto es algo que ningún ser humano ha visto antes", afirmó Andrew Vanderburg, investigador del Centro de Astrofísica Harvard-Smithsonian y autor principal del estudio

El artículo completo en:

BBC Ciencia

20 de noviembre de 2015

¿Por fin contactamos con extraterrestres?

Representación artística de una hipotética súper Tierra

Kepler es el nombre del telescopio espacial que la ha observado. La estrella tiene un nombre poco romántico, KIC 8462852, pero podría ser el Sol de nuestros primeros vecinos extraterrestres. Efectivamente, estos días, la noticia en torno a una misteriosa estrella en nuestra Galaxia, a unos 1.500 años luz de la Tierra, ha sido una de las más comentadas en las redes sociales. 

¿Qué tiene de extraño esta estrella? La misión Kepler estudia las curvas de luz de miles de estrellas próximas con el objetivo de detectar pequeñas disminuciones de brillo que se producen cuando un planeta que orbita la estrella pasa por delante de ella. Esto es lo que los astrónomos llaman un tránsito y hace que la luz de la estrella disminuya ligerísimamente mientras el planeta pasa entre ella y el telescopio que la observa. Desde la Tierra, este fenómeno se puede observar cuando Mercurio o Venus pasan por delante del disco solar. Los tránsitos, sobre todo el de Venus, han sido efemérides astronómicas muy populares y que han tenido un papel importante en las historia de la astronomía, por ejemplo para determinar con precisión las distancias a los planetas del Sistema Solar. La misión Kepler ha detectado centenares de exoplanetas desde que se empezara a observar hace seis años. Para analizar las curvas de luz que diariamente observa, además de potentes ordenadores y programas informáticos, se hace uso de la colaboración ciudadana. El programa "Cazadores de planetas" está formado por miles de voluntarios que con sus ordenadores desde sus casas analizan los datos de la sonda Kepler y, habiendo recibido el entrenamiento adecuado, tratan de interpretar las curvas de luz. De la de KIC 8462852 han dicho que es caprichosamente extraña e interesante y que presenta un tránsito gigante.

El equipo encabezado por la investigadora postdoctoral Tabetha Boyajian de la Universidad de Yale ha estudiado diferentes escenarios astrofísicos que podrían explicar la extraña curva de luz. Concluyen que una hipótesis plausible sería un enjambre de cometas catapultados hacia la estrella por el paso de otra estrella cercana. Nuevas observaciones astronómicas se hacen necesarias para comprobar esta hipótesis. Entre tanto, ha surgido la idea de si la extraña curva de luz es el resultado de gigantes estructuras llevadas a cabo por seres inteligentes de una sociedad tecnológicamente avanzada. Podrían haberse diseñado para aprovechar la energía de la estrella. Esta hipótesis es la que ha llevado a que la estrella salte a los medios de comunicación. Investigadores del programa SETI (Search for Extraterresrial Intelligence) quieren apuntar a la estrella con los radiotelescopios del VLA en Socorro (Nuevo México) para tratar de escuchar, como en la película Contact interpretada por Jodie Foster (y basada en una novela de Carl Sagan), la posible señal de una civilización extraterrestre. De hecho, ya han comenzado un intento de escucha con el radiotelescopio ATA del SETI Institute, de menor envergadura.

El artículo completo en:

El Mundo Ciencia

11 de septiembre de 2015

La raíz cuadrada de dos: El terror de los Pitagóricos

El primer intento serio de “hacer ciencia”, o por lo menos algo que nosotros, dudosos habitantes del siglo XXI, podamos considerar como ciencia, ocurrió en Mileto, una próspera colonia griega del Asia Menor, donde vivió Tales (de Mileto, obviamente) en el siglo VI a.C., del que cuentan que, basado en viejos datos babilónicos, predijo el eclipse total del 28 de mayo de 585 a.C. Verdadero o no, a veces la fecha de ese eclipse se pone como punto de arranque de la ciencia occidental.

Tales de Mileto y su escuela introdujeron una innovación absoluta en el pensamiento griego: separar lo natural de lo sobrenatural y establecer que los fenómenos naturales deben explicarse mediante causas naturales. Es la escuela de la physis. La escuela de Mileto dejó planteado un problema difícil: ¿por qué se debe aceptar tal o cual explicación (desde ya, los milesios estaban muy lejos de la idea de experimento)? Y ¿cómo podemos basar una teoría en la observación, sabiendo lo poco fiables que son los sentidos, y la empiria en general?

Problemas que fueron enfrentados por la escuela eleática (por Parménides de Elea, 540-470 a.C.), que frente al testimonio dudoso de los sentidos, opone un Ser permanente, inmóvil, continuo, eterno y sin atributos, al que sólo se puede acceder por la vía de la razón, olvidando los fenómenos, puramente contingentes (como quiere demostrar Zenón de Elea, discípulo de Parménides con la célebre paradoja de Aquiles y la tortuga). Pero un Ser sin atributos no puede darnos demasiado; el camino de Parménides no produce ciencia sino metafísica: en realidad, la escuela eleática lleva a la incipiente ciencia griega a un callejón sin salida. ¿Cómo salir del atolladero?

Los filósofos griegos siguieron: algunos tomaron un camino radical, como los atomistas (Demócrito y Leucipo), que fracturaron el ser en pequeñas partículas indestructibles y eternas: los átomos, infinitos, “increados”, tienen distintas formas y que se mueven permanentemente en el vacío. Y hubo, si se quiere, otra solución: las matemáticas, en las que la razón no tiene que discutir ni ocuparse de fenómenos, sino de relaciones puras. Ese es el camino que suscribió una escuela muy importante que se desarrolló a partir del siglo V en el sur de Italia, la escuela pitagórica. Los pitagóricos establecieron que la fuente de la realidad son los números. A la pregunta ¿cuál es el origen de las cosas?, respondieron: los números.


Es posible que esta idea haya partido del estudio de la música: descubrieron que hay relaciones numéricas precisas entre los sonidos; y estas relaciones, para nada evidentes, pudieron impulsarlos a dar el paso audaz de generalizar y proclamar que todas las cosas consisten en números. 

Así, la escuela pitagórica opta por el pensar y resuelve el problema milesio. Y fueron tal vez un poco más lejos de lo aconsejable: identificaron a la Justicia con el número 4 por tratarse del primer número cuadrado; al matrimonio con el 5, que representaba la unión del macho (3) con la hembra (2). Además, creían que todo el cielo era una escala musical, analizaron muchas propiedades de los números, trabajaron sobre los poliedros regulares, las medias aritméticas, geométricas y armónicas, acústica y astronomía, que era algo así como geometría aplicada. Desde ellos viene esa ligazón entre aritmética, música, astronomía y geometría que constituirá el quadrivium medieval. Propusieron un sistema, integrado por un fuego central alrededor del cual giraban veinte cuerpos envueltos en niebla, y dieron numerosas demostraciones; la más famosa es, desde ya, el teorema de Pitágoras).

