Latest Posts:

Mostrando las entradas con la etiqueta leibniz. Mostrar todas las entradas
Mostrando las entradas con la etiqueta leibniz. Mostrar todas las entradas

4 de agosto de 2014

Diagramas de Leibniz, Euler, Venn y Luetich (el razonamiento diagramático)

El razonamiento diagramático (también llamado razonamiento gráfico o conceptografía) es el que se lleva adelante haciendo uso de representaciones visuales de los conceptos. En esta técnica, los diagramas y los gráficos son más importantes que las palabras y las expresiones matemáticas. A estos diagramas también se les conoce como diagramas ontológicos; en un lñenguaje más preciso los diagramas ontol+ogicos son aquellos diagramas que muestran entes ("elementos") y las definiciones que a ellos se les ha aplicado ("conjuntos").
El origen de esta forma de razonamiento debe buscarse en los grafos de Llul y Leibniz, las líneas de Leibniz y los diagramas de Euler. Sin embargo, una expresión equivalente a "razonamiento diagramático" —aunque aplicada específicamente a una notación de dos dimensiones— recién aparece en 1879 con la publicación del libro Begriffsschrift de Gottlob Frege, que ha sido traducido al castellano como Conceptografía. La historia del razonamiento diagramático incluye también la creación por parte de Peirce del sistema de gráficos existenciales, una notación geométrica-topológica-lógica que Gardner consideraba "el más ambicioso sistema de lógica geométrica que se haya construido jamás".

En síntesis podemos decir que el razonamiento diagramático tiene tres campos: a) los diagramas ontológicos, b) los diagramas topológicos y c) los grafos.

a) Diagramas ontológicos

Los diagramas ontológicos son los que muestran las definiciones de los conjuntos por enumeración. En ellos, además de la relación entre las definiciones, se ve a los elementos (entes). De ahí su nombre.1
Los diagramas de Leibniz son líneas abiertas que indican la posición relativa de los conjuntos.

diagrama de Leibniz
diagrama de Leibniz

Las regiones de superposición corresponden a las intersecciones.

Los diagramas de Euler son construcciones gráficas con líneas cerradas (circunferencias, elipses) que delimitan colecciones de elementos y muestran su posición relativa. (Leibniz también usó círculos, pero prefería las líneas abiertas porque encontró que los primeros requerían en ciertos casos símbolos complementarios.)

diagrama de Euler
diagrama de Euler

Cada región del diagrama contiene al menos un elemento. Los elementos pueden pertenecer a una sola colección o ser comunes a dos o más.

En los diagramas de Venn, todas las regiones posibles para una cantidad de definiciones dada aparecen representadas. Las regiones pueden estar vacías y en tal caso se las distingue sombreándolas.

diagrama de Venn
diagrama de Venn

Todos los conjuntos están incluidos en otro (el universo U, marco de referencia).

En los diagramas de Luetich se representa otra región, la del Todo, cuya interpretación se dio en el "Glosario de ontología". En el Todo excepto U se encuentran los elementos no definidos o no considerados, es decir, aquellos que están escondidos en la oscuridad. El todo no es un conjunto.

diagrama de Luetich
diagrama de Luetich (2D)

Los diagramas de Luetich sirven para resolver problemas como el que Humpty Dumpty le planteó a Alicia en la obra "A través del espejo" de Lewis Carroll.

Estos cuatro tipos de diagramas de conjuntos corresponden a la categoría "diagramas ontológicos".



1"Diagramas ontológicos: de Leibniz a Luetich", Actas Acad. Luventicus, Editoriales.
2"Diagrama de Venn". Wikipedia, la enciclopedia libre.
3"Glosario de ontología", Actas Acad. Luventicus, Sup. 1, Vol. I, No. 2.
4"El no cumpleaños de Humpty Dumpty", Actas Acad. Luventicus, Editoriales.

b) Diagramas topológicos

Son los diagramas que muestran la posición relativa de los conjuntos, pero no los elementos. La forma, el tamaño y la posición de las líneas cerradas no tienen importancia.
Regiones posibles
En los diagramas de conjuntos de Euler y de Venn se pone énfasis en indicar las regiones posibles. En los diagramas de Euler, solamente son representadas las regiones en las que puede haber elementos. En los diagramas de Venn, a las regiones que no contienen elementos se las anula sombreándolas.

