Latest Posts:

Mostrando las entradas con la etiqueta historia de la ciencia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta historia de la ciencia. Mostrar todas las entradas

20 de febrero de 2020

Arquímedes: el primer gran ingeniero de la historia

Arquímedes de Siracusa, pintado aquí por José de Ribera en 1630, es considerado uno de los científicos más importantes de la Antigüedad clásica. Crédito: Wikimedia Commons.

Inventor prolífico, ingeniero mecánico y estratega de guerra —además de pionero de la ciencia— su historia podría llenar una gran saga de ficción televisiva. Arquímedes (287 a.C. - 212 a.C.) vivió la mayor parte de su vida en Siracusa, en la isla de Sicilia, que por aquel entonces pertenecía a Grecia y que finalmente sucumbió al asedio romano durante el transcurso de la segunda Guerra Púnica. Es aquí donde acaba la vida de Arquímedes, y donde comienza su leyenda, que lo ha convertido en todo un mito de la ciencia y de la ingeniería.

En Conocer Ciencia TV realizamos un micro programa sobre la vida de Arquímedes, esta es la presentación (ppt):


Su figura era ya era un enigma para los historiadores romanos que recopilaron su obra décadas después de su muerte (Plutarco, Diodoro, Tito Livio…), por lo que es fácil entender que a día de hoy sea complicado distinguir el mito de la realidad. Lo que ha trascendido sobre la figura de Arquímedes es una mezcla de información directa de sus escritos y referencias de grandes historiadores sobre su vida y obra.

Tres manuscritos conservan los textos de los tratados originales de Arquímedes en griego. El tercero, un códice que contiene el Palimpsesto de Arquímedes fue vendido en Nueva York por 2 millones de dólares en una subasta de Christie’s en 1998. Un artículo publicado en la revista The Mathematical Intelligencer explica la épica hazaña de Reviel Netz y William Noel, encargados de descifrar el manuscrito tras haber estado varios milenios perdido y en un complicado estado de conservación. Actualmente puede consultarse también en formato digital gracias a la iniciativa The Archimedes Palimpsest Project.


El Palimpsesto de Arquímedes, del siglo X, contiene las únicas copias conocidas existentes de las obras El método de los teoremas mecánicos y Sobre los cuerpos flotantes. Crédito: Walters Art Museum.

El ingeniero desconocido

En su faceta de ingeniero, la historia le atribuye la invención de herramientas como la palanca o el tornillo de Arquímedes —y de máquinas bélicas como la catapulta, el rayo de calor o la garra de Arquímedes—, pero su legado escrito no hace mención de estos inventos. De lo que no hay duda es de que Arquímedes era un hombre de ciencia y además muy valorado por la corte del rey Hierón II, de quien fue un cercano consejero y con quien trabajó en materia de estrategia militar. Esta podría ser, según algunos expertos, una de las principales motivaciones de Arquímedes para impulsar su faceta de ingeniero. Además, la práctica era para él una forma de hacer tangible lo que realmente le apasionaba: la teoría.

Así lo desvela una carta que escribió a Erastótenes, por entonces bibliotecario y director del museo de Alejandría, donde Arquímedes había estudiado en su juventud. Ya en el siglo XX, el historiador Johan Ludvig Heiberg descifró el texto en el que Arquímedes explicaba su método: exploraba a través de la mecánica la relación matemática que deseaba establecer y luego pasaba a buscar su demostración geométrica. Experimentación y observación eran la base de su exitoso método, en una época en la que la ciencia daba sus primeros pasos.

Sus logros en distintos campos del conocimiento son tan brillantes como variopintos: consiguió una aproximación muy exacta del número Pi, desarrolló las bases de la arquitectura naval gracias al Principio de Arquímedes y formuló la ley de la Palanca. Chris Rorres, profesor emérito de matemáticas en la Universidad de Drexel, organizó en 2013 una conferencia en Nueva York con el objetivo de descifrar junto a un grupo de historiadores cuáles de los logros atribuidos al de Siracusa eran factibles hace 23 siglos. Aquella reunión desacreditó algunos inventos que podrían catalogarse como demasiado fantasiosos: el “rayo de la muerte” (o rayo de calor) quedó totalmente descartado, como ya había sucedido en 2010 en el programa de televisión estadounidense “MythBusters” en 2010, cuando el expresidente de Estados Unidos, Barack Obama, solicitó la comprobación científica de si era posible ese ingenio capaz de incendiar la flota romana concentrando los rayos solares mediante grandes espejos reflectantes.

Más información en Conocer Ciencia TV:



Lea el artículo completo en: Canal Innovación

26 de noviembre de 2019

George Green: el molinero que revolucionó el electromagnetismo

El físico y matemático inglés George Green publicó sus primeros artículos con las suscripciones de sus vecinos mientras trabajaba en el molino familiar.

Una niña, frente al molino de la familia Green, actualmente convertida en museo de ciencia e historia.

A principios del siglo XIX, los científicos provenían de familias adineradas o de clase alta, que se podían permitir años de costosa educación para sus hijos. Sin embargo, la vida del matemático y físico George Green, responsable de grandes avances en el electromagnetismo y en la teoría de ecuaciones en derivadas parciales, fue muy diferente.

No se sabe exactamente cuando nació, pero fue bautizado el 14 de julio de 1793 en Nottingham (Inglaterra). En 1801, con ocho años, fue inscrito en la escuela de Robert Goodacre, una reputada institución privada. Pero apenas un año más tarde tuvo que abandonar su formación para trabajar en la panadería familiar; el negocio iba bien y querían expandirlo.

En 1807, su padre compró un terreno en una villa cercana a Nottingham y construyó un molino. En 1817 la familia Green se trasladó a una casa construida en la misma finca y George, con 24 años, se inició en el oficio de molinero. Durante estos años, estudió física y matemáticas de forma autodidacta. Aunque no está del todo claro cómo pudo acercarse a estas disciplinas con solo un año de escolarización, es posible que un vecino de Nottingham, John Toplis, le ayudara. En ese momento era la única persona en la ciudad con la formación suficiente en matemáticas para enseñar a Green (tradujo del francés el primer volumen de la Mécanique Céleste de Laplace en 1814), y además, vivía cerca de la familia antes de que se mudasen.


