Latest Posts:

Mostrando las entradas con la etiqueta fisica. Mostrar todas las entradas
Mostrando las entradas con la etiqueta fisica. Mostrar todas las entradas

12 de abril de 2015

Cómo construir un Péndulo de Newton


Si lo construyes cuidadosamente, este extraño artefacto demuestra una de las leyes básicas de la naturaleza. Esta ley explica muchos eventos que vemos todos los días. Por ejemplo ¿por qué un camión grande sale ganando en un choque frontal con un automóvil pequeño, incluso si ambos van a la misma velocidad al momento del impacto?

Necesitas lo siguiente:

  • Un juego de construcción con piezas que encajen entre sí, como
    Construx®
    K'Nex®
    Lego Bricks®
    Tinkertoys®
    Fiddlestix®
    Zome® System
    Rokenbok®
    Erector®
  • 5 cuentas esféricas grandes (de al menos 2,5 cm [1 pulg.] de diámetro), perillas (que se compran en ferreterías y se usan como manillas para gavetas) o pelotas duras (como pelotas de golf)
    Lo que uses debe estar hecho de un material duro y denso, como madera dura, vidrio o cerámica. Debe podérsele colocar un hilo. Si usas cuentas, puedes pasar el hilo por el agujero en el centro. Si usas perillas (que tienen agujeros en un solo lado) o pelotas, puedes introducir en ellas armellas roscadas, tornillos o clavos para amarrar el hilo.
    Consejo: Puedes comprar perillas de madera de 3,8 cm (1,5 pulg.) de diámetro en la sección de materiales para hacer muñecas en las tiendas de manualidades, o comprar manillas para gavetas en las ferreterías.
  • 5 armellas roscadas, ganchos roscados, tornillos para madera o clavos con cabeza (si se usan perillas o pelotas, en vez de cuentas)
Algunos posibles sujetadores para pelotas.
Materiales y provisiones necesarios.
  • Cartón grueso de aproximadamente 13 x 20 cm (5 x 8 pulg.)
  • Hilo o cuerda de nilón para pescar
  • Cinta adhesiva
  • Tijeras
  • Una regla
  • Un lápiz

Debes hacer lo siguiente:

  1. Construye un armazón firme con el juego de construcción. Te recomendamos que el armazón tenga 25 a 30 cm (10 a 12 pulg.) de alto, 20 a 30 cm (8 a 12 pulg.) de ancho, y 13 a 15 cm (5 ó 6 pulg.) de profundidad. Puedes hacer un armazón de otro tamaño, pero prueba con éste para empezar. Los lados y la parte superior del armazón deben estar abiertos. Una vez que el armazón esté terminado, no debe tambalear mucho.
  2. Introduce el tornillo en la pelota.Si vas a usar perillas o pelotas (en vez de cuentas), introduce un tornillo, una armella roscada, un gancho roscado, o un clavo en forma recta en cada una de ellas.
    Consejo: Si vas a usar tornillos o armellas roscadas, puede ser de gran ayuda que un adulto perfore primero "agujeros guías"
  3. Con la regla, en uno de los lados largos del cartón haz cinco marcas de lápiz de modo que la distancia entre ellas sea igual al diámetro de las cuentas (o pelotas o perillas). La primera y la última marca deben estar a la misma distancia de los extremos del cartón. Haz marcas similares en el lado opuesto del cartón, usando la regla para asegurarte de que estén justo al frente de las primeras marcas que hiciste.
  4. Ahora, mide el ancho en el interior de la parte superior de la estructura. Mide la misma distancia a lo ancho del cartón y dibuja dos líneas que estén separadas por la misma distancia y que estén centradas en el cartón.
  5. Mide y haz cortes en el cartón.Con las tijeras, haz cinco cortes en ambos lados del cartón justo en las marcas del paso 3. Los cortes no deben sobrepasar las líneas que dibujaste en el paso 4.
  6. Corta cinco trozos de hilo de unos 50 cm (20 pulg.) de largo.
  7. Si estás usando cuentas, pasa un trozo de hilo por cada una de ellas.
    Coloca el hilo en la perilla o pelota.Si estás usando perillas o pelotas, pasa un trozo de hilo por cada armella roscada o amarra el centro de cada trozo alrededor de cada tornillo o clavo.
    (Si estás usando ganchos, continúa con el siguiente paso, y luego cuelga las pelotas de los hilos.)
  8. Introduce los extremos de cada trozo de hilo en los cortes en el cartón.
  9. Coloca el cartón en la parte superior de la estructura, con las cuentas o pelotas colgando en el centro.
  10. Asegúrate de que las pelotas estén perfectamente alineadas entre sí.Ajusta la altura de los hilos de modo que todas las pelotas cuelguen libremente exactamente a la misma altura y perfectamente centradas.
  11. Cuando hayas hecho todo esto de la manera más perfecta posible, pega los hilos con cinta adhesiva en la parte superior del cartón para que no se resbalen.
  12. Decora tu artefacto como quieras, pero sin que nada interfiera con el movimiento de las pelotas. Puedes usar otras partes del juego de construcción, maquetas, cosas hechas de cartulina, o lo que quieras. ¡Usa tu creatividad!
Ahora, tira hacia atrás una de las pelotas extremas y suéltala. ¿Qué sucede?