Pero he aquí que el teorema de Pitágoras llevó a una conclusión asombrosa, que puso en jaque todo el sistema pitagórico. Al fin y al cabo, si uno construye un cuadrado de lado 1, se puede ver fácilmente que, como el cuadrado de la diagonal es la suma de los cuadrados de los catetos, es 1 al cuadrado + 1 al cuadrado = 2. Y entonces la diagonal mide la raíz cuadrada de 2.

Resulta que los pitagóricos descubrieron también que la raíz cuadrada de 2 no es un número, que no hay ninguna fracción que la represente: la raíz de 2 es “a-logos”, es inexpresable: es irracional. Y sin embargo, la diagonal de un cuadrado de lado 1 está ahí, de manera neta y tan evidente; tiene una longitud real y extremos fijos, puede construirse una varilla de esa longitud concreta, pero esa longitud concreta no parece ser nada, no parece pertenecer a la esfera de lo posible... y sin embargo, está allí. Pero además, es imposible negar la existencia de la raíz cuadrada de 2, que no se produce en el terreno de la empiria, sino en el mundo puro de los números.

Ahora, ¡hay que imaginar el efecto que este descubrimiento tuvo que tener en algunos de los primeros pitagóricos! Ellos suponían que todo consiste en números y que el conocimiento expresa relaciones entre números (enteros o fraccionarios). Pero he aquí que una entidad, que ciertamente pertenece a la ciencia, la diagonal de un cuadrado, no puede ser expresada con números enteros, no puede existir. Es decir, tenemos algo concreto y ese segmento, que está ahí no es un número, no es nada. Y la medida de la diagonal de un cuadrado de lado 1 tampoco es nada. ¡Pero la diagonal de ese cuadrado está ahí! ¿Cómo puede ser que a un segmento no corresponda ninguna longitud?

Un ejemplo del terror que produjo ver que algo tan simple como la raíz cuadrada de 2 era un irracional es la leyenda según la cual un pitagórico, Hipaso, divulgó el secreto y pereció ahogado como castigo divino por su acción. Y es que la escuela pitagórica se había embarcado en un callejón sin salida. Construyeron todo un edificio científico, místico, que les parecía muy sólido, y de repente aparece este asunto que amenaza con precipitar toda la escuela en el abismo. Los pitagóricos se enfrentan a este dilema y no lo pueden resolver. Han fracasado en su teoría de que todo está constituido por números, aunque la influencia que ejercieron siguió resonando a través de los siglos, y la encontramos aún en Kepler.

Y es que el problema con que se enfrentaron no es fácil de resolver, la raíz de 2, como descubrieron los pitagóricos, desde ya no es una fracción: no hay número entero ni fraccionario alguno que multiplicado por sí mismo nos reproduzca exactamente al 2. Actualmente escribimos raíz cuadrada de 2 como 1,14142135624 y agregamos una serie de puntos suspensivos que significan que la fracción decimal no tiene fin, que el número de decimales (no periódicos) es infinito. Es lo que ahora llamamos (quizás en homenaje a Pitágoras) un número irracional.

El terror de los pitagóricos ante la raíz de 2 es fácil de entender, porque nosotros, hoy, en el fondo, seguimos siendo pitagóricos. No creemos, como Pitágoras, que todo es número, pero sí que las matemáticas subyacen al mundo empírico; que de un modo misterioso organizan la empiria, que aquello que es matemáticamente posible es y que aquello que no es matemáticamente posible, no es.
Tomado de:
Bonus:
La biografía de Pitágoras, y detalles curiosos de los pitagóricos, en esta presentación:

30 de agosto de 2013

Esta es la canción de las estrellas

Vídeo: Science
Un equipo de científicos estadounidenses ha convertido las señales lumínicas que emiten estrellas distantes en sonidos. Según explican esta semana en la revista 'Science', analizando la cantidad de ruido pueden hacer estimaciones sobre la gravedad en su superficie y determinar en qué etapa evolutiva se encuentra, desde que son estrellas enanas a gigantes rojas.

La gravedad en la superficie de un objeto celeste es la aceleración gravitacional que experimenta en su superficie. Según recuerdan los autores de este estudio, es muy difícil medirla de una manera precisa. Gracias a esta propiedad, los astrofísicos pueden determinar si es una estrella enana, como el Sol, o gigante y más evolucionada.

Para realizar este estudio han aprovechado las mediciones que se habían realizado de las variaciones en el brillo de más de 150.000 estrellas. Así, gracias a los datos recabados por telescopio espacial 'Kepler' de la NASA, han desarrollado un método para determinar la gravedad superficial de las estrellas en pocos segundos.

Variaciones en el brillo

Las variaciones en el brillo de las estrellas similares al Sol están impulsadas por muchos factores, incluida la granulación, que es una consecuencia de la convección de calor por debajo de la fotosfera –la superficie luminosa que la delimita–.

Como la granulación está relacionada con la gravedad en la superficie estelar, ésta se podría medir observando las variaciones en el brillo de la estrella.

Un patrón del parpadeo de la estrella durante ocho horas sirve para determinar la gravedad de la superficie. Su procedimiento consigue una incertidumbre del 25% para estrellas enanas, similares al Sol.

"El 25% de incertidumbre está muy bien, ya que las otras técnicas que se utilizan normalmente tienen una incertidumbre mucho mayor, de hasta el 150%. Medir la gravedad de la superficie de una estrella es muy difícil y puede llevar horas o días de trabajo", declara a SINC Fabienne Bastien, coautora del estudio que publica la revista Nature e investigadora de la Universidad Vanderbilt (EEUU).

Se espera que el nuevo método desarrollado también servirá para ampliar el conocimiento sobre los exoplanetas (planetas fuera de nuestro Sistema Solar), de los cuales no se pueden medir masas ni dimensiones directamente, sino a partir de la información sobre de las estrellas que orbitan.

"Al mejorar la medida de la gravedad en la superficie estelar, que a su vez nos da el tamaño y la masa de la estrella, sabremos los tamaños y masas de los planetas que la orbitan con mucha más precisión", asegura Bastien.

Fuente:

El Mundo Ciencia

7 de abril de 2013

El telescopio espacial Kepler da la razón a Einstein… una vez más

PIA16885

Una masiva enana blanca curva la luz de su compañera (recreación)

El telescopio espacial Kepler ha sido testigo de como una estrella muerta curva la luz de la estrella que acompaña. El descubrimiento está entre las primeras detecciones de este fenómeno (predicho por la teoría general de la relatividad de Einstein)  en estrellas binarias.

La enana blanca observada tiene aproximadamente el tamaño de nuestra Tierra, aunque una masa parecida a la de nuestro Sol. Su otra compañera de viaje es una enana roja que, aún siendo mayor de tamaño, orbita alrededor de la primera.

Las primeras observaciones llevaron a pensar que se trataba de un gigante gaseoso del tamaño de Júpiter eclipsando la luz de la enana roja. Posteriores mediciones con el telescopio Hale en San Diego descubrieron que la enana roja estaba moviéndose alrededor del supuesto planeta en un movimiento similar al de una peonza, ese movimiento era demasiado grande como para ser causado por un gigante gaseoso. Había que dar otra respuesta para explicar ese baile gravitacional, y la encontraron en forma de una enana blanca muy masiva.