En 1823 Green se unió a la Biblioteca de Subscripción de Nottingham, lo que le dio acceso a revistas científicas como los Philosophical Transactions of the Royal Society, aunque sólo del ámbito nacional. Entre 1823 y 1828 nacieron sus primeros dos hijos, falleció su madre y trabajaba a tiempo completo, pero el tiempo del que disponía lo empleaba en estudiar en el piso superior del molino.

En 1828 publicó su primer trabajo, An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism. Creyéndose un total aficionado, Green no lo envió a ninguna revista científica, sino que puso un anuncio en un periódico local anunciando su inminente publicación y pidiendo a la gente interesada en recibirlo que pagase una cuota para costear la producción de una tirada. El precio de la subscripción era 7,5 chelines, lo que equivalía aproximadamente al salario de una semana de un obrero. Aun así hubo 51 personas que respondieron al anuncio y recibieron su correspondiente copia, muchas de ellas pertenecientes a la Biblioteca de Subscripción de Nottingham. Aunque la inmensa mayoría no entenderían de que trataba el trabajo, alguna de las copias llegó a Sir Edward Bromhead, quien sí tenía los conocimientos adecuados para apreciarlo. Tras leerlo, se apresuró a escribir a Green ofreciéndole ayuda para futuras publicaciones.

Durante dos años no contestó, considerando que la carta había sido pura cortesía y que, dada la diferencia de clases sociales, hubiese sido de mala educación responder. Pero convencido por un amigo, finalmente lo hizo, dando comienzo a una importante colaboración. Entre 1830 y 1833 Green escribió otros tres artículos y Bromhead se encargó de que dos fueran publicados por la Cambrige Philosophical Society y el otro por la Edimburg Royal Society.

Bromhead le propuso viajar a la Universidad de Cambridge, conocer a importantes científicos, y comenzar sus estudios allí. Aun con ciertas dudas y tras sortear varias dificultades, Green dejó el molino –que años después se convertiría en un museo de ciencia en su honor- y comenzó a estudiar en la universidad a la edad de 40 años.

Se graduó en 1837, siendo el 4º de su promoción. En 1839 obtuvo un puesto de investigación en la universidad, pero a comienzos de 1840 cayó enfermo y tuvo que volver a Nottingham. Un año más tarde murió, con 49 años de edad. En el corto periodo que formó parte de la comunidad científica, ni Green ni sus compañeros supieron ver la importancia de sus matemáticas.

Pero con el paso del tiempo, su influencia en la ciencia fue creciendo: el concepto de potencial, que había ideado en su artículo de 1828, fue adoptado en la teoría del electromagnetismo (por ejemplo, en las ecuaciones de Maxwell) y en teoría de campos; las técnicas matemáticas que había desarrollado en ese mismo texto llevaron al enunciado del que hoy se conoce como Teorema de Green, y que aprenden en su primer año de carrera todos los estudiantes de física y matemáticas. También llevan su nombre las funciones de Green que ideó para resolver aproximadamente ecuaciones en derivadas parciales y que son una herramienta clave en la moderna teoría cuántica de campos. Sin duda, consiguió alcanzar su mayor sueño: contribuir a la ciencia.

Artículo tomado de: El País (Ciencia)
 

8 de octubre de 2019

¿Por qué el cielo se ve azul? Y cómo John Tyndall lo descubrirlo


A lo largo de la historia, a muchos los científicos les ha motivado la aspiración de comprender cómo funciona la naturaleza. 

En su forma más pura, se trata solo de eso: el deseo de entender, sin tener en cuenta cuán útiles o rentables puedan ser los descubrimientos.

Ese enfoque de la ciencia se llama "investigación impulsada por la curiosidad" o "investigación sin límites".

Uno de los mejores ejemplos de los practicantes de esta forma pura de descubrimiento es el físico irlandés John Tyndall (1820-1893).


Además de ser un erudito, Tyndall también era un romántico


Era un entusiasta montañista y pasaba mucho tiempo en los Alpes. A menudo hacía una pausa al atardecer pues las puestas de Sol alpinas y su magnífica gama de colores lo dejaban extasiado.

Fue por eso que se propuso comprenderlas y, con ello, logró inspirar a generaciones de científicos a realizar investigaciones fundamentales. 

La razón de la belleza

Su ilimitada curiosidad y su interés por la naturaleza lo llevaron a explorar una amplia gama de temas y a hacer muchos descubrimientos clave para la ciencia. 

Fue él, por ejemplo, quien demostró por primera vez que los gases en la atmósfera absorben calor en grados muy diferentes, descubriendo así la base molecular del efecto invernadero.

Para encontrar respuestas a sus diversas preguntas, inventó experimentos para los que construyó varios aparatos, algunos muy sofisticados, que requerían, además, de una profunda comprensión teórica y una tremenda destreza.

Pero cuando quiso saber por qué el cielo se ve azul en el día y rojo al atardecer, los instrumentos que usó fueron sencillos. 

Armó un simple tubo de vidrio para simular el cielo y usó una luz blanca en un extremo para simular la luz del Sol. 

Descubrió que cuando llenaba gradualmente el tubo de humo, el haz de luz parecía ser azul desde un costado pero rojo desde el otro extremo. 

A este tubo de Tyndal, hecho de una aleación de cobre, hierro, vidrio y cera, lo llaman "aparato cielo azul" en la Royal Institution donde está expuesto.

Se dio cuenta de que el color del cielo es el resultado de la luz del Sol dispersándose por las partículas en la atmósfera superior, en lo que ahora se conoce como el 'efecto Tyndall'

Otro de sus aparatos fue aún más simple.

"El cielo en una caja"

Sr trataba de un tanque de vidrio lleno de agua, al que le agregaba unas gotas de leche. 

Lo que hacía la leche era introducir algunas partículas en el líquido.

Una vez lista la sencilla receta, Tyndall encendió una luz blanca al lado de un extremo del tanque.
Inmediatamente vio que el tanque se iluminaba con diferentes colores

A Tyndall le fascinaba el experimento. En su estilo típicamente poético, lo describió como "el cielo en una caja". 

Y es que a un lado del tanque, la solución era azul. Pero a medida que viajaba hacia el otro lado, se iba tornando más amarilla, hasta volverse naranja, como el atardecer. 