Fuente:

29 de marzo de 2015

Cómo hacer ondas con los péndulos

Hace unos meses atrás iniciamos un especial sobre ciencia en educación inicial, uno de estos posteos estuvo relacionado con el estudio de los péndulos en las aulas de 3, 4 y 5 años, les dejamos el enlace a la primera parte y el enlace de la segunda parte; y la presentación que realizamos:


Uno de los experimentos más fascinantes, y que combina a la perfección la ciencia con el arte (en este caso la física con la música) es el siguiente: los pendúlos crean unas ondas y "danzan" con la apertura de Guillermo Tell, de Rossini:


El efecto es verdad hipnotizante, ¿verdad?. Bien, buscando en YouTube encintré un video tutorial sobre como hacer estos péndulos, aquí lo tienen:



Para no aburrirse en Semana Santa (si es que no van a salir a ninguna parte).

Hasta pronto

Leonardo Sánchez Coello
Director del Proyecto "Conocer Ciencia"

25 de marzo de 2015

Como hacer un proyector con una caja de zapatos

Si no deseas leer todo el post te invito ver el vìdeo; està en inglès pero se comprende a la perfecciòn: 

Tu mismo puedes hacer un proyector casero usando una caja de zapatos, algunos accesorios que probablemente tengas en tu casa y tu smartphone. Un proyecto con el que podrás convertir tu teléfono en una televisión portátil. Un proyecto sencillo de realizar con una calidad de imagen bastante aceptable. Te mostraremos cómo convertir tu teléfono en un proyector por sólo 1 euro.
Paso 1. Materiales.
Como hacer un proyector materiales
  • Una caja de zapatos.
  • Un clip.
  • Una lupa.
  • Un cúter.
  • Cinta aislante negra.
  • Pintura o papel negro.
Paso 2. Pintura.
Si el interior de la caja no es de color oscuro, sería buena idea pintarlo de oscuro para mejorar el resultado.
Paso 3. Quita la tapa superior de la caja de zapatos y prepara para colocar la lupa.
Como hacer un proyector paso 1
Traza el contorno de la lupa y córtala con el cúter.
Como hacer un proyector paso 2
Paso 4. Coloca la lupa.
Como hacer un proyector paso 3
Paso 5. Coloca el teléfono en la posición adecuada.
er-box; display: block; height: auto; margin: 0px auto 12px; max-width: 100%;" width="700" />
Con este minitutorial podrás hacer un soporte para el smartphone con un clip.
Como hacer un proyector clip

El artìculo completo en:

Eco Inventos

13 de enero de 2015

2015: el año de la luz

Después de un máximo en 2014, expertos de la NASA vaticinan que la actividad solar descenderá en 2015. Por otra parte, el 20 de marzo de este año gran parte del Viejo Mundo tendrá la oportunidad de disfrutar de un hermoso espectáculo de oscuridad: un eclipse solarque será total únicamente para los habitantes de las islas nórdicas Feroe y Svalbard, pero que barrerá toda Europa, el norte de África y el cuadrante noroeste de Asia. Será una de las noticias relacionadas con la luz que se producirán en el año más apropiado, el Año Internacional de la Luz y las Tecnologías Ópticas (IYL2015), declarado por la Organización de las Naciones Unidas (ONU).
BBVA-OpenMind-luz-2015
El eclipse solar se verá como parcial en casi toda Europa (Crédito: Tomruen)
¿Por qué dedicar un año a la luz? Lo explica a OpenMind el presidente del Comité Internacional del IYL2015 y de la Sociedad Europea de Física, John Dudley: “El objetivo del IYL es crear conciencia entre el público y las autoridades de que la ciencia y la tecnología de la luz sostienen sus vidas de muchas formas que no se aprecian, y que proporcionan soluciones reales a muchos retos globales”. Dudley es también el padre de la idea delIYL2015, propuesta por primera vez en 2009 y que fue recabando apoyos de organismos científicos hasta lograr en 2013 que la Unesco cosechara el respaldo del pleno de la Asamblea general de la ONU. Dudley aclara que el apoyo de Naciones Unidas no es una mera formalidad. “Nada más lejos de la verdad”, aclara el físico neozelandés afincado en Francia. “Conseguir un apoyo político de tan alto nivel requirió un trabajo muy duro de muchas personas y el desarrollo de argumentos defendiendo la propuesta a todos los niveles: de la ciencia a la sociedad, la economía, el desarrollo y más”.
BBVA-OpenMind-year-of-light-2
Poster del Año Internacional de la Luz 2015 (Crédito: Offenburg University)
La elección de 2015 no es casual. Este año coinciden varios aniversarios relacionados con las ciencias de la luz, empezando por un milenio, el del matemático y astrónomo árabe Ibn Al-Haytham o Alhacén (965-1040), pionero de la óptica y del método científico, cuyo trabajo será conmemorado en la campaña global 1001 Invenciones y el Mundo de Ibn Al-Haytham. También se celebrará el bicentenario del trabajo del francés Augustin-Jean Fresnel(1788-1827), uno de los proponentes de la naturaleza ondulatoria de la luz; así como el sesquicentenario de la teoría electromagnética de la luz del escocés James Clerk Maxwell(1831-1879), el centenario de los trabajos sobre la luz de Albert Einstein (1879-1955), y dos cincuentenarios: el del descubrimiento del fondo cósmico de microondas por Arno Penzias y Robert Wilson, y el del desarrollo de las aplicaciones de la fibra óptica por el chino-británico-estadounidense Charles Kuen Kao.
El IYL2015 recibirá el pistoletazo de salida en una ceremonia de inauguración de carácter científico que se celebrará el 19 y 20 de enero en la sede de la Unesco en París. En este acto se destacarán las tecnologías que, en palabras de Dudley, “empujan los límites de la ciencia óptica: una nueva generación de láseres ultrarrápidos de alta potencia (luz extrema), fuentes de luz sincrotrón en áreas como la farmacología, el desarrollo de la tecnología cuántica en áreas como las ciencias de la información, o la aplicación de técnicas ópticas en biología (biofotónica) destinadas a avanzar en la imagen del cerebro”. “Estas son áreas que ya han sido objeto de extensa investigación, pero en las que pienso que probablemente veremos grandes avances en breve”, valora el físico.
Pero por mucho que la ciencia ocupe un lugar esencial en el IYL2015, el objetivo va más allá de popularizar un campo de investigación con vistas a engrosar sus recursos. “Ciertamente queremos subrayar que la inversión gubernamental en investigación y tecnología es vital para asegurar que la ciencia de hoy se convierta en la tecnología del mañana, pero también hay muchas tecnologías existentes que con muy poca inversión adicional pueden transferirse a áreas como la salud, las comunicaciones y la iluminación, de manera que puedan transformar las vidas de la gente en los países en desarrollo”, expone Dudley. Como ejemplo, el científico cita el proyecto Study after Sunset (Estudiar después del Atardecer), cuyo propósito es impulsar el uso de lámparas solares LED en los hogares sin acceso a la luz eléctrica.
Dudley muestra un especial interés en que el IYL2015 no se quede en un plano meramente institucional, sino que también interese a los ciudadanos de a pie, usuarios de nuevas tecnologías ópticas en los LED o los smartphones que ya desempeñan un papel esencial en sus vidas. De cara al público, el IYL2015 incluye la celebración de eventos por todo el mundo, tanto a través de festivales de luz ya existentes como de nuevas citas independientes. “También estamos planeando experimentos de ciencia ciudadana a escala regional e internacional, utilizando smartphones para medir la luz y la polución del aire”, apunta Dudley. “Queremos implicar a tanta gente como podamos”.