PIA16886

El gráfico nos muestra las típicas curvas de brillo que usa Kepler para la detección de exoplanetas orbitando alrededor de su estrella madre. La curva de la izquierda es lo que primeramente se interpretó como el paso de un gigante gaseoso por delante de una enana roja, con la típica disminución en la curva de brillo. 
Realmente lo que se estaba viendo era el eclipse de una enana blanca por parte de su compañera, la disminución del brillo se debía a la gran masa de la estrella restando luz a su menos masiva compañera.

La gráfica de la derecha nos muestra que pasa cuando la enana blanca pasa por delante de la roja. La disminución del brillo es increíblemente sutil debido al pequeño tamaño de la enana blanca (recordemos comparable a nuestra Tierra). Los puntos azules marcan la disminución del brillo acorde con el tamaño de la enana blanca, la línea roja lo que realmente se observa en el tránsito, su masa es enorme, la gravedad curva y magnifica la luz de la enana roja, dando lugar a lo que predijo Einstein, una lente gravitacional.

Esta misión no deja de darnos sorpresas, además de ser una de las mayores fuentes a la hora del descubrimiento de exoplanetas, también nos ayuda a poner imágenes a teorías que hasta ahora solo se mostraban sobre el papel.

Y nos la querían suspender.

Fuente:

Miles de Millones

3 de diciembre de 2012

No hay música sin ciencia

No se puede ver ni palpar, sin embargo, se siente. La música es una de las manifestaciones artísticas más universales y, a la vez, uno de los rasgos más singulares, junto con el habla, del ser humano. Pero el lenguaje musical tiene, también, mucho en común con otro lenguaje que la inteligencia ha inventado para describir la realidad: la ciencia. Ésta habla de espectros, frecuencias, resonancias, vibraciones y análisis armónico. No es una simple coincidencia, no hay música sin física.

El sonido es un fenómeno físico originado por la vibración de los cuerpos y que se trasmite por el aire en forma de ondas. El efecto estético de un sonido depende de la relación lógica y pautada de sus vibraciones. Es decir, que en el fenómeno musical existe una esencia matemática. Y si consideramos la música como una sensación auditiva cuyo propósito es invocar emociones, disciplinas como la fisiología, la psicología, la bioquímica y las neurociencias tienen mucho que decir.

Un Sistema Solar polifónico

La correspondencia entre la música y la ciencia se conoce desde hace mucho tiempo. Probablemente, hacia el siglo VI a.C., en Mesopotamia ya advirtieran las relaciones numéricas entre longitudes de cuerdas. Pero fue en la Grecia antigua cuando se trazaron las diferentes escaleras armónicas basadas en las proporciones numéricas. Para los pitagóricos el Universo era armonía y número. Las notas musicales se correspondían con los cuerpos celestes. Los planetas emitían tonos según las proporciones aritméticas de sus órbitas alrededor de la Tierra. Y los sonidos de cada esfera se combinaban produciendo una sincronía sonora: la "música de las esferas".

Esta armonía celestial fue descrita por muchos pensadores como Platón, que en La República, relata el mito de Er, un guerrero que en su muerte temporal ve el Universo y describe las órbitas de los planetas. "Encima de cada uno de los círculos iba una Sirena que daba también vueltas y lanzaba una voz siempre del mismo tono; y de todas las voces, que eran ocho, se formaba un acorde". También Cicerón, en El Sueño de Escipión, explica el fenómeno: "Es el sonido que se produce por el impulso y movimiento de las órbitas, compuesto de intervalos desiguales, pero armonizados (...) Porque tan grandes movimientos no podrían causarse con silencio, y hace la naturaleza que los extremos suenen, unos, graves, y otros, agudos".

La tradición que consideraba al Universo como un gran instrumento musical se prolongará durante la Edad Media y hasta el siglo XVII, cuando aparece la figura de Johannes Kepler. El astrónomo alemán intentó comprender las leyes del movimiento planetario y consideró que éstas debían cumplir las leyes pitagóricas de la armonía. En su libro Harmonices Mundi (1619) ilustra el orden del Universo según los sonidos producidos por las velocidades angulares de cada planeta. Cuanto más rápido era el movimiento, más agudo era el sonido que emitía.

Asumida esta creencia, Kepler escribió seis melodías, cada una correspondiente a un planeta diferente, e instó a los músicos de su época a asimilar su descubrimiento. Escribió: "el movimiento celeste no es otra cosa que una continua canción para varias voces, para ser percibida por el intelecto, no por el oído; una música que, a través de sus discordantes tensiones, a través de sus síncopas y cadencias, progresa hacia cierta predesignada cadencia para seis voces y, mientras tanto, deja sus marcas en el inmensurable flujo del tiempo".

Las estrellas se hacen oír

Las primeras evidencias de música originada en un cuerpo celeste, tal como habían imaginado los pitagóricos primero y Kepler más tarde, no se encontraron hasta hace varias décadas. Las estrellas no emiten melodías armoniosas, pero sí que están sometidas a perturbaciones que provocan una respuesta en forma de ondas. No podemos escuchar el sonido emitido por una estrella, ya que las ondas de sonido necesitan un medio por el que propagarse y el Universo está prácticamente vacío, aunque podemos observar cómo vibra. Y éste es el ámbito de estudio de la sismología solar, un campo de la astrofísica que, desde 1979, investiga en detalle la estructura interna invisible del Sol.

Como un complejo instrumento musical, nuestro astro oscila creando tipos de ondas (modos propios de oscilación) que se propagan por su interior y se reflejan en la superficie deformándola ligeramente, del mismo modo que las olas del mar. Observando esta alteración se pueden descubrir las frecuencias de las ondas que se propagan desde su núcleo y deducir, al igual que en una ecografía, las características físicas y los movimientos que se prolongan en el interior.

Que nuestro astro tenga ritmo no es una cualidad única, sino que cada estrella, como cada instrumento musical, posee su propio sonido. Actualmente, un astrofísico del IAC, Garik Israelian, ha convertido esta propiedad de los objetos celestes en un proyecto musical. "Detecto las ondas, las convierto en sonidos en el ordenador y, como resultado, obtengo una serie de notas precisas", describe. Con él colabora Brian May, otro astrofísico aunque más conocido como guitarrista y compositor del grupo Queen.

Y el Sol es, también, la repuesta a uno de los misterios que la ciencia llevaba años persiguiendo: el excelso sonido del violín Stradivarius. La última teoría sostiene que el secreto está en el "Mínimo de Maunder", un periodo de escasa actividad solar que entre los siglos XVII y XVIII, cuando se elaboraron los citados violines, provocó un acusado cambio climático. La temperatura en Europa descendió, en lo que se llamó la "Pequeña Edad de Hielo", causando un lento crecimiento en los árboles y dotando a la madera de unas singulares cualidades sonoras.