Arcoíris

Tyndall sabía que la luz blanca está hecha de todos los colores del arcoíris. Y pensó que la explicación de ese fenómeno que tanto lo cautivaba era que la luz azul tenía una mayor probabilidad de rebotar y dispersar las partículas de leche en el agua.

Ahora sabemos que esto se debe a que la luz azul tiene una longitud de onda más corta que los otros colores de luz visible. Eso significa que la luz azul es la primera en dispersarse por todo el líquido.

Es por eso que la parte más cercana a la fuente de luz se ve azul. Y es por eso que el cielo es azul: porque la luz azul del Sol tiene una mayor probabilidad de dispersarse en la atmósfera.
Pero el tanque también explica los colores del atardecer. 

Lea el artículo completo en:

BBC Mundo
 

17 de septiembre de 2019

Pioneras de la ciencia (08/08): Maria Mitchell (1818-1889), la primera mujer científica en los EE.UU.


El caso de Maria Mitchell (1 de agosto de 1818 – 28 de junio de 1889) es uno de esos que nos recuerdan las muchas mentes brillantes que la ciencia habrá perdido, por el solo hecho de haber pertenecido a mujeres que carecieron de oportunidades. Mitchell es el contraejemplo: ella sí tuvo la oportunidad y la aprovechó sobradamente. Aunque fue criada en la tradicionalista Nueva Inglaterra, la igualdad entre sexos defendida por su familia le abrió la puerta a los estudios que le depararían una fulgurante carrera en astronomía.

Cuando Maria Mitchell tenía 14 años, los barcos balleneros que partían del puerto de Nantucket, la isla cercana a Massachussetts donde vivía, confiaban en su habilidad para calibrar los instrumentos de navegación que les ayudarían a orientarse durante sus semanas de travesía. La conocían y estaban seguros de su habilidad porque llevaban años viéndola acompañar a su padre, William Mitchell, un hombre instruido y versado en ciencias y astronomía que se dedicó personalmente de la educación de su hija.

Mitchell nació el 1 de agosto de 1818 en una familia cuáquera, una tradición que defiende que chicos y chicas deben ser educados igual, así que ella acudió a la escuela local y recibió una amplia formación de su padre, que incluyó muchos ratos realizando experimentos juntos. Una de sus hermanas contaba que en el salón colgaba de la lámpara una bola de cristal llena de agua que él utilizaba en sus experimentos sobre la polarización de la luz y que hacía que todas las paredes de la estancia estuviesen cubiertas de fragmentos de arco iris.

La astronomía y su estudio era una disciplina muy apreciada en la isla, que vivía de los barcos balleneros que a su vez dependían de los instrumentos astronómicos para orientarse. William Mitchell se encargaba de ajustar esos instrumentos de forma que los barcos siempre supieran dónde estaban cuando pescaban en alta mar, y su hija lo acompañaba. También hacían juntos otros experimentos. Durante un eclipse solar cuando ella tenía 13 años, calculó la longitud a la que se encontraba su casa.
A Mitchell le encantaba leer, aprender y enseñar. A los 16 años empezó a trabajar como asistente de los profesores de su anterior escuela, y a los 18 se convirtió en la primera bibliotecaria del Ateneo de Nantucket.

Era un lugar tranquilo, así que ella aprovechó parte de su tiempo allí para seguir leyendo y aprendiendo. Le interesaban muchas materias: alemán, latín, matemáticas avanzadas y mecánica celeste. Algunas tardes se organizaban en el Ateneo charlas y tertulias a las que acudían mentes progresistas para hablar de todo tipo de temas, y ella también estaba allí, aprendiendo.
Disfrutaba con su tranquilo trabajo, pero un día la casualidad se puso ante ella y todo cambió. Lo hizo en la forma de un cometa inesperado. A Mitchell le gustaba pasar las noches sobre el tejado de la casa de su familia escrutando el cielo y las estrellas con su telescopio. El 1 de octubre de 1847 estaba estudiando un segmento del cielo que ya conocía cuando se encontró en él una mancha blanca que no estaba allí antes. Bajó a contárselo a su padre, que animó a Mitchell a hacer público su descubrimiento.

Ante la negativa de ella, que temía ser menospreciada por ser mujer, William Mitchell escribió a otros astrónomos influyentes para que apoyasen el descubrimiento de su hija. William C. Bond era por entonces el director del Observatorio de Harvard, en Massachussetts, y fue quien habló a los Mitchell de la medalla a la que Maria podía aspirar. Les contó que Frederik VI, rey de Dinamarca, también era muy aficionado a la astronomía, y que había ofrecido una medalla a todo el que descubriese un nuevo cometa. El monarca había fallecido en 1839 pero su sucesor, Christian VIII, continuó otorgando estos premios.

Convencida por su padre y su colega, Mitchell se animó por fin a publicar su descubrimiento, aunque un error de ellos dos al seguir los trámites para optar a la medalla casi la dejan sin ella. Por fin, un año después de haber visto el cometa que sería bautizado con su nombre, la medalla de Maria Mitchell llegó a Nantucket.

Su descubrimiento la hizo famosa, y propició que se convirtiese en la primera mujer que formó parte de la Academia Estadounidense de las Artes y las Ciencias, y fue contratada por el servicio que elaboraba el calendario náutico para seguir y consignar detalladamente los movimientos de Venus que, aunque es un planeta, servía como estrella guía para los barcos. Mucha gente venía a visitarla y quería conocerla, impresionados por la primera mujer estadounidense que había descubierto un cometa.

Gracias a sus ahorros y a un trabajo como acompañante de una chica más joven, pudo viajar por el sur de Estados Unidos y por Europa, donde visitó algunos de los observatorios más avanzados de la época, como el de Cambridge o Roma, y conoció a los astrónomos más importantes del continente, Sir George Ary, el Astrónomo Real que estableció el Meridiano de Greenwich, o el padre Secchi, el Astrónomo del Vaticano.
En 1858 Mitchell estaba de vuelta en Nantucket, y poco después, tras la muerte de su madre, se trasladó con su padre al continente. Continuó trabajando para el servicio náutico hasta que en 1865 fue contratada como profesora por Mathew Vassar para dar clase en el Vassar College, su recién inaugurada escuela para mujeres, por su habilidad científica y por ser un modelo a imitar para otras mujeres jóvenes. Ella encajó enseguida en su rol de profesora y mentora de sus alumnas, a las que animaba a no dejar que el hecho de ser mujeres las desanimase en sus empeños. “Ninguna mujer debería decir ‘Pero solo soy una mujer’. ¿Solo una mujer? ¿Y qué más se puede pedir?”.
Las llevaba a excursiones para observar eclipses y las mantenía despiertas mucho más allá de la hora fijada para estudiar con ellas el cielo y sus componentes. Era muy exigente, pero era también una de las profesoras preferidas por sus estudiantes, a las que trataba como iguales: “Somos mujeres estudiando juntas”.