Diagrama de Euler topología Diagrama de Venn topologia
diagrama de Euler diagrama de Venn

En estos ejemplos se muestra que no hay elementos que pertenezcan a A y C que no sean también de B, ni tampoco elementos que pertenezcan exclusivamente a C. En el diagrama de Venn de conjuntos cada región sombreada es —para usar una expresión de Leibniz— una combinatio impossibilis. Se trata entonces de diagramas topológicos.28
Topología flexible
En un intento por flexibilizar la topología de los sistemas, Peirce introdujo en los diagramas de Venn la notación lógica correspondiente a la disyunción. Con ello creó los diagramas de topología flexible. A esta extensión de Peirce siguieron otras dos (Venn-I y Venn-II), propuestas por Shin.29
Extensión de Peirce
Charles Sanders Peirce (1839–1914), lógico americano considerado el padre de la semiótica moderna

La extensión de Peirce de los diagramas de Euler-Venn introduce tres símbolos:
  • "o" para reemplazar al sombreado,
  • "x" para indicar importación existencial, y
  • "–" (línea) para unir los dos anteriores e indicar disyunción.29
Así, por ejemplo, el siguiente diagrama representa la proposición: «Todo elemento de B es de A o algunos elementos de B son de A».
Extensión de Peirce
extensión de Peirce

Esta proposición topológica no se podría representar con un diagrama de Euler: sería necesario usar dos y buscar alguna manera de indicar la disyunción.
Extensión de Peirce - Diagrama de Euler 1 Extension de Peirce - Diagrama de Euler
«Todo elemento de B es de A» «Algunos elementos de B son de A»
Las ventajas de la notación de Peirce, en este caso, son grandes. Sin embargo, cuando las proposiciones son más complejas, la lectura del diagrama se torna dificultosa.29
Primera extensión de Shin (Venn-I)
Esta extensión tiene las siguientes características:
  • vuelve al sombreado de regiones para indicar que éstas no pueden ser ocupadas,
  • usa el símbolo "x" de Peirce, y
  • usa el símbolo "–", introducido por Peirce.
Extensión de Shin Extensión de Shin - Peirce
diagrama de Shin (Venn-I) diagrama de Peirce

En estos diagramas (equivalentes), las dos premisas son:
  • «Ningún elemento es sólo de B», y
  • «B tiene algún elemento».
La conclusión, por lo tanto, es: «Algún elemento pertenece simultáneamente a B y A».
Segunda extensión de Shin (Venn-II)
Esta extensión tiene las mismas características que el anterior, pero agrega la posibilidad de conectar dos diagramas —que en este caso tienen representado el conjunto universal— con una línea de disyunción.

Extension de Shin - Venn II Extension de Shin - Venn II - Peirce
diagrama de Shin (Venn-II) diagrama de Peirce

La proposición, en este caso, es: «O todo elemento de A es elemento de B y algún elemento de A es de B, o ningún elemento de A es de B y algún elemento de B no es de A». El diagrama simple de Peirce es de lectura más difícil que el correspondiente diagrama doble de Shin.
 
Arañas
 Los diagramas con arañas son una extensión de los diagramas de Euler, y por lo tanto en ellos hay información topológica. Se los obtiene introduciendo restricciones de dos tipos: agregando "arañas" (secuencias x de Peirce generalizadas) y sombreando regiones. La presencia de una araña indica la existencia de un elemento en su "hábitat" (la región donde se encuentra). Una región sombreada es la que no contiene más elementos que los que indican las arañas correspondientes. Si una región sombreada no tiene arañas, está vacía. Dos arañas unidas por una línea indican la existencia de por lo menos un elemento en las regiones involucradas. El nombre "araña" se ha elegido porque en diagramas complejos muchas líneas pueden salir de cada punto, como los hilos de un nodo de una telaraña.

Diagrama araña
diagrama con arañas

El diagrama de la figura indica que:
  • C está contenido en B;
  • AB tiene exactamente dos elementos;
  • hay al menos un elemento en BA.
El diagrama tiene 3 líneas limite de conjuntos (definiciones), indicadas con los rótulos A, B y C, y 6 regiones, por ejemplo la región cuyo contorno es B pero que no contiene elementos ni de A ni de C. Una zonas está sombreada y contiene sólo 2 elementos. El diagrama contiene 3 arañas: 2 de un pie cuyo hábitat es la zona de los elementos de A que no pertenecen a B y 1 "articulada", en la región de los elementos que son de B pero no de A.
 
c) Los grafos 
 
Los grafos son construcciones que surgen de representar elementos y sus conexiones.32 La teoría de grafos, como la teoría de conjuntos, está íntimamente ligada a la topología.33 34

Cuadrado de oposición

Aristóteles (384 a.C.–322 a.C.), filósofo griego fundador de la lógica clásica

Aristóteles, al fundar la lógica, puso su atención en algunos cuantificadores usados en el lenguaje natural: todo, algún, ningún, no todo. Éstos pueden ser expresados usando la notación de Peirce de predicados (gráficos existenciales "beta"). El clásico "cuadrado de oposición de juicios" de Aristóteles quedaría entonces representado como se muestra en la figura.

