07 Jun 2023 undefined comments

El tamaño de las partículas es ínfimo y de plásticos muy comunes, como polietileno y acrílico. Se detectaron trazas de micropartículas de plástico en 6 de cada 10 muestras de semen de hombres sanos ...

Read More
02 Jun 2023 undefined comments comments

Un informe cuantifica los límites climáticos, naturales y de contaminantes que aseguran el mantenimiento seguro y justo de la civilización.Un amplio grupo de científicos identificó en 2009 nueve lí...

Read More
08 Mar 2023 undefined comments comments comments

Aquí van las razones geográficas y socioeconómicas por las que el río más largo y caudaloso del mundo nunca tendrá una estructura que sirva para cruzar de orilla a orilla.Cuando vemos en algún doc...

Read More
07 Mar 2023 undefined comments comments comments comments

El 43,7% de loretanos no tiene acceso al servicio de agua potable o tratada. Es el mayor déficit en todo el país, según el INEI, y afecta principalmente a la niñez de las zonas rurales de la región...

Read More
06 Mar 2023 undefined comments comments comments comments comments

Perú se ubica en la escala de desigualdad por encima de México. El informe señala que el 1% de la población más rica del mundo concentra entre el 25% y 30% de los ingresos totales de su país...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments

Al principio de su historia, el planeta rojo habría sido probablemente habitable para los metanógenos, microbios que viven en hábitats extremos de la Tierra.El Marte noáquino habría sido un hábitat...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments comments

La astrofísica del Centro de Astrofísica Harvard & Smithsonian en Cambridge, detalló que se trata de un fenómeno completamente nuevo ya que “estamos observando la evolución estelar en tiempo r...

Read More
13 Aug 2022 undefined comments comments comments comments comments comments comments comments

El dispositivo podría suministrar energía constante a una amplia variedad de aparatos electrónicos alimentándose de la transpiración humana.Investigadores de la Universidad de Massachusetts Amherst...

Read More

Latest Posts:

24 de febrero de 2010

La segunda Ley de Kepler y la Ecuaciones Diferenciales

Miércoles, 24 de febrero de 2010

La segunda Ley de Kepler y la Ecuaciones Diferenciales




¿Que no conoces las Leyes de Kepler? No me lo puedo creer. En fin, vamos a empezar por lo más simple. Las Leyes de Kepler son las que rigen los movimientos de los planetas y fueron descubiertas por el astrónomo y matemático alemán Johannes Kepler. Pero lo más curioso de todo esto es que el bueno de Kepler las obtuvo de la simple observación. En realidad, las dedujo tras estudiar minuciosamente las precisas anotaciones de su colega Tycho Brahe, quien lo hizo sin la ayuda del telescopio, inventado con posterioridad.

Pero volvamos a Kepler y sus Tres Leyes. Kepler (aunque no en el mismo orden en que hoy se conocen y se estudian), enunción sus famosas tres leyes para explicar el movimiento de los planetas en sus órbitas alrededor del Sol:
  1. Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas, estando el Sol situado en uno de los focos.
  2. El radio vector que une el planeta y el Sol barre áreas iguales en tiempos iguales.
  3. Para cualquier planeta, el cuadrado de su período orbital (tiempo que tarda en dar una vuelta alrededor del Sol) es directamente proporcional al cubo de la distancia media con el Sol.

En este pequeño artículo vamos a redescubrir la segunda ley de Kepler, basándonos en la Ley de Gravitación Universal de Newton:
La fuerza que ejerce un objeto dado con masa m1 sobre otro con masa m2 es directamente proporcional al producto de las masas, e inversamente proporcional al cuadrado de la distancia que los separa.

Para nuestro propósitos, vamos a fijar como origen de nuestro sistema de referencia al Sol, con masa M, y vamos a suponer que tenemos un planeta orbitando alrededor de él con masa m. Y, además, vamos a adoptar el sistema de coordenadas polares. Así, si fijamos la posición del planeta (que supondremos, al igual que el sol, que es un punto de coordenadas polares (r,θ)), vamos a llamar ur al vector unitario en la dirección del radiovector que une el Sol con nuestro planeta y uθ al vector unitario perpendicular al anterior y en la dirección en la que aumenta t.

Total, que tras todo este galimatías, vamos a calcular las fuerza F que el Sol ejerce sobre nuestro planeta. De la segunda ley de Newton, sabemos que F=ma, donde a es la aceleración del planeta. Pero si queremos escribir la aceleración en términos de las coordenadas polares, hay que hacer unas cuantas cuentas (venga, vale, las vamos a obviar, que no está el horno para bollors), tras las cuales obtendremos que
a=(r·θ''(t)+2r'(t)·θ'(t))uθ+(r''(t)-r·θ'(t)2)ur
en donde t representa, como casi siempre, el tiempo.

Así que, si descomponemos la fuerza F en su componente central Fr y tangencial Fθ, obtendremos que
Fθ=m(r·θ''(t)+2r'(t)·θ'(t)) y Fr=m(r''(t)-r·θ'(t)2)

Pero claro, esto, en realidad, es válido para cualquier tipo de fuerza, es decir, que esto es las fórmulas anteriores no son más que la Segunda Ley de Newton expresadas en coordenadas polares. Ahora vamos a introducir el hecho de que la fuerza que tenemos es de tipo gravitatorio. En nuestro caso, sólo nos vamos a quedar con un aspecto de estas fuerzas, y es que son de tipo central, es decir, que no tienen componente tangencial (recordad la Ley de Gravitación Universal).

Bajo este nuevo prisma, resulta que la componente tangencial de nuestra fuerza debe ser, forzosamente, nula; lo cual nos permite obtener una Ecuación Diferencial
r·θ''(t)+2r'(t)·θ'(t)=0
Si multiplicamos esta ecuación por r, se obtiene
r2·θ''(t)+2r·r'(t)·θ'(t)=0
o lo que es lo mismo,
(r(t)2·θ'(t))'=0
, de modo que la función entre paréntesis sólo puede ser una constante, es decir,
r(t)2·θ'(t)=h
para alguna constante h.

Y ahora vámonos con la Segunda Ley de Kepler. Si A(t) es el área recorrida por r(t) a partir de una posición fija de referencia, es fácil comprobar (de nuevo son sólo cuentas con las que no os voy a agobiar)
ΔA=(r2θ'(t))/2 ·Δt=h/2 ·Δt
donde el símbolo Δ representa el incremento de la función. Así pues, entre dos instantes de tiempo t1 y t2, se tiene que
A(t2)-A(t2)=h/2 ·(t2-t1)
que dicho de palabra es, exactamente, lo que dice la Segunda Ley de Kepler:
El radio vector que une el planeta y el Sol barre áreas iguales en tiempos iguales.

En otra ocasión, aprovecharemos todos éstos cálculos para comprobar que, como la fuerza gravitacional es inversamente proporcional al cuadrado de la distancia, las órbitas celestes sólo pueden ser cónicas.

Espero no haberos aburrido mucho. Gracias por llegar hasta aquí.

Fuente:

Tito Eliatron Dixit.
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0