Con la música a otra parte

Para Leibniz, "la música es un ejercicio de aritmética secreta y el que se entrega a ella ignora que maneja números". Y Bertrand Russell consideraba que "el matemático puro, como el músico, es creador libre de su mundo de belleza ordenada". Descartes (Compendio musical), Galileo (Discurso), Mersenne (Armonía Universal), D’Alembert (la solución de la ecuación de ondas) y Euler (Nueva teoría musical), son algunos de los matemáticos que se han preocupado por la elaboración de teorías musicales. Si bien, también se conocen muchos compositores que han aplicado a sus creaciones principios de lógica y probabilidad matemática, como Debussy, Boulez, Messiaen, Varese, Stockhausen o Xenakis, precursores de la música electrónica actual.

Pero la música no solamente ha seducido a los matemáticos. Científicos de muchas disciplinas han recogido sus teorías en composiciones musicales. Como Clark Maxwell, descubridor de la existencia de las ondas electromagnéticas, que compuso una canción titulada "Rigid Body Sings" para explicar de forma cómica la ley de colisión entre los cuerpos rígidos, o el físico Georges Gamow, que en uno de sus libros sobre su simpático personaje de ficción Mr. Tompkins incluyó tres arias para ser cantadas por tres eminentes cosmólogos, Abbé George Lemaître, Fred Hoyle y él mismo, que explicaban diferentes teorías de la creación del Universo.

En contra de la creencia popular, emoción y razón se originan en el cerebro y están relacionadas. Por ello, han prosperado nuevos campos de estudio, en especial, desde las neurociencias, que analizan la conexión entre el sonido, la emoción y el pensamiento. Y aunque hace 20 años pocos creían que pudiera aportar nada, actualmente es un ámbito de gran interés académico y múltiples aplicaciones, sobre todo, terapéuticas.

Hoy sabemos, que la música y el lenguaje tienen un origen común, ya que en el ámbito neurológico han evolucionado juntas en los últimos dos millones de años. También conocemos que la música estimula la zona del cerebro que registra el placer, un mecanismo básico para la supervivencia. Y que no todos escuchamos del mismo modo: gracias a imágenes obtenidas por Resonancia Magnética Funcional, se ha observado que la actividad cerebral en un músico es diferente de la de una persona sin formación musical.

Resumiendo, la música es el arte de combinar sonidos armónicamente con el propósito de producir sensaciones. Pero la armonía no es sólo un elemento esencial de la música, sino que ha sido invocada frecuentemente por la ciencia para describir y comprender el mundo. Muchos científicos han confiado en la armonía del Universo y algunos músicos han utilizado la lógica y el cálculo en sus creaciones. La música integra con la ciencia un campo general del pensamiento que nos distingue como humanos. Preguntarnos por ella, es preguntarnos por nosotros mismos.

Fuente:

Ccaos y Ciencia

15 de octubre de 2012

Descubren un planeta con cuatro soles


El telescopio Kepler

  • Estudia a más de 155.000 estrellas.
  • Hasta el momento ha encontrado 2.321 posibles planetas.
  • Entre ellos, hay 207 del tamaño de la Tierra, de los cuales 10 se encuentran en "zona habitable", en donde podría haber agua en estado líquido

Planeta con cuatro soles

Un grupo de astrónomos descubrió un planeta cuyos cielos están iluminados por cuatro soles distintos.

Se trata del primero en su tipo que orbita un par de estrellas y también tiene un segundo par estelar girando a su alrededor. 

Aún se desconoce cómo el planeta -parecido a Neptuno- ha conseguido evitar ser arrastrado por las fuerzas gravitatorias generadas por sus cuatro estrellas.

El hallazgo fue realizado por dos voluntarios a través del sitio web Planethunters.org. Ellos mismos bautizaron el planeta con el nombre de PH1.

Se cree que se trata de un "gigante gaseoso", situado a menos de 5.000 años luz de distancia, ligeramente más grande que Neptuno pero más de seis veces el tamaño de la Tierra.

"No hace falta ir muy atrás para saber que hay muchos aspectos que hubiesen podido jugar en contra de este sistema", explicó a la BBC Chris Lintott, de la Universidad de Oxford. 
.
"Las cuatro estrellas que tiran de él crean un ambiente muy complicado. Y a pesar de ello, el planeta se encuentra en una órbita aparentemente estable".
"Es realmente confuso y eso es precisamente lo que hace que este descubrimiento sea tan divertido. No se parece a lo que podríamos haber esperado".

El trabajo de los voluntarios

Las estrellas binarias -sistemas con pares de estrellas- son comunes. Sin embargo, sólo un puñado de planetas han logrado orbitar en ellos. Y, además, no existe la certeza de que ninguno de ellos tenga otro par de estrellas girando alrededor.

Al ser cuestionado acerca de cómo el planeta sobrevive sin ser arrastrado, Lintott dice: "Hay otros seis planetas bien establecidos alrededor de estrellas dobles y todos están muy cerca de las estrellas. Creo que lo que esto nos está diciendo es que los planetas pueden formarse en el interior de los discos protoplanetarios (la nube de gas denso que da lugar a los sistemas planetarios).

"Los planetas se están formando de manera estrecha y son capaces de aferrarse a una órbita estable allí. Un hecho que probablemente tenga implicaciones sobre cómo se forman los planetas en otros lugares".

PH1 fue descubierto por dos voluntarios estadounidenses, a través de Planethunters.org: Kian Jek de San Francisco y Roberto Gagliano de Cottonwood, Arizona. 

Ambos identificaron leves disminuciones de luz generadas cuando el planeta pasaba por delante de sus estrellas madre. El equipo de astrónomos profesionales luego confirmó el descubrimiento utilizando los telescopios Keck en Mauna Kea, Hawaii.

Telescopio Kepler

El descubrimiento se apoyó en información recogida por el telescopio Kepler de la NASA.

Fundada en 2010, Planethunters.org intenta aprovechar los patrones de reconocimiento para identificar tránsitos, recogidos por el telescopio espacial Kepler de la NASA.

Kepler fue lanzado en marzo de 2009 para buscar planetas similares a la Tierra que orbitan otras estrellas.

Los visitantes de la página web tienen acceso a datos seleccionados de forma aleatoria, provenientes de una de las estrellas estudiadas por Kepler.

A los voluntarios se les pide que dibujen cuadros para marcar las ubicaciones de los tránsitos visibles: cuando un planeta pasa frente a su estrella madre. Desde diciembre de 2010, más de 170.000 internautas han participado en el proyecto.

Fuente:

BBC Ciencia

Contenido relacionado

22 de junio de 2012

Descubren los dos planetas más cercanos

Recreación artística del sistema planetario Kepler-36. | CFA
Recreación artística del sistema planetario Kepler-36. | CFA
  • La sonda Kepler de la NASA descubre una pareja de planetas que orbitan a la menor distancia jamás detectada entre dos mundos
Imagínese vivir en un mundo en el que un gigantesco planeta gaseoso como Neptuno, tres veces mayor que las lunas llenas que vemos en la Tierra, emergiera en el horizonte. Éste es el espectáculo cósmico que disfrutaríamos si pudiéramos viajar a Kepler-36, un sistema planetario recién descubierto en el que dos mundos orbitan una estrella a muy poca distancia.