El "cuadrado de oposición" de Aristóteles en la notación de Peirce
El "cuadrado de oposición" de Aristóteles en la notación de Peirce

Diamante de Leibniz

Una muestra de razonamiento diagramático: grabado del libro de Leibniz De Arte Combinatoria de 1666

En el grabado de la portada del libro De Arte Combinatoria de 1666, Leibniz habría dado otra muestra de su lenguaje universal. En él se representa la idea de los antiguos de que todas las cosas materiales están hechas de tierra, agua, aire y fuego, "elementos" que combinan las cualidades de: frío, húmedo, caliente y seco. Entre elementos, entre cualidades, y entre elementos y cualidades, han sido dibujadas líneas, cada una con un rótulo. Así, por ejemplo, a los nodos SICCITAS y HVMIDITAS ("sequedad" y "humedad") se los ha conectado con una línea rotulada Combinatio impossibilis ("combinación imposible"). En otros términos, de los elementos de estos dos conjuntos, el grabado muestra las conexiones, objeto de estudio de la topología. La characteristica es, en este caso, una notación topológica.37 El siguiente grafo es una variante del Diamante de Leibniz, que muestra la relación entre elementos y cualidades a la manera de un grafo bipartido.

ignis - aer - aqua - terra (Leibniz, Germán Schultze - Luventicus)

Cuando dos cualidades concurren en un elemento es porque su combinación es posible. Por ejemplo, CALIDITAS y HVMIDITAS concurren en AER. Cuando dos cualidades no se encuentran en ningún elemento, su combinación es imposible. Tal es el caso de HVMIDITAS y SICCITAS. Con estos elementos y cualidades, sujetas a las restricciones mencionadas, se puede deducir la cantidad de combinaciones posibles.

El diamante de Leibniz puede ser representado sin recurrir a un grafo partido, simplemente usando cuatro conjuntos. En este caso, a menos que a los conjuntos se los dibuje como rectángulos, quedarían regiones vacías. Para indicar esa situación se puede hacer uso de un diagrama con arañas.

ignis - aer - aqua - terra (Leibniz, Germán Schultze - Luventicus) 2 ignis - aer - aqua - terra (Leibniz, Germán Schultze - Luventicus) 3
diagrama de conjuntos diagrama con arañas

Estas representaciones actuales del tema que Leibniz tomó de los antiguos para ilustrar su libro de análisis combinatorio muestran lo que ha sido la historia del razonamiento diagramático, un área de trabajo en la que se ha vuelto siempre sobre los mismos complejos problemas, desde la perspectiva de especialistas en las materias más diversas.37

Árboles

Los árboles son unos grafos especiales con estructura jerárquica, que pueden ser usados para dar la misma información topológica que los diagramas de Euler y de Venn.

Árbol del diagrama de Euler Diagrama de Euler del árbol
árbol del diagrama de Euler diagrama de Euler
Árbol del diagrama de Venn Diagrama de Venn del árbol
árbol del diagrama de Venn diagrama de Venn

Cada árbol muestra las regiones posibles del diagrama que está a su derecha. Las primeras 2 ramas corresponden al conjunto A; las restantes 4, al conjunto B. En el diagrama de Euler, la rama de no pertenencia (∉) a A aparece de color gris, ya que no es una región posible. En consecuencia, también están de ese color las ramas derivadas. En el diagrama de Venn, dado que se define un conjunto universal, la no pertenencia a A es posible, exceptuando el caso de pertenencia (∈) simultánea a B.31

Notación bidimensional

Friedrich Ludwig Gottlob Frege (1848–1925), matemático alemán considerado por muchos el fundador de la lógica moderna

La notación bidimensional de Frege permite representar las operaciones lógicas con conexiones.39
notación bidimensional de Frege
notación bidimensional de Frege

Este esquema representa la disyunción lógica AB, o mejor, ¬AB.40
En su trabajo sobre los axiomas del cálculo proposicional, Frege recurría sólo a las operaciones negación e implicación.

Obsérvese que la notación de los diagramas "beta" de Peirce —con recortes abreviados o no— también es bidimensional, como se puede ver claramente en la lista de reglas de inferencia.
 