Volvió a Europa unos años después, en 1873. Primero fue a Rusia, donde descubrió encantada que allí la educación de las mujeres jóvenes estaba mucho más extendida que en Estados Unidos. Allí las chicas a las que conoció hablaban de ciencias, de literatura y de política sin cortarse. En comparación, en EE. UU. el número de chicas con esos conocimientos era mucho más limitado. En el otro lado estaba el Colegio para Chicas de Glasgow, que también visitó en ese viaje, en el que solo se las enseñaba música, danza, dibujo y bordado, lo cual le resultó muy decepcionante. A su vuelta a su país, Mitchell participó en la fundación de la Asociación Americana para el Avance de las Mujeres.
En 1888, Mitchell enfermó del corazón y dejó las clases para trasladarse a la casa de su hermana, ante el disgusto y las súplicas de estudiantes y de la dirección de la escuela, que le pidieron que se quedase viviendo allí, aunque no pudiese seguir dando clase. Ella prefirió marcharse. Su sobrino, arquitecto, le construyó un pequeño observatorio en su nuevo hogar con la esperanza de que se recuperase lo suficiente como para usarlo. No fue así. Maria Mitchell murió el año siguiente.

Mitchell fue una mujer de ideas adelantadas a su tiempo. Un ejemplo curioso: renunció a vestir prendas de algodón como protesta contra la esclavitud. Pero sobre todo, fue una activa defensora de los derechos de las mujeres, impulsando el movimiento sufragista y la participación de las mujeres en la ciencia. Con ocasión de un viaje a Europa, dejó escrita su admiración por la matemática y astrónoma escocesa Mary Somerville, para quien “las horas de devoción al estudio intenso no han sido incompatibles con los deberes de esposa y madre”. Quizás esa fue la espina que se le quedó clavada, ya que Mitchell nunca se casó ni tuvo pareja, un precio que muchas mujeres científicas han debido pagar a cambio de carrera y prestigio.

Fuente: Open Mind

Mujeres con ciencia

Open Mind

Pioneras de la ciencia (07/08): Nettie Stevens (1861-1912)


Para definir lo esencial de la bióloga Nettie Maria Stevens (7 de julio de 1861 – 4 de mayo de 1912) bastan dos ideas: descubrió que el sexo viene determinado por los cromosomas; y a pesar de la inmensa relevancia de su hallazgo, hoy apenas se la recuerda. El caso de Stevens es el de una carrera fulgurante e intensa, pero efímera. Nacida en Vermont (EEUU), en su biografía solo destaca su empeño de dedicarse a la investigación citogenética, para lo que tuvo que abrirse en  un mundo dominado por científicos varones. 

Efraïm Stevens, padre de Nettie María, era un humilde carpintero que, a pesar de su situación económica, trabajó duro para que sus dos hijas pudieran recibir una buena educación.

El sueño de Nettie, estudiar en la universidad, estaba muy lejos. Para conseguirlo, trabajó durante años como profesora y bibliotecaria hasta poder ahorrar el dinero suficiente. En 1896, cuando ya tenía treinta y cinco años, Nettie se matriculó en la Universidad de Stanford. Con el cambio de siglo ya se había licenciado y redactado su tesis doctoral.

Ingresó a la Universidad de Stanford (California) a los 35 años y culkminó su doctorado a los 42.  Por desgracia, la vida no le concedió mucho más tiempo: a los 50 años su carrera quedó truncada por un cáncer de mama.

Entre 1901 y 1902 viajó a Europa donde trabajó en la Estación de Zoología de Nápoles y luego en el laboratorio de Theodor Boveri, quien por entonces investigaba el rol de los cromosomas en la herencia, y donde se presume Nettie encontró su vocación por la genética.


Su inteligencia sobresaliente fue reconocida, pero no tanto sus logros. Buscando la clave de la determinación del sexo, que el pensamiento de entonces atribuía a factores ambientales, Stevens descubrió que los machos del escarabajo de la harina llevaban un cromosoma “accesorio” más corto; hoy lo conocemos como Y. 

Al estudiar al gusano de la harina, Nettie descubrió que las hembras sólo producían células X, mientras que el macho producía X e Y. Tras el análisis de 50 especies de escarabajos y nueve de moscas, publicó en 1905 Studies in Spermatogenesis with Special Reference to the “Accessory Chromosome” donde constató, por primera vez en la ciencia, que los cromosomas son parejas de células, donde si el óvulo fecundado por un espermatozoide portador del cromosoma X daría como resultado una hembra, y si era portador de Y el resultado sería un macho. Hasta ese momento la ciencia determinaba que los cromosomas eran largos bucles, mientras que la teoría de Stevens los propuso como parejas de células.

En 1905 Stevens escribía que esta diferencia, el cromosoma Y, era la responsable de la determinación del sexo. El mismo año, Edmund Beecher Wilson publicaba una idea similar, aunque sus insectos carecían de cromosoma Y.

Sin embargo, tanto Wilson como Thomas Hunt Morgan, supervisor de Stevens, no estaban convencidos de que los factores ambientales no tuvieran cierta influencia. Para demostrar que el sexo dependía sólo de los cromosomas, Stevens estudió las células de 50 especies de escarabajos y nueve de moscas. 

Pero cuando el cáncer se la llevó, aún no había conseguido que su visión se impusiera, y la mayor parte del reconocimiento fue para Wilson. Hoy se reivindica el trabajo de Stevens, al cual hay que añadir una curiosidad: a Morgan, premio Nobel en 1933, se le considera el fundador de los estudios genéticos con la mosca de la fruta Drosophila melanogaster, utilizada hoy por miles de investigadores. Pero quien llevó por primera vez esta especie al laboratorio de Morgan fue una estudiante suya llamada Nettie Stevens.