Tomado de:

23 de diciembre de 2014

¿Cómo podría Santa Claus entregar todos los regalos de Navidad?


El reto es bastante claro. Papá Noel necesita entregar todos sus regalos en 24 horas: ¿cómo puede lograrlo? Bueno, tiene que ser inteligente, creativo y algo más.
Para empezar, los números no se ven tan mal como podrías pensar.
Unicef dice que hay 2.200 millones de niños en el mundo. Pero recordemos que Santa Claus sólo entrega regalos a los niños buenos (de todas las religiones, incluyendo ateos, agnósticos, etc.).
Así que vamos a estimar el 50% de los niños pasan la prueba. ¡Y eso puede ser un cálculo generoso!
Muchos de los niños viven en la misma casa, por lo que si tomamos el promedio mundial de 2,5 niños por hogar y esperamos que los niños buenos estén juntos, sólo podría tener que visitar 440 millones de hogares.
También podría tener más de 24 horas.
Roger Highfield, autor de "La Física de Navidad, calcula que si se viaja en la dirección opuesta a la rotación de la Tierra, San Nicolás tendría otras 24 horas para llevar a cabo su misión.
Pero aun así, esto seguramente no sea suficiente tiempo para un trabajo de tal magnitud.
Entonces, ¿cómo lo hace? Aquí hay cinco posibles respuestas:

Podría volar muy, muy rápidamente

Según Highfield, exeditor de la revista New Scientist, Papá Noel tendría que acercarse a la velocidad de la luz con el fin de entregar todos los regalos.
A 300.000 kilómetros por segundo, podría vuelta al mundo siete veces en un segundo.
Trineo
A 300.000 kilómetros por segundo, Papá Noel podría vuelta al mundo siete veces en un segundo.
Aunque esto podría explicar por qué la nariz del reno Rodolfo se ve tan roja, no parece posible.
A esta velocidad San Nicolás iría arrinconado contra el asiento del trineo por las enormes fuerzas y él, sus renos y el trineo simplemente se quemarían en la atmósfera.

...o tal vez usar un ejército de elfos

En base a nuestros cálculos anteriores, Santa Claus tiene que visitar 440 millones de hogares.
El Servicio Postal de Estados Unidos dice que maneja cerca del 40% de la correspondencia mundial y realiza alrededor de 158.000 millones de envíos cada año, un promedio de 434 millones artículos al día.
Camiones del Servicio Postal de EE.UU.
El Servicio Postal de EE.UU. entrega un promedio de 434 millones de artículos al día.
Así que si utilizara su plantilla de más de 600.000 empleados y una de las mayores flotas de vehículos en el mundo, San Nicolás podría ser capaz de hacer el trabajo. O casi.
Pero aunque los elfos le pueden ayudar con la logística en la trastienda, sólo hay un Papá Noel para las entregas.
Sin embargo, todavía le queda el camino de la física.