 
Fuentes:
 
 

27 de diciembre de 2013

Un sistema binario inventado en Polinesia siglos antes de Leibniz

Los nativos de Mangareva desarrollaron este método para contar pescados, frutas, cocos, pulpos y otros bienes de diferente valor.


El genial matemático Gottfried Leibniz (1646-1716) no fue el primero en inventar el sistema binario que ahora utilizan nuestros ordenadores y teléfonos. Los nativos de Mangareva, una pequeña isla polinésica, se le adelantaron en varios siglos. Los mangareveños no tenían la menor intención de inventar la computación digital, pero se dieron cuenta de que el sistema decimal —como el nuestro— que habían heredado de sus ancestros resultaba demasiado engorroso para hacer los cálculos en el mercado, y le superpusieron un sistema binario que facilita mucho las operaciones aritméticas más comunes. También Leibniz arguyó que su sistema binario servía para simplificar las cuentas, aunque nadie le hizo mucho caso.

No se trata del primer sistema binario conocido de la era preLeibniz –los mismos hexagramas del I-Ching que inspiraron al gran matemático alemán constituyen un sistema binario y tienen casi 3.000 años—, pero Andrea Bender y Sieghard Beller, del departamento de ciencia psicosocial de la Universidad de Bergen, en Noruega, muestran ahora cómo los habitantes de Mangareva no solo inventaron el sistema para contar pescados, frutas, cocos, pulpos y otros bienes de diferente valor en sus transacciones comerciales, sino también cómo esto les condujo a una aritmética binaria que habría merecido la aprobación de Leibniz por su sencillez y naturalidad. Los autores creen que su trabajo revela que el cerebro humano está innatamente capacitado para las matemáticas avanzadas. Publican los resultados en PNAS.

Entender el hallazgo requiere un somero repaso del álgebra elemental. El sistema decimal al que estamos habituados, y que es el más común en todo tipo de culturas humanas por basarse en los diez dedos de las manos, lleva implícitas las potencias de diez en la posición de las cifras: en el número 3.725, se entiende que el 5 va multiplicado por 1 (10 elevado a 0); el 2 va multiplicado por 10 (10 elevado a 1); el 7 va multiplicado por 100 (10 elevado a 2); y el 3 va multiplicado por 1.000 (10 elevado a 3).

En un sistema binario solo hay dos símbolos (convencionalmente 0 y 1, pero también pueden ser dos estados de magnetización, como en los ordenadores), y las potencias implícitas por la posición no son las de 10, sino las de 2. Por ejemplo, en el número binario 111, se entiende que el último 1 va multiplicado por 1 (2 elevado a 0), el segundo por 2 (2 elevado a 1) y el primero por 4 (2 elevado a 2); equivale al siete del sistema decimal.

Bender y Beller no han descubierto nada parecido a un pergamino polinesio densamente cubierto de ceros y unos, ni mucho menos una cinta perforada. Lo que han hecho es analizar el lenguaje de Mangareva —uno de los cientos de idiomas de la familia austronesia habladas en las islas del Pacífico— en el contexto de su modo tradicional de vida y las características de sus bienes más preciados de consumo y sus transacciones comerciales, ofrendas, fiestas y demás. Esta forma de vida está en acelerado proceso de extinción, y con ella el sistema aritmético y la propia lengua de los mangareveños, de la que solo quedan ahora unos 600 hablantes en la isla.

Una evidencia del uso de las potencias de 2 —es decir, del sistema binario— en el comercio tradicional de Mangareva son los valores (o taugas) asociados a los bienes más valorados en la isla: tortugas (1 tauga), pescado (2), cocos (4) y pulpo (8). Otro producto valioso es el fruto del árbol del pan (Artocarpus altilis), llamado en inglés breadfruit (fruto del pan). Los frutos del pan de segunda fila valían lo que un coco (4), pero los mejores igualaban al pulpo (8). Recuerden que 1, 2, 4, 8, … son las potencias de 2.

Otro ángulo por el que asoman esas mismas potencias, aunque más indirecto —y combinado con el sistema decimal al que los mangareveños nunca renunciaron del todo— son las palabras (numerales) de uso más común en el rango de las decenas: takau (10), paua (20), tataua (40) y varu (80). Vuelven a aparecer las potencias de dos (1, 2, 4, 8), aunque esta vez multiplicadas por 10, para cubrir otro abanico de tamaños. Las demás decenas no son palabras nuevas, sino combinaciones gramaticales de las anteriores.

La ventaja de este sistema es que facilita mucho las opèraciones aritméticas fundamentales. Mientras que en el sistema decimal sumar de cabeza (sin contar) requiere memorizar más de 50 cancioncillas (como 4+7=11), en el sistema de Mangareva basta con saber que varu es el doble de tataua, que a su vez es el doble de paua, que a su vez es el doble de takau. Lo demás emerge de un modo muy natural y fácil de utilizar.