Fuente: Open Mind

EcuRed

Mujeres bacanas

16 de septiembre de 2019

Pioneras de la ciencia (06/08): Maria Gaetana Agnesi (1718-1799) y el primer libro de Cálculo

En épocas pasadas, quienes dedicaban su vida a las ciencias solían partir de un entorno familiar acomodado. Pero a la italiana Maria Gaetana Agnesi le cayeron todos los regalos de la vida: nació en una familia acaudalada de Milán, fue muy bella a decir de sus contemporáneos, y tenía un cerebro sin parangón: a los 11 años hablaba siete idiomas, y con pocos más discutía enrevesados problemas de filosofía con los invitados que congregaba su padre, profesor de matemáticas de la Universidad de Bolonia.

Agnesi cultivó también esta disciplina, al tiempo que educaba a sus 20 hermanos y hermanastros que los tres matrimonios de su padre llegaron a reunir bajo un mismo techo.

Su principal obra

Su obra más sobresaliente fue Instituzioni analitiche ad uso della gioventù italiana (Instituciones analíticas para el uso de la juventud italiana), un volumen publicado en 1748 en el que trataba el cálculo diferencial e integral. Las 1.000 páginas de texto y las 50 de ilustraciones resultan sin embargo muy familiares al lector moderno, reflejando el mayor mérito de Agnesi: crear el primer texto completo de Cálculo, desde el álgebra hasta las ecuaciones diferenciales. Superando además tentativas anteriores, singularmente la de L'Hopital en su libro Analyse des infiniment petits.

Entre 1750 y 1752 consta que era catedrática de matemáticas en la Universidad de Bolonia, aunque puede que de forma honorífica. En 1775 la Academia de Ciencias publica en París la edición francesa, y en 1801, dos años después de la muerte de María, se publica la inglesa.

El libro contiene su contribución más conocida, la curva llamada Bruja de Agnesi. El nombre es producto de un error de traducción: el matemático Guido Grandi había llamado a esta curva versoria, nombre en latín de la escota, un cabo empleado en las embarcaciones. Su versión en italiano era versiera, palabra que se empleaba también como apócope de avversiera, diablesa o bruja. En la edición inglesa del libro se tradujo como witch, bruja, y así ha perdurado.

La bruja de Agnesi

Hoy en día, María Gaetana es también recordada por su curva “embrujada”, pero que no se trata de ningún hechizo, ni María era una bruja.

La historia por la que la curva recibió este nombre surge de la mala traducción del término versiera, del latín vertere, que es un término naval, que identifica la cuerda o cabo que hace girar la vela. John Colson, el traductor inglés, la confundió con la palabra avversiera, que significa diablesa o bruja.

La ecuación de su curva hechizada es la siguiente
 
donde a es un parámetro (de hecho, el radio de la circunferencia inicial con la que se construye la curva). Para a = 1/2, resulta

y esta es su representación gráfica
La magia de esta curva es que aunque su contorno sea infinito, el área encerrada bajo la curva es finita y proporcional al área de un círculo; además, el volumen engendrado por la revolución de esta curva alrededor de su asíntota es cuatro veces su hipotético volumen.

La curva tiene interesantes aplicaciones en física y en estadística. Desde el punto de vista de la estadística, la distribución de Cauchy de una variable aleatoria se expresa como una curva de Agnesi. Así mismo, en la física, pueden explicarse fenómenos de resonancia atómica cuando incide radiación monocromática sobre un electrón. La intensidad de esta radiación dependerá de la longitud de onda con que incide esta luz, y la relación entre estos dos parámetros puede modelizarse mediante la bruja de Agnesi.

Últimos días

Pero a pesar de sus muchos dones, triunfos y títulos, incluido el de primera mujer catedrática de matemáticas de la historia, Agnesi no se conformó con una vida regalada. Profundamente católica, trocó su éxito por una pobreza voluntaria y una vida entregada al servicio de los pobres y los enfermos, al tiempo que estudiaba teología. Sus últimos años los pasó enclaustrada y sirviendo a los ancianos en un hospicio milanés, donde murió como una monja más, o una indigente más.

Tomado de: Open Mind 

Foro Histórico

Matemática y sus Fronteras

3 de septiembre de 2019

Pioneras de la ciencia (05/08): Mary Anning (1799-1847), madre de la paleontología


Un dicho popular afirma que “la historia la escriben los vencedores”. Durante siglos, esos vencedores solo podían ser hombres y cualquier aportación o logro obtenido por mujeres solía quedar sepultada o desacreditada por una simple cuestión de sexo. Mary Anning, nacida el 21 de mayo de 1799, es un excelente ejemplo de esta triste realidad ya que su nombre pasó años sin aparecer en los libros ni formar parte del imaginario colectivo a pesar de los grandes descubrimientos que llevó a cabo en vida. El olvido impidió que su merecido título de ‘madre de la paleontología’ le fuera reconocido.
Al contrario que otros científicos de su época, hombres o mujeres, Mary Anning no tenía la vida resuelta. Para ella el coleccionismo de fósiles no era un pasatiempo, sino una actividad con la que su padre complementaba sus exiguos ingresos como carpintero, vendiendo las piezas halladas a los turistas. Cuando el padre murió, la familia tuvo que sobrevivir de la caridad. Mary y su hermano Joseph, los únicos supervivientes de diez hermanos, continuaron arriesgando sus vidas en la búsqueda de fósiles en los peligrosos acantilados de Dorset (Inglaterra), que era también su lugar de nacimiento. En una ocasión, Mary estuvo a punto de morir por un deslizamiento de tierra que se llevó a su perro Tray. 

La tragedia llegó a la vida de Mary cuando, durante una noche de tormenta, su padre resbaló y cayó por un acantilado. Aunque no murió en el accidente, sus heridas le debilitaron enormemente y falleció al poco tiempo de tuberculosis. Mary Anning, con tan solo once años, se responsabilizó de la economía familiar y convirtió la recogida de fósiles en su principal ingreso.