"Estos dos planetas tienen encuentros muy cercanos", explica Josh Carter, un investigador del Centro Harvard-Smithsonian de Astrofísica que ha participado en este hallazgo, publicado esta semana en la revista 'Science'.

"Los dos mundos se encuentran a la distancia más cercana que hemos observado hasta ahora en todos los sistemas planetarios que se han descubierto", añade el coautor del descubrimiento, Eric Agol, de la Universidad de Washington.

Según sus observaciones, en su momento de máxima aproximación, los dos planetas se encuentran a tan sólo 1,9 millones de kilómetros, 20 veces más cerca que la mínima distancia entre los planetas de nuestro Sistema Solar.

Los científicos descubrieron este fascinante sistema planetario con la nave Kepler de la NASA, que es capaz de de detectar un planeta cuando pasa por delante de su sol, y por tanto reduce durante un breve periodo la luz que emite la estrella.

El nuevo sistema se compone de dos planetas que orbitan una estrella parecida a nuestro Sol, aunque varios miles de millones de años más antigua. El mundo más próximo a la estrella, llamado Kepler-36b, es un planeta rocoso 1,5 veces más grande que la Tierra y con una masa casi cinco veces mayor. Orbita su sol cada 14 días a una distancia media de casi 18 millones de kilómetros.

El mundo más lejano, Kepler-36c, es un gigante gaseoso 3,7 veces mayor que la Tierra y con una masa ocho veces mayor. Este planeta orbita su estrella cada 16 días, a una distancia de 19 millones de kilómetros.

Cada 97 días, los dos planetas se aproximan hasta tal punto que la distancia entre ambos es sólo cinco veces la que separa la Tierra de la Luna. Como Kepler-36c es mucho más grande que nuestra Luna, la vista que ofrece al aparecer en el horizonte del planeta vecino es impresionante.

Sus descubridores están intentando comprender ahora cómo es posible que estos dos mundos tan diferentes acabaron teniendo orbitas tan cercanas. El hallazgo resulta sorprendente, teniendo en cuenta que en nuestro Sistema Solar, los planetas rocosos orbitan cerca del Sol, mientras los gigantes gaseosos se mantienen lejanos.

Aunque Kepler-36 es el primer sistema planetario en el que se han observado estos encuentros tan cercanos entre dos mundos, probablemente no será el último. "Ahora nos estamos preguntando cuántos sistemas cómo éste existirán ahí fuera", afirma Agol.

Fuente:

El Mundo Ciencia

22 de mayo de 2012

Científicos creen haber detectado un planeta que se le escapó al Kepler

Lo descubrieron al observar la actividad de una estrella denominada KOI-872. Los investigadores piensan que puede existir un segundo astro.


NASA, Vía Láctea, Astronomía, Kepler,  KOI-872
 
El planeta recién descubierto está a apenas 2.800 años luz de la Tierra y en dirección al centro de la Vía Láctea (foto), (Kepler.nasa.gov)

A apenas 2.800 años luz desde la Tierra y en dirección al centro de la Vía Láctea, un equipo de científicos cree que ha detectado, entre los datos que envía el observatorio espacial Kepler, un planeta que se le había escapado al telescopio, informó hoy la revista “Science”.

El Kepler, enviado al espacio en marzo del 2009, vigila el resplandor de unas 150.000 estrellas, en búsqueda de señales de que en sus órbitas transiten planetas. En principio el artefacto tenía una misión programada para tres años y medio, pero este año se prorrogó hasta el 2016.

Entre los científicos que día a día revisan las enormes cantidades de datos que transmite el Kepler, un equipo encabezado por David Nesvorny, del Instituto de Investigación Southwest en Boulder, Colorado, encontró una discrepancia que había pasado desapercibida para el telescopio cazador de planetas.

¿Cómo lo hallaron?
 

Para encontrar planetas más allá de la Vía Láctea, los científicos usan un método práctico: Si un planeta al orbitar pasa frente a una estrella observada por el Kepler, periódicamente obstruirá una porción del resplandor del astro.

Esta disminución pequeña y repetida de la luminosidad de la estrella señala la presencia de un planeta. Los detalles de ese tránsito permiten que los científicos infieran las propiedades físicas del sistema y las proporciones de radio de las órbitas.

En el caso de un planeta que recorra una órbita estrictamente kepleriana, las distancias, ritmos y otras propiedades en la curva de luminosidad deberían mantenerse constantes.

Pero varios efectos pueden producir desviaciones del modelo kepleriano haciendo que las distancias o los ritmos no sean estrictos y los científicos llaman a ésas “variaciones de duración del tránsito”.

No es el único
 

Nesvorny y sus colegas encontraron en los datos enviados por Kepler la probabilidad de un planeta que el telescopio no había señalado, e incluso la posibilidad de uno más que todavía no se ha visto.

Los investigadores encontraron excepcional la estrella KOI-872 porque muestra tránsitos con variaciones de tiempo notables de más de dos horas.

“Pronto fue claro para nosotros que debe haber un objeto grande, y oculto, que influye en el planeta que transita”, dijo Nesvorny. “Para dar una comparación, si un tren de alta velocidad llega a una estación con dos horas de retraso, sabemos que debe haber una buena razón para ello”. “El truco”, agregó, “fue encontrar de qué se trataba”.

La estrella que atrae tanto interés se denomina KOI-872 y los investigadores sostienen que, además de uno ya descubierto, otro planeta orbita el astro cada 57 días, aunque no pasa frente a la estrella en relación con el telescopio de Kepler.
 
Los investigadores sugieren la presencia de un tercer planeta, con una masa aproximadamente 1,7 veces mayor que la Tierra y que orbita la misma estrella cada 6,8 días
 
Fuente:
 

12 de enero de 2012

Descubren dos nuevos planetas con dos soles

Hallados por la nave Kepler a miles de años luz de la Tierra, cada uno de ellos gira alrededor de una pareja de estrellas como en StarWars.


Descubren dos nuevos planetas con dos soles

Lynette Cook

El pasado mes de septiembre, un equipo de astrónomos dio a conocer una rareza descubierta por el observatorio espacial Kepler de la NASA. Se trataba de un planeta con dos soles, el Kepler-16 b, el primero hallado hasta la fecha. Apodado «Tatooine» por ser lo más parecido al mundo ficticio de StarWars que haya aparecido jamás, era un mundo raro, sí, pero no el único. La misma sonda ha detectado otros dos nuevos planetas que orbitan, cada uno, su propio sistema binario de estrellas. Y puede haber muchos más. En realidad, millones de ellos.

Lea el artículo completo en:

ABC Ciencia


7 de diciembre de 2011

Descubren planeta muy similar a la Tierra

El telescopio 'Kepler' encuentra un planeta en la zona habitable de una estrella como el Sol...