Con otras palabras, se trata esencialmente del mismo argumento que utilizó el gran Leibniz. Los demás seguimos contando con los dedos.
Tomado de:

3 de diciembre de 2012

No hay música sin ciencia

No se puede ver ni palpar, sin embargo, se siente. La música es una de las manifestaciones artísticas más universales y, a la vez, uno de los rasgos más singulares, junto con el habla, del ser humano. Pero el lenguaje musical tiene, también, mucho en común con otro lenguaje que la inteligencia ha inventado para describir la realidad: la ciencia. Ésta habla de espectros, frecuencias, resonancias, vibraciones y análisis armónico. No es una simple coincidencia, no hay música sin física.

El sonido es un fenómeno físico originado por la vibración de los cuerpos y que se trasmite por el aire en forma de ondas. El efecto estético de un sonido depende de la relación lógica y pautada de sus vibraciones. Es decir, que en el fenómeno musical existe una esencia matemática. Y si consideramos la música como una sensación auditiva cuyo propósito es invocar emociones, disciplinas como la fisiología, la psicología, la bioquímica y las neurociencias tienen mucho que decir.

Un Sistema Solar polifónico

La correspondencia entre la música y la ciencia se conoce desde hace mucho tiempo. Probablemente, hacia el siglo VI a.C., en Mesopotamia ya advirtieran las relaciones numéricas entre longitudes de cuerdas. Pero fue en la Grecia antigua cuando se trazaron las diferentes escaleras armónicas basadas en las proporciones numéricas. Para los pitagóricos el Universo era armonía y número. Las notas musicales se correspondían con los cuerpos celestes. Los planetas emitían tonos según las proporciones aritméticas de sus órbitas alrededor de la Tierra. Y los sonidos de cada esfera se combinaban produciendo una sincronía sonora: la "música de las esferas".

Esta armonía celestial fue descrita por muchos pensadores como Platón, que en La República, relata el mito de Er, un guerrero que en su muerte temporal ve el Universo y describe las órbitas de los planetas. "Encima de cada uno de los círculos iba una Sirena que daba también vueltas y lanzaba una voz siempre del mismo tono; y de todas las voces, que eran ocho, se formaba un acorde". También Cicerón, en El Sueño de Escipión, explica el fenómeno: "Es el sonido que se produce por el impulso y movimiento de las órbitas, compuesto de intervalos desiguales, pero armonizados (...) Porque tan grandes movimientos no podrían causarse con silencio, y hace la naturaleza que los extremos suenen, unos, graves, y otros, agudos".

La tradición que consideraba al Universo como un gran instrumento musical se prolongará durante la Edad Media y hasta el siglo XVII, cuando aparece la figura de Johannes Kepler. El astrónomo alemán intentó comprender las leyes del movimiento planetario y consideró que éstas debían cumplir las leyes pitagóricas de la armonía. En su libro Harmonices Mundi (1619) ilustra el orden del Universo según los sonidos producidos por las velocidades angulares de cada planeta. Cuanto más rápido era el movimiento, más agudo era el sonido que emitía.

Asumida esta creencia, Kepler escribió seis melodías, cada una correspondiente a un planeta diferente, e instó a los músicos de su época a asimilar su descubrimiento. Escribió: "el movimiento celeste no es otra cosa que una continua canción para varias voces, para ser percibida por el intelecto, no por el oído; una música que, a través de sus discordantes tensiones, a través de sus síncopas y cadencias, progresa hacia cierta predesignada cadencia para seis voces y, mientras tanto, deja sus marcas en el inmensurable flujo del tiempo".

Las estrellas se hacen oír

Las primeras evidencias de música originada en un cuerpo celeste, tal como habían imaginado los pitagóricos primero y Kepler más tarde, no se encontraron hasta hace varias décadas. Las estrellas no emiten melodías armoniosas, pero sí que están sometidas a perturbaciones que provocan una respuesta en forma de ondas. No podemos escuchar el sonido emitido por una estrella, ya que las ondas de sonido necesitan un medio por el que propagarse y el Universo está prácticamente vacío, aunque podemos observar cómo vibra. Y éste es el ámbito de estudio de la sismología solar, un campo de la astrofísica que, desde 1979, investiga en detalle la estructura interna invisible del Sol.