Al año siguiente, Mary y Joseph descubrieron un extraño espécimen que parecía el fósil de un cocodrilo. Resultó ser un ictiosaurio, un reptil marino de la época mesozoica del Triásico inferior. El descubrimiento del esqueleto completo de esta criatura atrajo la atención de geólogos consumados y supuso un primer paso para aceptar la idea, contraria al creacionismo, de la extinción de las especies. También fue de las primeras personas en reconocer los coprolitos, excrementos fosilizados de criaturas prehistóricas. Con veintidós años encontró el primer esqueleto de plesiosaurio, cuyo nombre significa “cercano al lagarto”, y en 1828 los primeros restos de pterodáctilo hallados fuera de Alemania. Muchos de sus descubrimientos se pusieron en duda o se declararon como falsos, pero se acabaría comprobando que todos ellos eran auténticos.

Mary Anning nunca tuvo acceso a una formación científica. Solía vender sus piezas a reputados expertos, por lo que ella apenas recibía crédito por sus hallazgos. Poco importó que los científicos viajaran desde América para consultarla; nunca fue admitida en la Geological Society of London, y su único trabajo publicado en vida fue una carta al director del Magazine of Natural History. En su tiempo era difícil para una mujer abrirse camino en el mundo de la ciencia. Pero ser como Anning, pobre además de mujer, fue una condena que limitó su reconocimiento general hasta tiempo después de su muerte.

En 2010, Mary Anning fue declarada una de las diez mujeres científicas más influyentes de la historia por la British Society y, hoy en día, los fósiles que descubrió están expuestos en la Galería Paleontológica del Museo de Historia Natural de Londres y en su homónimo parisino.

Fuentes: Open Mind 

Muy Interesante

Half Arsed History 

15 de agosto de 2019

Mujeres y ciencia 04/08: Mary Somerville (1780-1872), creadora de la palabra "científico"

La historia de la escocesa Mary Fairfax empieza como la de tantas otras mujeres de la sociedad acomodada de su tiempo: bailes y reuniones sociales, un padre que se oponía a sus estudios y un matrimonio con un primo lejano, Samuel Greig, que también se oponía a sus estudios. Pero fue clave en su vida que su marido solo viviera tres años más, lo que le permitió al fin dedicarse a sus estudios. Y llevó sus estudios al punto de ser considerada «la reina de las ciencias del siglo XIX».


Primero llegó la geometría


El único que la comprendía, cuando era aún soltera, era su tío, el Dr. Somerville, quien la alentaba a visitar su biblioteca y a iniciarse en un autodidáctico estudio de latín.

Aunque «la reina de las ciencias» se abrazaba a la lectura y a la pintura sabía que faltaba algo en su vida; pero no lo descubriría hasta una clase de dibujo. Durante la sesión, el profesor había recurrido a la geometría para explicarle la perspectiva. Él no lo sabía, pero le había presentado al gran amor de su vida: las matemáticas.

Somerville estudiaba intensamente todas las noches cuando nadie la veía; y en poco tiempo llegaría a dominar complejos teoremas,astronomía avanzada y física.


Durante ese tiempo el Imperio británico estaba atravesando un renacimiento en el desarrollo científico, tras un gran periodo de estancamiento durante el siglo XVIII, en el que se ejercía fundamentalmente la docencia mas no la investigación.



Mary Somerville, apellido tomado de su segundo marido, fue un espíritu de su época, fue polímata: cultivó las matemáticas, la física y la astronomía. Tradujo al inglés la mecánica celeste de Laplace, quien en una ocasión le dijo que sólo había tres mujeres que entendieran su trabajo: ella, Caroline Herschel y una tal señora Greig; el francés ignoraba que la tercera también era ella. 

Obras de Mary Somerville

En sus obras predomina el deseo de contribuir a la divulgación del pensamiento científico del momento. La importancia de la versión traducida de la obra de Laplace “Mecanique Celeste” bajo el título “Mechanism of the Heavens”, fue el comienzo de una nueva era para sus contemporáneos. “The Connection of the Physichal Sciences” es un profundo ensayo filosófico, con una amplia explicación científica, acerca de los fundamentos de las fuerzas que mueven el universo. Su obra “Physical Geography” se ha utilizado durante años en las aulas inglesas, reconociendo así su calidad, su carácter innovador y su capacidad para explicar los fenómenos naturales y las relaciones entre los seres vivos. Su última obra, “Molecular and Microscopic Science” aborda el mundo microscópico en la búsqueda de explicaciones a la composición de la materia, el fenómeno del calor y los movimientos vibratorios, entre otras cuestiones.


Matemáticas sencillas

En la traducción de «Mécanique Celeste» no solo se limitaría a cambiar de idioma las teorías; sino que además añadiría un preámbulo llamado «A preliminary dissertation on the mechanism of the heavens» (Una disertación preliminar sobre el mecanismo de los cielos), un compendio de desarrollos matemáticos e ideas fundamentales de física imprescindibles para comprender la obra de Laplace. La escritora científica explicaba con mayor sencillez toda una teoría que parecía imposible de entender para las mentes más comunes. 

Nuevo matrimonio
 
En 1804 volvería a casarse con otro primo, el médico William Somerville. Él sentía una profunda admiración por su entusiasmo, por lo que se convertiría en el gran soporte de Mary. De esta manera, el camino profesional de «la reina de las ciencias» estuvo en gran medida respaldado por su esposo; quien la representaría en todos los lugares donde una mujer no era bienvenida. William se hizo socio de la Royal Society -hasta 1945 no aceptaron mujeres- para ser los ojos y los oídos de Mary; en la biblioteca copiaría a mano todos los artículos que a su mujer le resultaban relevantes para sus investigaciones.


Somerville se relacionó con algunos de los principales científicos de su tiempo. Influyó en James Clerk Maxwell y sugirió la existencia de Neptuno, que después John Couch Adams demostraría matemáticamente. Fue tutora de Ada Lovelace, la hija de Lord Byron que trabajó con Charles Babbage en sus primeras máquinas de computación.

El término "científico"

Somerville fue una de las dos primeras mujeres, junto con Caroline Herschel, en ser admitida en la Royal Astronomical Society. Hoy se la recuerda como una de las científicas más grandes de la historia; tal vez la más importante, ya que su trabajo además motivó el término por el que todos sus colegas han sido conocidos desde entonces: fue en una revisión de su obra On the Connexion of the Physical Sciences donde en 1834 William Whewell acuñó el término scientist, científico, para referirse a los que hasta entonces eran “hombres de ciencia” o “filósofos naturales”.