Recreación artística del planeta 'Kepler 22b'. | NASA

Recreación artística del planeta 'Kepler 22b'. | NASA

  • 'Kepler-22b' orbita una estrella parecida al Sol y está a 600 años-luz
  • Los científicos creen que este exoplaneta podría tener agua líquida
  • La NASA considera su hallazgo un paso importante en la búsqueda de planetas similares a la Tierra

La misión 'Kepler' de la NASA ha confirmado su primer hallazgo de un exoplaneta en la denominada 'zona de habitabilidad', la región en un sistema planetario donde puede existir agua líquida en la superficie del planeta. Además, ha descubierto 1094 nuevos objetos candidatos a planetas, según ha anunciado la agencia espacial estadounidense durante la rueda de prensa en la que ha presentado los últimos hallazgos de su telescopio y los datos estadísticos actualizados desde el 1 de febrero.

A continuación, ha comenzado el congreso científico que durante esta semana reunirá a expertos en astrofísica para hacer balance de los descubrimientos de 'Kepler'.

El nuevo planeta confirmado, 'Kepler-22b', está fuera de nuestro Sistema Solar y se encuentra a una distancia de 600 años-luz de la Tierra. Orbita en torno a una estrella parecida a nuestro Sol. Es el más pequeño que se ha encontrado orbitando en la zona habitable de una estrella similar a la nuestra.

Su órbita alrededor de su estrella dura 290 días. Tiene 2,4 veces el radio de la Tierra y los científicos aún no saben si se trata de un objeto rocoso, gaseoso o de composición líquida, aunque la NASA considera que su hallazgo es un paso importante en la búsqueda de planetas similares a la Tierra. "Se trata de un importante hito en el camino para encontrar un gemelo de la Tierra", ha asegurado Douglas Hudgins, científico del programa Kepler de la NASA en Washington.

La NASA anunció el pasado mes de febrero el hallazgo de 54 candidatos a planetas en la zona habitable, entre los que figuraba 'Kepler-22b', que ha sido el primero en ser confirmado.

Otros mundos 'potencialmente habitables'

Investigaciones previas ya habían sugerido la existencia de planetas con un tamaño parecido al de la Tierra en 'zonas habitables'. Otros dos pequeños planetas orbitando estrellas más pequeñas y frías que nuestro Sol fueron confirmados recientemente en los bordes de la 'zona habitable', con órbitas más parecidas a las de Venus y Marte.

En torno a la estrella 'Gliese' los astrónomos han encontrado varios planetas en los que podrían darse condiciones de habitabilidad.

El pasado mes de noviembre un equipo de investigadores propuso el primer sistema para clasificar todos estos nuevos hallazgos y disponer de un catálogo de exoplanetas potencialmente habitables hacia los que dirigir la mirada. El sistema propone dos índices diferentes para clasificar estos objetos en función de determinadas características. Encabezan la lista 'Gliese 581g' y 'Gliese 581d'.

Mil nuevos candidatos a planetas

Según ha anunciado este lunes la NASA, 'Kepler' ha descubierto más de 1.000 nuevos objetos candidatos a planetas, que casi dobla el censo anterior de sus hallazgos. Sin embargo, los científicos señalan que harán falta más observaciones para verificar que, efectivamente, se trata de planetas.

Los investigadores actualizaron la cifra de los candidatos a planetas, que desde que se comenzó a elaborar la lista, en 2009, ha aumentado hasta 2.326. De ellos, 207 tienen un tamaño aproximado al de la Tierra y 680 son mayores y se denominan 'súper Tierras'. Del resto, 1.181 tienen el tamaño de Neptuno, 203 son equivalentes a las dimensiones de Júpiter y 55 son todavía más grandes que este planeta, el mayor de nuestro Sistema Solar.

Desde que fue lanzado, en marzo de 2009, 'Kepler' ha recorrido la galaxia en busca de planetas en los que pueda existir agua líquida y, por tanto, que sean potencialmente habitables.

La avanzada tecnología con la que está equipado le permite detectar planetas y posibles candidatos con un amplio rango de tamaños y en distancias de órbitas también muy variada.

Congreso científico sobre 'Kepler'

En la sesión informativa de este lunes han participado el director del Centro de Investigación Ames de la NASA en California, Pete Worden; así como el director del Centro de Investigaciones del Instituto de Investigaciones sobre Inteligencia Extraterrestre (SETI), Jill Tarter. También han asistido la subdirectora del equipo científico de Kepler en el Centro Ames, Natalie Batalha y el principal investigador de Kepler en el Centro Ames, Bill Borucki.

Tras la rueda de prensa ha comenzado un congreso científico sobre 'Kepler' que reunirá del 5 al 9 de diciembre a más de un centenar de científicos expertos en distintas materias como astrofísica, ciencias planetarias y exoplanetas, que analizarán los avances realizados gracias al observatorio espacial.

'Kepler' es la primera misión de la NASA capaz de encontrar planetas del tamaño de la Tierra cerca de la llamada 'zona habitable', la región en un sistema planetario donde puede existir agua líquida en la superficie del planeta en órbita.

Lanzado en marzo de 2009, su misión es recoger datos y pruebas de planetas que orbitan alrededor de estrellas con condiciones de temperatura medias donde pueda existir agua líquida.

Fuente:

El Mundo CienciaEnlace


9 de marzo de 2010

La geometría de los copos de nieve


La geometría de los copos de nieve fue reconocida por primera vez en 1611 por Kepler, con la publicación la primera descripción de la geometría hexagonal de los copos de nieve en un estudio titulado “De nive sexangula” a modo de regalo de navidad a Rodolfo II de Habsburgo.

La forma de los copos de nieve está determinada por la temperatura y humedad a la cual se han formado. Como bien apuntó Kepler en ese estudio, los copos de nieve adoptan comúnmente una forma geométrica basada en el hexágono, aunque dependiendo de las condiciones de humedad y temperatura, se pueden llegar a formar copos de nieve cuya geometría está basada en el triángulo o el dodecágono.


Wilson Alwyn Bentley intentó en 1885 identificar copos de nieve identicos fotografíando miles de ellos con un microscopio, encontrando la gran variedad de geometrías conocida a día de hoy, pero no consiguió encontrar dos que fueran identicos, por lo que planteo la teoría de que no pueden existir dos copos de nieve idénticos. Teniendo en cuenta que en cada copo de nieve hay del orden de 10^18 moléculas de agua, que se estructuran de distinto modo en función de la temperatura, humedad y altura de la atmósfera a la que se hayan formado, era una afirmación factible.

No fue hasta 1988 cuando un equipo en Wisconsin demostró que dos copos de nieve pueden ser totalmente idénticos si el entorno en el que se forman es suficientemente parecido. Con distintos experimentos, consiguieron demostrar que sí que existen copos de nieve idénticos, pero estos se correspodían con prismas huecos en vez de los copos comúnmente conocidos.