Como un complejo instrumento musical, nuestro astro oscila creando tipos de ondas (modos propios de oscilación) que se propagan por su interior y se reflejan en la superficie deformándola ligeramente, del mismo modo que las olas del mar. Observando esta alteración se pueden descubrir las frecuencias de las ondas que se propagan desde su núcleo y deducir, al igual que en una ecografía, las características físicas y los movimientos que se prolongan en el interior.

Que nuestro astro tenga ritmo no es una cualidad única, sino que cada estrella, como cada instrumento musical, posee su propio sonido. Actualmente, un astrofísico del IAC, Garik Israelian, ha convertido esta propiedad de los objetos celestes en un proyecto musical. "Detecto las ondas, las convierto en sonidos en el ordenador y, como resultado, obtengo una serie de notas precisas", describe. Con él colabora Brian May, otro astrofísico aunque más conocido como guitarrista y compositor del grupo Queen.

Y el Sol es, también, la repuesta a uno de los misterios que la ciencia llevaba años persiguiendo: el excelso sonido del violín Stradivarius. La última teoría sostiene que el secreto está en el "Mínimo de Maunder", un periodo de escasa actividad solar que entre los siglos XVII y XVIII, cuando se elaboraron los citados violines, provocó un acusado cambio climático. La temperatura en Europa descendió, en lo que se llamó la "Pequeña Edad de Hielo", causando un lento crecimiento en los árboles y dotando a la madera de unas singulares cualidades sonoras.

Con la música a otra parte

Para Leibniz, "la música es un ejercicio de aritmética secreta y el que se entrega a ella ignora que maneja números". Y Bertrand Russell consideraba que "el matemático puro, como el músico, es creador libre de su mundo de belleza ordenada". Descartes (Compendio musical), Galileo (Discurso), Mersenne (Armonía Universal), D’Alembert (la solución de la ecuación de ondas) y Euler (Nueva teoría musical), son algunos de los matemáticos que se han preocupado por la elaboración de teorías musicales. Si bien, también se conocen muchos compositores que han aplicado a sus creaciones principios de lógica y probabilidad matemática, como Debussy, Boulez, Messiaen, Varese, Stockhausen o Xenakis, precursores de la música electrónica actual.

Pero la música no solamente ha seducido a los matemáticos. Científicos de muchas disciplinas han recogido sus teorías en composiciones musicales. Como Clark Maxwell, descubridor de la existencia de las ondas electromagnéticas, que compuso una canción titulada "Rigid Body Sings" para explicar de forma cómica la ley de colisión entre los cuerpos rígidos, o el físico Georges Gamow, que en uno de sus libros sobre su simpático personaje de ficción Mr. Tompkins incluyó tres arias para ser cantadas por tres eminentes cosmólogos, Abbé George Lemaître, Fred Hoyle y él mismo, que explicaban diferentes teorías de la creación del Universo.

En contra de la creencia popular, emoción y razón se originan en el cerebro y están relacionadas. Por ello, han prosperado nuevos campos de estudio, en especial, desde las neurociencias, que analizan la conexión entre el sonido, la emoción y el pensamiento. Y aunque hace 20 años pocos creían que pudiera aportar nada, actualmente es un ámbito de gran interés académico y múltiples aplicaciones, sobre todo, terapéuticas.

Hoy sabemos, que la música y el lenguaje tienen un origen común, ya que en el ámbito neurológico han evolucionado juntas en los últimos dos millones de años. También conocemos que la música estimula la zona del cerebro que registra el placer, un mecanismo básico para la supervivencia. Y que no todos escuchamos del mismo modo: gracias a imágenes obtenidas por Resonancia Magnética Funcional, se ha observado que la actividad cerebral en un músico es diferente de la de una persona sin formación musical.

Resumiendo, la música es el arte de combinar sonidos armónicamente con el propósito de producir sensaciones. Pero la armonía no es sólo un elemento esencial de la música, sino que ha sido invocada frecuentemente por la ciencia para describir y comprender el mundo. Muchos científicos han confiado en la armonía del Universo y algunos músicos han utilizado la lógica y el cálculo en sus creaciones. La música integra con la ciencia un campo general del pensamiento que nos distingue como humanos. Preguntarnos por ella, es preguntarnos por nosotros mismos.

Fuente:

Ccaos y Ciencia

19 de mayo de 2011

La “Guerra del Cálculo Matemático”…Newton contra Leibniz

Estarán de acuerdo conmigo que si se les hace una encuesta donde se les solicite una relación de los tres científicos más importantes de la historia, el gran Isaac Newton es uno de los fijos en esa lista.