Con información de : Open Mind 

Divulga Mat

ABC Ciencia

Mujeres y ciencia 03/08: Caroline Herschel (1750-1848) la primera mujer que descubrió un cometa

Es muy probable que te suene el apellido Herschel, un apellido históricamente ligado a la astronomía.   



William Herschel es mundialmente conocido porque descubrió el planeta Urano (que en realidad no debería llamrse Urano sino Jorge III, pero esa es otra historia). Su hijo John continuó su trabajo astronómico y cultivó otras ciencias. Pero hubo un tercer miembro de la familia, a menudo injustamente olvidado: Caroline, hermana de William

Y al igual que otras mujeres científicas, Caroline Herschel tuvo que hacer frente a circunstancias muy adversas y a un destino ya escrito. En su caso, el de Cenicienta: debido a una enfermedad que sufrió de niña, su estatura se quedó en un metro treinta. Asumiendo que nunca se casaría, sus padres la criaron para el servicio doméstico. Cuando su padre murió, su hermano William, emigrado desde su Alemania natal a Inglaterra, la invitó a instalarse con él para ocuparse de su casa. Así lo hizo, y de paso aprendió la profesión de su hermano, que por entonces no era la astronomía, sino el canto.

William dedicaba su tiempo libre a fabricar telescopios y observar el firmamento, y con el tiempo Caroline se sumó. Fue la primera mujer en recibir una pensión de la Corona británica como científica, la primera en ver su trabajo publicado por la Royal Society y en descubrir un cometa, además de numerosos grupos de estrellas y nebulosas. Ella y su hermano crearon el primer mapa de nebulosas, ¡llegando a catalogar 2500 nebulosas!

Caroline Herschel, gracias a la pensión que recibía del Rey (aunque era solamente la cuarta parte de la pensión que recibía su hermano) se dedicó a detectar cometas, descubrío ocho cometas en total. Por ello se le conoció como la Cazadora de Cometas.

Y aunque no fue admitida en la Royal Society, ninguna mujer sería aceptada hasta el año 2016, su nombre, en la actualidad, pasará a la posteridad: un cráter en la Luna lleva su nombre.

Un dato curioso: Nunca aprendió a multiplicar, siempre llevaba en el bolsillo una chuleta (un papelito) con las tablas. 

Con información de: Open Mind 

National Geographic

El País (España)

14 de agosto de 2019

Mujeres y ciencia 02/08: Émilie du Châtelet (1706-1749), la primera en publicar un paper


La marquesa de Châtelet, nacida Gabrielle Émilie Le Tonnelier de Breteuil, estaba predestinada a una vida cortesana por la posición de su padre, jefe de protocolo del Rey Sol, Luis XIV de Francia. Dentro de ese destino entraba el matrimonio de conveniencia con un militar, que le consiguió el título de marquesa. Pero desde pequeña ya había mostrado sus cartas: cuentan que a sus tres años un criado le hizo una muñeca vistiendo un gran compás de madera. Émilie aceptó el regalo, pero desnudó el compás y comenzó a trazar círculos con él.

Du Châtelet cumplió con su rol como esposa dando a luz a tres hijos, pero a partir de entonces se entregó a la ciencia en cuerpo y alma. En cuerpo, porque en ese empeño tuvo un peso relevante su relación amorosa con Voltaire, quien se instaló en su casa con el consentimiento de su marido, que solía estar siempre en campaña. Los dos amantes cultivaron juntos su pasión por el conocimiento, e incluso compitieron un premio de la Academia de París con sendos ensayos sobre la naturaleza del fuego. El trabajo de Du Châtelet fue el primero de una mujer publicado por la Academia francesa.

Las contribuciones de Du Châtelet fueron numerosas, pero sobre todo se la recuerda por su traducción al francés de los Principia Mathematica de Isaac Newton, a los que añadió comentarios como un concepto innovador de la conservación de la energía. De ella escribió Voltaire que fue “un gran hombre cuya única culpa fue ser una mujer”. Y por culpa de esta condición murió, a causa de las complicaciones tras el parto de su cuarto embarazo.

Fuente: Open Mind 

Mujeres y ciencia 01/08: Merit Ptah (c. 2700 a. C.), la primera mujer científica

Varias referencias citan a la médica egipcia Merit Ptah como la primera mujer científica de cuyo nombre existe registro. Habría vivido en torno al año 2.700 a. C., lo que la situaría en la Dinastía II, en el Período Arcaico del Antiguo Egipto. 

Sin embargo, las referencias son confusas: algunas hablan de una presunta inscripción en una tumba del Valle de los Reyes, lo cual es un anacronismo, ya que este lugar no comenzó a utilizarse como necrópolis hasta el siglo XVI a. C., unos 1.200 años después. Es más plausible otra versión que la sitúa en la necrópolis de Saqqara, cercana a la antigua Menfis y que sí sirvió como lugar de enterramiento desde la Dinastía I.

Merit Ptah no era una excepción en su época; las mujeres practicaban la medicina en el antiguo Egipto, muchas de ellas en la especialidad de obstetricia. Tal vez el nombre de Merit Ptah se conservó porque su hijo fue sumo sacerdote y dejó referencia escrita a ella como “jefa de médicos”. 

Por las fechas, Merit Ptah rivaliza en antigüedad con Imhotep, el polímata que diseñó la pirámide escalonada de Saqqara y al que a menudo se considera el primer científico con nombre conocido. Este título símbólico podría reclamarse para Merit Ptah, cuyo nombre hoy designa un cráter de impacto en Venus.

Fuente: Opern Mind

9 de julio de 2019

El agua es fuego (y el fuego es agua)

La relación entre el agua y el fuego es mucho más estrecha de lo que te imaginas.





No iba muy desencaminado Tales de Mileto, el más grande de los siete sabios de Grecia, cuando, en el siglo VI antes de Cristo, afirmó que el agua era la sustancia primordial de la naturaleza. Recordemos que, para los antiguos griegos, había cuatro elementos básicos que, mezclándose en distintas formas y proporciones, daban lugar a todo lo existente, y estos elementos eran el aire, el agua, la tierra y el fuego. Y Tales, observando que el agua puede ser líquida, sólida o gaseosa y que está presente en la tierra (en forma de humedad) y en el aire (en forma de vapor), pensó que esa era la esencia última de todas las cosas.



