Latest Posts:

16 de septiembre de 2019

Pioneras de la ciencia (06/08): Maria Gaetana Agnesi (1718-1799) y el primer libro de Cálculo

En épocas pasadas, quienes dedicaban su vida a las ciencias solían partir de un entorno familiar acomodado. Pero a la italiana Maria Gaetana Agnesi le cayeron todos los regalos de la vida: nació en una familia acaudalada de Milán, fue muy bella a decir de sus contemporáneos, y tenía un cerebro sin parangón: a los 11 años hablaba siete idiomas, y con pocos más discutía enrevesados problemas de filosofía con los invitados que congregaba su padre, profesor de matemáticas de la Universidad de Bolonia.

Agnesi cultivó también esta disciplina, al tiempo que educaba a sus 20 hermanos y hermanastros que los tres matrimonios de su padre llegaron a reunir bajo un mismo techo.

Su principal obra

Su obra más sobresaliente fue Instituzioni analitiche ad uso della gioventù italiana (Instituciones analíticas para el uso de la juventud italiana), un volumen publicado en 1748 en el que trataba el cálculo diferencial e integral. Las 1.000 páginas de texto y las 50 de ilustraciones resultan sin embargo muy familiares al lector moderno, reflejando el mayor mérito de Agnesi: crear el primer texto completo de Cálculo, desde el álgebra hasta las ecuaciones diferenciales. Superando además tentativas anteriores, singularmente la de L'Hopital en su libro Analyse des infiniment petits.

Entre 1750 y 1752 consta que era catedrática de matemáticas en la Universidad de Bolonia, aunque puede que de forma honorífica. En 1775 la Academia de Ciencias publica en París la edición francesa, y en 1801, dos años después de la muerte de María, se publica la inglesa.

El libro contiene su contribución más conocida, la curva llamada Bruja de Agnesi. El nombre es producto de un error de traducción: el matemático Guido Grandi había llamado a esta curva versoria, nombre en latín de la escota, un cabo empleado en las embarcaciones. Su versión en italiano era versiera, palabra que se empleaba también como apócope de avversiera, diablesa o bruja. En la edición inglesa del libro se tradujo como witch, bruja, y así ha perdurado.

La bruja de Agnesi

Hoy en día, María Gaetana es también recordada por su curva “embrujada”, pero que no se trata de ningún hechizo, ni María era una bruja.

La historia por la que la curva recibió este nombre surge de la mala traducción del término versiera, del latín vertere, que es un término naval, que identifica la cuerda o cabo que hace girar la vela. John Colson, el traductor inglés, la confundió con la palabra avversiera, que significa diablesa o bruja.

La ecuación de su curva hechizada es la siguiente
 
donde a es un parámetro (de hecho, el radio de la circunferencia inicial con la que se construye la curva). Para a = 1/2, resulta

y esta es su representación gráfica
La magia de esta curva es que aunque su contorno sea infinito, el área encerrada bajo la curva es finita y proporcional al área de un círculo; además, el volumen engendrado por la revolución de esta curva alrededor de su asíntota es cuatro veces su hipotético volumen.

La curva tiene interesantes aplicaciones en física y en estadística. Desde el punto de vista de la estadística, la distribución de Cauchy de una variable aleatoria se expresa como una curva de Agnesi. Así mismo, en la física, pueden explicarse fenómenos de resonancia atómica cuando incide radiación monocromática sobre un electrón. La intensidad de esta radiación dependerá de la longitud de onda con que incide esta luz, y la relación entre estos dos parámetros puede modelizarse mediante la bruja de Agnesi.

Últimos días

Pero a pesar de sus muchos dones, triunfos y títulos, incluido el de primera mujer catedrática de matemáticas de la historia, Agnesi no se conformó con una vida regalada. Profundamente católica, trocó su éxito por una pobreza voluntaria y una vida entregada al servicio de los pobres y los enfermos, al tiempo que estudiaba teología. Sus últimos años los pasó enclaustrada y sirviendo a los ancianos en un hospicio milanés, donde murió como una monja más, o una indigente más.

Tomado de: Open Mind 

Foro Histórico

Matemática y sus Fronteras

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0