Pero lo que a lo mejor no saben es que el bueno de Newton es uno de los hombres de ciencia más conflictivos de la historia. Manipulador, perverso, arrogante, hostil, son algunos de los adjetivos nada cariñosos que los historiadores han dedicado al científico inglés. Sus célebres disputas con todos aquellos que le llevaran la contraria o que, simplemente, se atreviesen a tener una pequeña discusión con él, han pasado a la historia de la ciencia.

Newton

La vida de Newton siempre estuvo rodeada de graves problemas. Su padre murió antes de que él naciera y, cuando Newton tenía tres años su madre, lo dejó al cuidado de su abuela para irse a vivir con su segundo esposo. Este hecho le marcó toda su vida y ya de pequeño cuentan los libros que Isaac Newton amenazó con quemar la casa de su madre y de su padrastro.

Problemas de sexualidad, autismo, agresividad… todo pintaba negro para el futuro de Isaac Newton…hasta que la ciencia lo rescató…pero no sin que sus rivales contemporáneos sufrieran las consecuencias de todos sus problemas.

Uno de sus grandes damnificados fue el astrónomo real, John Flamsteed, con el que mantuvo una terrible disputa por el ansiado “Catálogo de estrellas”. Para intentar elaborar una “Teoría de la luna”, como elemento central de una segunda edición de su obra magna, los “Philosophiae Naturalis Principia”, Newton necesitaba unos datos relativos a las observaciones lunares que solamente un hombre en el mundo podía proporcionárselo, John Flamsteed… pero éste no estaba por la labor…y ambos mantuvieron una lucha encarnizada por el “Catálogo de estrellas”.

Otro de los grandes rivales de Newton fue el Conservador de Experimentos de la Royal Society, Robert Hooke, con el que mantuvo grandes disputas en el ámbito de la óptica, la gravedad e incluso la mecánica orbital. Es cierto que Newton superó a Hooke en la gran mayoría de sus feroces luchas, pero también es verdad que sus agresivas formas y su evidente odio ante su contrincante le mantuvo alejado de la Royal Society… hasta que Hooke murió…“muerto el perro…se acabó la rabia”.

Pero, sin duda alguna, el peor enemigo de Newton fue el filósofo, matemático, jurista, bibliotecario y político alemán Gottfried Wilhelm Leibniz y el motivo de sus disputas… ¡¡¡el descubrimiento del cálculo infinitesimal!!!

Leibniz fue uno de los grandes pensadores de los siglos XVII y XVIII, y se le reconoce como “El último genio universal”. Realizó profundas e importantes contribuciones en las áreas de metafísica, epistemología, lógica, filosofía de la religión, así como a la matemática, física, geología, jurisprudencia e historia.

Nacido en Leipzig, el polifacético alemán era un auténtico genio. Denis Diderot, el filósofo deísta francés del siglo XVIII, cuyas opiniones no podrían estar en mayor oposición a las de Leibniz, no podía evitar sentirse sobrecogido ante sus logros, y escribió en la Enciclopedia: “Quizás nunca haya un hombre leído tanto, estudiado tanto, meditado más y escrito más que Leibniz… Lo que ha elaborado sobre el mundo, sobre Dios, la naturaleza y el alma es de la más sublime elocuencia. Si sus ideas hubiesen sido expresadas con el olfato de Platón, el filósofo de Leipzig no cedería en nada al filósofo de Atenas.”

Durante tiempo se rumiaba por los ambientes científicos que Leibniz tenía algo preparado que no le iba a gustar nada a Isaac Newton. Su incursión en el mundo del cálculo infinitesimal, coto privado del genio inglés, podía darle más de un disgusto al científico anglosajón. Durante todas las épocas de la historia, grandes científicos intentaron ser los padres del cálculo infinitesimal…pero hasta que llegó Newton, el cual lo utilizó en sus leyes de movimiento y gravitación, nadie lo había logrado.

Leibniz

A pesar de los rumores cada vez más intensos acerca de los avances de Leibniz, Isaac Newton estaba tranquilo. Mediante su “método de fluxiones” había logrado ser considerado el padre del cálculo infinitesimal o cálculo de infinitesimales, que constituye una parte muy importante de la matemática moderna ya que incluye el estudio de los límites, derivadas, integrales y series infinitas…el cálculo infinitesimal es el estudio del cambio, en la misma manera que la geometría es el estudio del espacio.

Y explotó la bomba. En una visita a la Royal Society, Leibniz presentó en Londres su particular desarrollo del cálculo…que era superior desde el punto de vista de la notación simbólica al del gran Isaac Newton…y esto, aunque no debiera, era un problema de gran magnitud debido a que todos temían la reacción del inglés.