A lo largo de la historia, han sido muchos los intentos de clasificar los diferentes copos de nieve, pero debido a su complejidad, es imposible determinar un único modo de clasificarlos, o de darle nombre a todas las posibles formas. Entre las clasificaciones más comunes está la que se muestra en la imagen superior con un total de 35 diferentes tipos, la de la Comisión Internacional de Nieve y Hielo basada en 7 tipos básicos con varias modificaciones, la clasificación de Nakaya con un total de 41 tipos de copos de nieve, y la clasificación de Magono and Lee, la más compleja hasta la fecha con un total de 80 tipos de cristales.

A continuación, os muestro con fotos de miscroscopio, algunas de las formaciones de copos de nieve conocidas más comunes.

1. Prismas Simples

Los primas simples son la geometría más básica de los copos de nieve. Su forma puede variar desde finos prismas hexagonales hasta finas láminas hexagonales. Su tamaño suele ser tan pequeño que apenas se pueden ver a simple vista durante una nevada.



I: Prismas Simples


2. Láminas estrelladas
Esta forma común de copos de nieve son cristales de hielo laminado con seis brazos suficientemente anchos como para formar una estrella. Comúnmente tienen los bordes decorados con marcas simétricas que los hacen quasi-únicos.



II: Láminas estrelladas

 3. Láminas sectoriales

Las láminas estrelladas comúnmente muestran crestas distintivas que van desde el centro del copo hasta los vértices del hexágono. Cuando estas crestas son especialmente prominentes, los copos de nieve se denominan láminas sectoriales.




III: Láminas sectoriales

 4. Dendritas estelares

Dendrita, al igual que las células del cerebro, se refiere a la forma de árbol, por lo que las dendritas estelares son el tipo de copo de nieve que tiene seis ramas principales con más ramas secundarias en cada una de las ramas principales. Estos copos de nieve tienen típicamente entre 2 y 4 milímetros, por lo que son fáciles de ver a simple vista.



IV: Dendritas estelares

 5. Dendritas estelares con forma de Helecho

Este tipo de copos de nieve son una variación del tipo anterior en el que las ramas principales tienen tantas ramificaciones que asemejan cada una con la forma de un helecho. Este tipo de copos de nieve son los más grandes que comúnmente caen sobre la tierra, alcanzando en muchas ocasiones más de 5 milímetros de diámetro. 



V: Dendritas estelares con forma de Helecho

24 de febrero de 2010

La segunda Ley de Kepler y la Ecuaciones Diferenciales

Miércoles, 24 de febrero de 2010

La segunda Ley de Kepler y la Ecuaciones Diferenciales




¿Que no conoces las Leyes de Kepler? No me lo puedo creer. En fin, vamos a empezar por lo más simple. Las Leyes de Kepler son las que rigen los movimientos de los planetas y fueron descubiertas por el astrónomo y matemático alemán Johannes Kepler. Pero lo más curioso de todo esto es que el bueno de Kepler las obtuvo de la simple observación. En realidad, las dedujo tras estudiar minuciosamente las precisas anotaciones de su colega Tycho Brahe, quien lo hizo sin la ayuda del telescopio, inventado con posterioridad.

Pero volvamos a Kepler y sus Tres Leyes. Kepler (aunque no en el mismo orden en que hoy se conocen y se estudian), enunción sus famosas tres leyes para explicar el movimiento de los planetas en sus órbitas alrededor del Sol:
  1. Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas, estando el Sol situado en uno de los focos.
  2. El radio vector que une el planeta y el Sol barre áreas iguales en tiempos iguales.
  3. Para cualquier planeta, el cuadrado de su período orbital (tiempo que tarda en dar una vuelta alrededor del Sol) es directamente proporcional al cubo de la distancia media con el Sol.

En este pequeño artículo vamos a redescubrir la segunda ley de Kepler, basándonos en la Ley de Gravitación Universal de Newton:
La fuerza que ejerce un objeto dado con masa m1 sobre otro con masa m2 es directamente proporcional al producto de las masas, e inversamente proporcional al cuadrado de la distancia que los separa.

Para nuestro propósitos, vamos a fijar como origen de nuestro sistema de referencia al Sol, con masa M, y vamos a suponer que tenemos un planeta orbitando alrededor de él con masa m. Y, además, vamos a adoptar el sistema de coordenadas polares. Así, si fijamos la posición del planeta (que supondremos, al igual que el sol, que es un punto de coordenadas polares (r,θ)), vamos a llamar ur al vector unitario en la dirección del radiovector que une el Sol con nuestro planeta y uθ al vector unitario perpendicular al anterior y en la dirección en la que aumenta t.

Total, que tras todo este galimatías, vamos a calcular las fuerza F que el Sol ejerce sobre nuestro planeta. De la segunda ley de Newton, sabemos que F=ma, donde a es la aceleración del planeta. Pero si queremos escribir la aceleración en términos de las coordenadas polares, hay que hacer unas cuantas cuentas (venga, vale, las vamos a obviar, que no está el horno para bollors), tras las cuales obtendremos que
a=(r·θ''(t)+2r'(t)·θ'(t))uθ+(r''(t)-r·θ'(t)2)ur
en donde t representa, como casi siempre, el tiempo.

Así que, si descomponemos la fuerza F en su componente central Fr y tangencial Fθ, obtendremos que
Fθ=m(r·θ''(t)+2r'(t)·θ'(t)) y Fr=m(r''(t)-r·θ'(t)2)

Pero claro, esto, en realidad, es válido para cualquier tipo de fuerza, es decir, que esto es las fórmulas anteriores no son más que la Segunda Ley de Newton expresadas en coordenadas polares. Ahora vamos a introducir el hecho de que la fuerza que tenemos es de tipo gravitatorio. En nuestro caso, sólo nos vamos a quedar con un aspecto de estas fuerzas, y es que son de tipo central, es decir, que no tienen componente tangencial (recordad la Ley de Gravitación Universal).

Bajo este nuevo prisma, resulta que la componente tangencial de nuestra fuerza debe ser, forzosamente, nula; lo cual nos permite obtener una Ecuación Diferencial
r·θ''(t)+2r'(t)·θ'(t)=0
Si multiplicamos esta ecuación por r, se obtiene
r2·θ''(t)+2r·r'(t)·θ'(t)=0
o lo que es lo mismo,
(r(t)2·θ'(t))'=0
, de modo que la función entre paréntesis sólo puede ser una constante, es decir,
r(t)2·θ'(t)=h
para alguna constante h.

Y ahora vámonos con la Segunda Ley de Kepler. Si A(t) es el área recorrida por r(t) a partir de una posición fija de referencia, es fácil comprobar (de nuevo son sólo cuentas con las que no os voy a agobiar)
ΔA=(r2θ'(t))/2 ·Δt=h/2 ·Δt
donde el símbolo Δ representa el incremento de la función. Así pues, entre dos instantes de tiempo t1 y t2, se tiene que
A(t2)-A(t2)=h/2 ·(t2-t1)
que dicho de palabra es, exactamente, lo que dice la Segunda Ley de Kepler:
El radio vector que une el planeta y el Sol barre áreas iguales en tiempos iguales.