Quizás utiliza agujeros espacio-temporales

Para entender cómo funcionan, imagínate que dibujas tu casa en el lado izquierdo de una hoja de papel y la de tu amigo en el lado derecho, con un camino que las une.
Agujero espacio-temporal
Papá Noel podría aprovecharse de los agujeros espacio-temporales.
Un agujero espacio-temporal sería como doblar el papel por la mitad –las casas ahora están enfrentadas por detrás–, y Papá Noel puede utilizar su profundo conocimiento de la Teoría de la Relatividad para viajar a través del papel sin tener que seguir la línea de la ruta.
¡Mucho más rápido!

...o crea una nube de relatividad

Larry Silverberg, profesor de ingeniería mecánica y aeroespacial de la Universidad de Carolina del Norte (EE.UU.), también sostiene que Papá Noel es experto en manipular y controlar el tiempo y el espacio.
Él postula que podría crear una nube de relatividad en la que el espacio, el tiempo y la luz se perciben de una manera completamente diferente a como se perciben fuera de esta nube.
Albert Einstein
"Dentro de la nube, San Nicolás tiene meses para entregar los regalos. Desde el interior, ve el mundo congelado", explica Silverberg.
"Dentro de la nube, San Nicolás tiene meses para entregar los regalos. Desde el interior, ve el mundo congelado", explica Silverberg.
Aquellos de nosotros fuera de esa nube sólo veríamos un momento fugaz. Y seis meses dentro de ella es apenas un abrir y cerrar de ojos para nosotros. Es por ello que Santa no tiene prisa para entregar los regalos.
Según Silverberg, Papá Noel literalmente tiene todo el tiempo en el mundo.

... o recurre a la física cuántica

Papá Noel también podría recurrir a un fenómeno cuántico, y así podría estar en cualquier lugar en el mundo en cualquier momento en Nochebuena.
Así lo afirma Daniel Tapia, científico en los laboratorios en Ginebra del Consejo Europeo para la Investigación Nuclear (CERN).
Carrera de Papás Noel en Michendorf (Alemania) en 2013
Papá Noel podría comportarse como un fenómeno cuántico, y así podría estar en cualquier lugar en el mundo en cualquier momento en Nochebuena.
"Puede ser que Santa Claus sea una superposición de estados cuánticos, en otras palabras, una colección de Santas difundidos en todo el planeta".
Siguiendo la teoría del físico mexicano, cada uno de los estados cuánticos de Papá Noel daría un regalo a cada niño que esté dormido en ese momento.
Si un solo niño lo viera, su estado cuántico se derrumbaría y no podría entregar más regalos.
Así que por favor, niños, ¡duerman bien! La maravilla de Santa depende de que nunca lo veamos. Si lo llegamos a ver, deja de existir.
Fuente:

21 de diciembre de 2014

Cómo enfriar una bebida en solo dos minutos

Pongámonos en situación: la cena de Nochebuena ha terminado y los que quedáis en casa queréis tomaros una bebida o un combinado para continuar la velada pero, ¡vaya! No hay ningún refresco frío en la nevera.






Circunstancia equivalente a estar de camping, en la playa o en una excursión campestre y encontrarnos con el mismo problema: todas las latas de refrescos están a temperatura ambiente. No hay fallo. Sólo hace falta un poco de hielo y sal para enfriar tú bebida en tan sólo dos minutos.


Necesitarás un recipiente o bol para poner los hielos, añadir una cucharada sopera de sal y, a continuación, meter dentro uno de los refrescos. Tan sólo habrá que dar un par de vueltas a la lata para que la sal se disuelva y esperar dos minutos. ¡Bajarás su temperatura ambiente en más de 15 grados!

Como explican en este vídeo de Upsocl, la segunda ley de la termodinámica establece que “dos sustancias con diferentes temperaturas alcanzan el equilibrio térmico entre ellas”. Química pura y dura. La mezcla de la sal y el agua produce una reacción endotérmica –que absorbe energía– de tal forma que, una vez disuelta, la sal absorberá el calor de la lata de tal forma que el frío de los hielos pasará más rápido al recipiente que está a temperatura ambiente. En tan sólo 120 segundos.



Fuentes:

ElConfidencial

60minutos


27 de noviembre de 2014

¿Es peligroso usar el teléfono celular en un grifo (gasolinera)?