Después de mostrar ante la Royal Society una máquina calculadora que había estado diseñando y construyendo desde 1670, la primera máquina de este tipo que podía ejecutar las cuatro operaciones aritméticas básicas, la Sociedad le nombró miembro externo.

Para evitar que la supremacía de Newton en el cálculo matemático pudiese ponerse en entredicho, la Royal Society le dio la oportunidad de contestar para que mantuviese su prioridad en el desarrollo del cálculo pero Newton menospreció los resultados del polifacético alemán con sus típicos comentarios burlescos… no sabía la que se le venía encima.

De acuerdo con los cuadernos de Leibniz, el 11 de noviembre de 1675 tuvo lugar un acontecimiento fundamental, ese día empleó por primera vez el cálculo integral para encontrar el área bajo la curva de una función y=f(x).

Leibniz introdujo varias notaciones usadas en la actualidad, tal como, por ejemplo, el signo “integral ∫, que representa una S alargada, derivado del latín “summa“, y la letra “d” para referirse a los “diferenciales”, del latín “differentia”. Esta ingeniosa y sugerente notación para el cálculo es probablemente su legado matemático más perdurable.

Su principal contribución fue el proveer un conjunto de reglas claras para la manipulación de cantidades infinitesimales, permitiendo el cómputo de derivadas de segundo orden y de orden superior, y estableciendo la regla del producto y regla de la cadena en su forma diferencial e integral. A diferencia de Newton, Leibniz le puso mucha atención al formalismo y a menudo le dedicaba varios días a determinar los símbolos apropiados para los conceptos.

La regla del producto del cálculo diferencial es aún denominada “regla de Leibniz para la derivación de un producto”. Además, el teorema que dice cuándo y cómo diferenciar bajo el símbolo integral, se llama la “regla de Leibniz para la derivación de una integral”.

El científico alemán no se cortó un pelo y, sin mencionar en ningún momento a Newton, publicó un trabajo en 1684 que tituló, sin que le temblara el pulso, “Cálculus”.

En esta ocasión Newton no solamente se tomó en serio al científico alemán, sino que se enfureció de forma salvaje…pero, una vez más, a Newton le pudo la soberbia.

Debido a que “Don Isaac” pasaba todo su tiempo escribiendo sus archiconocidos “Principia” y, sobre todo, a sus ganas incontrolables de volver a menospreciar el trabajo de Leibniz, Newton no luchó personalmente contra su rival alemán sino que prefirió delegar la batalla en tres científicos cercanos a sus ideas, John Wallis, Fatio de Duillier y John Keill, conocidos como los “enfants perdus” de Newton.

El cruce de insultos y golpes entre los dos bandos fue descarnado. Los partidarios de Newton acusaban a Gottfried Wilhelm Leibniz de plagiar el trabajo inédito de Isaac Newton. Los ataques no eran muy velados y las acusaciones de plagio estaban al orden del día…todo por poder atribuirse la paternidad del cálculo moderno.

La controversia no se limitaba solamente a dos científicos de la época…dos grandes países estaban enfrentados. La polémica dividió a los matemáticos de habla inglesa de los matemáticos continentales por varios años, causando un retraso de las matemáticas inglesas.

Sin embargo, Lebniz estaba afectado. No podía admitir que le acusasen de robar el trabajo de otro. En realidad no lo había hecho. Pero los esfuerzos continuos de Leibniz por reivindicar la invención del cálculo no llegaron a buen puerto…desde su “silencio” Newton estuvo moviendo sus hilos con gran éxito.

El científico inglés logro hacerse con la presidencia de la Royal Society y desde esa privilegiada posición convocó un “tribunal imparcial” que hundió en la miseria a Leibniz. El veredicto del tribunal, unido a un informe tremendamente mordaz del propio Newton, que perseguía el descrédito público de su rival…pudo con el gran alemán.

Pero la peculiar personalidad de Isaac Newton no le dejó acabar ahí su batalla contra el científico alemán y, en una muestra de hasta dónde podía llegar su crueldad, comentó años después de la muerte de Leibniz en 1716 que su informe le “había roto el corazón a su contrincante y por eso llego a morir”

Sin embargo, y como ya hemos mencionado en este blog, “el tiempo es el único juez insobornable que da y quita razones y, además, pone a cada uno en su sitio”….Actualmente se emplea la notación del cálculo creada por Leibniz, no la de Newton…

A pesar de ello, y de que lo considero personalmente uno de los mejores, por no decir el mejor, científico de la historia, no me hubiese gustado enfrentarme cara a cara al “respetuoso” Isaac Newton…y eso que era Sir….

Fuente:

Scientia

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0