En otra ocasión, aprovecharemos todos éstos cálculos para comprobar que, como la fuerza gravitacional es inversamente proporcional al cuadrado de la distancia, las órbitas celestes sólo pueden ser cónicas.

Espero no haberos aburrido mucho. Gracias por llegar hasta aquí.

Fuente:

Tito Eliatron Dixit.

5 de enero de 2010

Kepler descubre cinco exoplanetas


Martes, 05 de enero de 2010

Kepler descubre cinco exoplanetas

El telescopio espacial de la NASA Kepler detectó sus cinco primeros exoplanetas, o planetas más allá del Sistema Solar.

Exoplaneta

Las temperaturas estimadas van desde los 1.200 grados Celsius hasta 1.650°C.

El observatorio, que fue lanzado el año pasado, realizó los descubrimientos en las primeras semanas de sus operaciones científicas.

El anuncio fue realizado este lunes en un encuentro de la Sociedad Astronómica de Estados Unidos (AAS, por sus siglas en inglés) en Washington.

Pese a que los nuevos planetas son todos más grandes que Neptuno, la agencia espacial de Estados Unidos dijo que el telescopio está funcionando bien y destacó su sensibilidad.

Los exoplanetas recibieron el nombre de Kepler 4b, 5b, 6b, 7b y 8b.

Los cuerpos celestes varían en tamaño: de un objeto que tiene un radio cuatro veces mayor que el de la Tierra, a mundos mucho más grande que incluso nuestro Júpiter.

Y todos ellos orbitan muy cerca de sus estrellas madre. Esta proximidad, y el hecho de que las estrellas de acogida son también mucho más calientes que nuestro Sol, significa que los nuevos exoplanetas experimentan un calor intenso.

Lea el artículo completo en:

BBC Ciencia & Tecnología

18 de enero de 2009

Galileo no fue el primero en mirar por un telescopio

Galileo Galilei


Cuatrocientos años después de que Galileo Galilei dirigiera su telescopio al cielo por primera vez, hoy fue inaugurado en París con una ceremonia festiva el Año Internacional de la Astronomía.

Organizaciones internacionales y científicos de todo el mundo quieren interesar en los próximos meses a personas de todo el mundo en el universo.

Para ello, en todo el planeta, observatorios astronómicos,
planetarios e instituciones científicas organizarán exposiciones especiales y
acciones interactivas. Informó
La Jornada.

Pero ¿fue en verdad Galileo el primer astrónomo que observó los cielos con un telescopio? Al parecer no. Lea:


Revisando la historia

Thomas Harriot (Oxford, 1560 - Londres, 2 de julio de 1621) fue un astrónomo, matemático, etnógrafo y traductor inglés. Fue el creador de varios símbolos y notaciones emplegados en álgebra usados hasta ahora, como los símbolos > (mayor que) y < (menor que). Algunas fuentes le atribuyen haber introducido el cultivo de la papa en Gran Bretaña e Irlanda. En 1609, Galileo Galilei apuntó por primera vez su telescopio hacia el firmamento realizando descubrimientos asombrosos para la época que cambiaron la percepcion del mundo para siempre: montañas y crateres en la Luna, una pléyade de estrellas invisibles al ojo humano, fases en Venus y los cuatro mayores satelites de Júpiter.

En el mismo año,
Johannes Kepler publicó su trabajo Astronomia nova donde se describen las leyes fundamentales de la mecánica celeste. En la actualidad la astrofísica aborda la explicación de cómo se forman los planetas y las estrellas, cómo nacen las galaxias y evolucionan, y cuál es la estructura a gran escala del Universo.

Aunque es el italiano Galileo Galilei la figura preeminente en esta conmemoración, en realidad fue un científico británico, Thomas Harriot, el primero, que se sepa, que dirigió un telescopio hacia la Luna, objetivo obvio para el nuevo instrumento, y la dibujó con cierto detalle. Lo recuerda ahora con toda la información disponible el historiador Allan Chapman en la revista
Astronomy and Geophysics.

Thomas Harriot

En 1609, Harriot había adquirido su primer "trunke holandés" (telescopio), que había sido inventado en Holanda en 1608.
El observó la luna el 26 de julio, convirtiéndose en el primer astrónomo para dibujar un objeto astronómico después de ver a través de un telescopio. Su boceto incluye un puñado de características como las zonas oscuras Crisium Mare, Mare Mare Tranquilitatis y Foecunditatis .



Thomas Harriot

Harriot fechó su primer dibujo de la Luna el 26 de julio de 1609 y Galileo contó que él la observó por primera vez el 30 de noviembre del mismo año. Luego, el 13 de enero de 1610, Galileo observó los satélites de Júpiter, fecha también histórica para la astronomía. Entre 1610 y 1613 Harriot realizó varios mapas de la Luna y observó y describió las manchas solares. La aparición del Cometa Halley en 1607 volcó la atención de Harriot hacia la astronomía.

El historiador Chapman achaca a la desahogada posición económica de Harriot que no se molestara en comunicar sus observaciones, en contraste con la necesidad de Galileo de rentabilizar las suyas mediante la publicación inmediata de sus resultados. Sin embargo, otros expertos señalan que Chapman, que fue el protegido de varios nobles ingleses, no dejó constancia de haber extraído información científica relevante de sus observaciones, al contrario que Galileo.

Genio ignorado

A pesar de su labor innovadora, Harriot sigue siendo poco desconocido. A diferencia de Galileo, Harriot no está siendo ampliamente celebrado en 2009, denominado el Año Internacional de la Astronomía como una conmemoración a los 400 años de los avistamientos en telescopios.

Chapman lo atribuye a su cómoda posición económica, lo desacribe como un "un gran filósofo y rico noble" con un generoso sueldo.
Harriot habitaba una vivienda confortable que contaba con una cámara de observación especialmente prevista, todo lo cual contrasta con los apuros económicos en que vivía Galileo de Galileo.

Galileo, curiosamente, no pudo comprar un telescopio. Por lo que dedujo de la óptica y construyó uno por su propia cuenta. También examinó la luna, y luego descubrió que la Vía Láctea estaba compuesta de estrellas individuales. Galileo también descubrió cuatro lunas alrededor de Júpiter y dedicado mucho tiempo a la observación de las manchas solares.

El profesor Andrew Fabian, Presidente de la Real Sociedad Astronómica, afirma "Como un astrofísico del siglo 21, solo puedo mirar atrás y maravillarse ante la labor del siglo 17 de los astrónomos como Thomas Harriot"
"El mundo tiene razón para celebrar a Galileo en el Año Internacional de la Astronomía ¡pero no hay que olvidar a Harriot!"

Fuentes:

La Jornada - México

El País - España

El Clarín - Argentina

AOL News

Lea también:

20 cosas que no sabías sobre los telescopios

Presentación en Power Point:

Biografías de la Ciencia: Galileo Galilei

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0