Todos hemos visto las señales de prohibición del uso de teléfonos móviles en las estaciones de servicio. Incluso hemos recibido correos electrónicos con videos e imágenes de incendios o explosiones provocados por el supuesto uso del teléfono al repostar.



Pero, ¿hay un riesgo real?

Si hablamos de explosiones o incendios, la respuesta es que no.


Las explosiones a las que se refiere este mito son explosiones químicas producidas a partir de una reacción de combustión de carácter exotérmico. Se trata de una combustión rápida que genera gases calientes que se expansionan, dando lugar a una onda de presión (onda aérea) y a un frente de llama que se propaga rápidamente.

Realmente cuando empleamos el término explosión para el caso que nos ocupa, nos estamos refiriendo a una deflagración, ya que la velocidad lineal de avance de la reacción (frente de llama) es inferior a la velocidad del sonido, y la onda de presión generada avanza por delante del frente de llama o zona de reacción.

Para que se produzca una deflagración es necesaria la presencia de un producto combustible mezclado con un comburente -dentro de unos límites de explosividad-, y de una fuente de ignición. Es el clásico triángulo del fuego que todos conocemos (realmente es un tetraedro, pero hoy lo simplificamos en aras de una mejor comprensión)

Para que ocurra un fuego o una deflagración, necesitamos completar los tres elementos del triángulo. En las gasolineras tenemos el combustible (los vapores de los carburantes), un comburente (el oxígeno del aire) y faltaría la fuente de ignición como parámetro que pueda ocasionar la deflagración para cerrar el triángulo del fuego.

El artículo completo en:

NAUKAS

28 de octubre de 2014

¿Pesan todas las hormigas juntas más que toda la humanidad?

"Si fuéramos a pesar todas las hormigas del mundo, pesarían tanto como todos los seres humanos", dijo el presentador Chris Packham en un reciente documental de la BBC. ¿Puede ser cierto?

Hay hormigas de hasta 60 mg, pero la media es mucho menor.
Esta afirmación la hicieron por primera vez el profesor Edward O. Wilson, de la Universidad de Harvard (Estados Unidos), y el biólogo alemán Bert Hoelldobler en su libro de 1994 "Viaje a las hormigas".

La estimación se basa en un cálculo anterior del entomólogo británico C.B. Williams, quien calculó que el número de insectos vivos en la tierra en un determinado momento es de un millón de billones.
"Si, para tomar una cifra conservadora, el uno por ciento de eso son hormigas, la población total sería de 10.000 billones", escribieron Wilson y Hoelldobler.


Cómo se pesa una hormiga

"Es muy fácil pesar una hormiga. En una pequeña pesa electrónica, se pone una hormiga", explica Ratnieks.

Pero advierte, lo mejor es refrigerar la pesa antes: "Esa es la manera de que no salgan corriendo".

"Una hormiga trabajadora puede pesar una media de entre uno y cinco miligramos, dependiendo de la especie. Combinadas, todas las hormigas juntas pesan juntas tanto como todos los seres humanos".
La idea de Wilson y Hoelldobler se basa en la idea de que un humano medio pesa un millón de veces más que una hormiga media.

¿Y cuánto aguanta este argumento un examen detenido?

Un humano medio pesa 62 kilos, así que eso supondría que las hormigas pesan unos 60 miligramos.
"Hay hormigas que pesan 60 miligramos, pero son de las muy grandes", dice Francis Ratnieks, profesor de apicultura de la Universidad de Sussex, Reino Unido.

"La hormiga común debe rondar un miligramo o dos".

Con unas 13.000 especies en el mundo, la diferencia de tamaño va de las que miden un milímetro a las de 30.

Así que es probable que el peso también varíe notablemente: aunque numerosos expertos parecen estar de acuerdo en que la media pesa 10 mg.

Eso sí, nadie sabe cuántas hormigas hay en el mundo. El documental de la BBC dice que no son diez millones de billones sino cien billones...