Pero ¿y el cuarto elemento, el fuego?, ¿acaso no es lo contrario del agua, que precisamente por eso se usa desde siempre para apagarlo? Parece el punto más débil de la teoría de Tales, y sin embargo la relación entre agua y fuego es la más estrecha de las que se dan entre los cuatro elementos.

La fórmula del agua, H2O, es sin duda la más conocida de las fórmulas químicas; pero no todo el mundo sabe que es el segundo término de una reacción que representa una combustión: 2H2 + O2 à 2H2O

El hidrógeno es muy inflamable (por eso en los globos aerostáticos se suele usar helio, menos ligero y más caro, pero inerte), y, cuando arde, dos moléculas de hidrógeno se combinan con una molécula de oxígeno para dar lugar a dos moléculas de agua. Así que el agua, en su origen, es fuego, lo que equivale a decir que el fuego -la intensa reacción exotérmica que se produce al combinarse el hidrógeno y el oxígeno- es agua, como intuía Tales.

¿Y los demás fuegos? Lo que arde habitualmente en la naturaleza y en nuestros hogares, o en los motores de explosión, no es hidrógeno. ¿O sí? En buena medida sí: los combustibles habituales son hidrocarburos y otros compuestos de hidrógeno y carbono, y cuando arden la combustión produce sobre todo agua y dióxido de carbono. Por ejemplo, al quemar metano, el más simple de los hidrocarburos, se produce la siguiente reacción: CH4 + 2O2 à CO2 + 2H2O

Una molécula de metano se combina con dos moléculas de oxígeno para dar lugar a una molécula de dióxido de carbono y dos moléculas de agua; en este caso el fuego es… gaseosa muy caliente.

Algo parecido ocurre al quemar alcohol ordinario (etanol): CH3 – CH2OH + 3O2 à 2CO2 + 3H2O

Una molécula de etanol se combina con tres moléculas de oxígeno para formar dos moléculas de dióxido de carbono y tres de agua. En este caso el propio combustible aporta oxígeno y, por otra parte, la proporción de dióxido de carbono es mayor, pero la llama sigue siendo “agua con gas”.

La familiar fórmula H2O significa que una molécula de agua está formada por dos átomos de hidrógeno y uno de oxígeno, y sus peculiares características moleculares convierten hacen del agua el “disolvente universal”: muchas de las reacciones químicas que se producen en la naturaleza tienen lugar en medio acuoso, y en otras muchas, como acabamos de ver, se produce agua. Además de la combustión, la más conocida reacción generadora de agua es la de un ácido con un hidróxido, como nos recuerda una frase muy familiar para quienes estudian química: “ácido más base, sal más agua”; por ejemplo, al reaccionar el ácido clorhídrico con el hidróxido sódico, se producen cloruro sódico (sal común) y agua: HCl + NaOH à NaCl + H2O

Su condición de disolvente universal hace que el agua sea fundamental para la vida tal como la conocemos, pues en estado líquido (en el que se mantiene de manera bastante estable entre 0º y 100º centígrados) suministra un medio idóneo para que las moléculas de otras sustancias se muevan libremente y se combinen entre sí. Por eso nuestro cuerpo contiene alrededor de un 70% de agua y no podemos sobrevivir mucho tiempo sin beber. Después de todo, Tales no iba desencaminado.

Tomado de: El País (España)

20 de junio de 2019

Neuroeducación 01: ¿Dónde se almacenan los recuerdos?


En el hipocampo

Se conoce muy poco sobre la memoria, pero sabemos que nuestros recuerdos están ‘grabados’ o codificados en células cerebrales del hipocampo, el centro de memoria del cerebro. De esta manera están disponibles para ser recordados a largo plazo y no ser como Dory en Buscando a Nemo.


Todo empezó con el paciente HM
Cuando tenía 7 años, HM se dio un golpe en la cabeza. Tres años después empezó a tener unas convulsiones que cada vez se volvieron más intensas. A los los 27 años ya no podía tener una vida normal.
En 1953, HM aceptó formar parte de una cirugía en la que le extirparon los dos hipocampos del cerebro. La operación funcionó y el hombre dejó de tener convulsiones. Incluso su coeficiente intelectual aumentó.

Pero entonces los médicos se dieron cuenta de que, en el proceso, habían dañado su memoria. El joven no podía recordar si había desayunado o cómo llegar hasta el baño.

El trágico desenlace de su cirugía dio inicio a cinco décadas de estudios que lo inmortalizaron como el paciente "HM", el más famoso de la historia de la neurociencia.



El hipocampo almacena reuerdos y es nuestro GPS

En el hipocampo se encuentran las células nerviosas que nos permiten saber dónde estamos y cómo enocntrar un camino.

En otras palabras, se trata de células que funcionan como el "GPS interno" del cerebro.


Por eso el paciente HM no sabía dónde estaba y no sabía como ir al baño. Al quedarse sin los dos hipocampos se quedó sin nociones de tiempo y espacio, y tambíen se quedo sin recuerdos, sin memoria.

Espacio, tiempo y recuerdos se almacenan en el hipocampo. Este descubrimiento lo realizaron los científicos Edvard Moser (Noruega), su esposa May-Britt Moser (Noruega) y
John O'Keefe (EE.UU.). Los tres recibieron el premio Nobel de Medicina en el 2014.


¿Cómo se producen los recuerdos?

Para que se produzcan los recuerdos es necesario que las células se conecten entre sí (sinapsis) a través de señales eléctricas y químicas que se mueven de una célula a otra, las cuales pueden ser relativamente débiles y esporádicas o fluir con vigor y frecuencia. De este modo, cuanto más fuertes sean los mensajes entre las neuronas, más fuertes y permanentes serán los recuerdos que guardan.


Como era de esperar malos hábitos como la falta de sueño, el alcohol, una dieta inadecuada o el estrés pueden reducir el flujo de mensajes entre las células cerebrales.

En los siguientes posteos te daremos valiosos tips de neuroeducación:

1. Neuroeducación: Haz ejercicio... ¡y mejora tu memoria!

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0