El artículo completo en:

BBC Ciencia

9 de octubre de 2014

¿Por qué el LED azul merece un Premio Nobel en Física y el LED verde no?

wear-a-constellation-with-led-ga 
Está por todo internet, todo el mundo quiere hacerse eco de quiénes son los ganadores del Nobel en cada disciplina. Ayer mismo supimos los ganadores del premio Nobel de Física: los 3 responsables del primer LED azul eficiente, contruído hace 20 años. Un premio poco común si pensamos que ni el creador del primer LED ni el del primer LED azul tienen tal premio. ¿Por qué ahora? ¿Por qué solo a estos?

La primera pregunta es fácil de contestar: porque ya era hora. Hace años que los LEDs invaden nuestra vida. Desde las pantallas de los smartphones, tablets, ordenadores, TVs… pasando por los coches hasta llegar a las bombillas de casa. La aceptación del LED es tal que ya hay ciudades cambiando sus farolas a esta tecnología. Y me permito añadir que mucho tarda esta transición, cuando los LEDs son más duraderos, baratos, pequeños y eficientes con hasta 300lumen/Watio frente a los 70 de los fluerescentes y 16 de las bombillas tradicionales.

CityLED

La segunda pregunta, sin embargo, es bastante más compleja de responder y atiende a razones históricas, casi 30 años de diferencia entre el LED verde y el azul; y a razones físicas, es muy complicado de construir y tiene unas propiedades únicas que no comparte con otros LEDs. Para entender estas razones (especialmente la última) es necesario entrar en teoría cuántica de semiconductores, pero vamos a intentar hacerlo sencillo para que todos nos entendamos (prometo que lo conseguiremos).

La física del los LEDs

Vamos a empezar por lo más interesante y complejo: entender un LED. Un LED es una unión de dos semiconductores tipo p-n. El tipo de semiconductor nos dice si los portadores de corriente serán negativos (electrones) o positivos (huecos sin electrón). Es importante entender que un hueco en el que falta un electrón se comporta como un electrón con carga positiva, aunque realmente no haya nada ahí.

Lo interesante de estas uniones es que forman diodos que solo dejan pasar la señal en una dirección. Esto permite que conviertan una señal alterna en contínua, por ejemplo. Los LEDs son unos diodos especiales que emiten luz cuando pasa corriente en la dirección permitida. Esta emisión de luz se produce por un salto de los electrones entre niveles de energía y deben cumplirse unas propiedas para que exista y podamos ver esa luz.

Gaps

Cada línea es un nivel de energía.

En concreto tienen que cumplirse dos condiciones sencillas, la primera de las cuales es que el mínimo de un nivel de energía se encuentre justo encima del máximo del nivel anterior. En la imagen vemos este efecto en el esquema de niveles. Estos semiconductores se llaman de “gap directo” (gap es la diferencia de energías) por razones que os imagináis.

La segunda condición es que el gap de energía entre un nivel y otro sea tal que el fotón resultante se emita tenga una frecuencia en el rango visible. Lo que dicho en cristiano significa que tenemos que hacer el gap del tamaño justo para poder ver la luz y que no sea infrarroja (gap pequeño) o ultravioleta (gap grande). Modificando el tamaño del gap podemos variar el color desde el rojo hasta el azul pasando por todos los del arcoiris.

LEDScreen

Y justo aquí, al final, llega el problema. Si aumentamos mucho el gap (por encima del color verde) es más fácil perder las propiedades de semiconductor y pasar a un aislante convencional como el cuarzo o el vidrio. Aquí es donde reside la dificultad de conseguir un LED azul: aumentar el gap lo suficiente manteniendo un semiconductor. Como veremos a continuación esto no es sencillo y costó mucho tiempo y dinero conseguirlo de una forma viable para la producción masiva.

Historia del LED azul

Ahora que ya sabemos dónde reside la dificultad de conseguir un LED azul veamos cómo fue la evolución histórica de este hito. Empezaremos con el primer LED, con emisión en rojo, que fue construido en 1962. Aunque ya antes se habían observado fenómenos similares en el infrarrojo. Desde entonces se mantuvo una carrera por conseguir el resto de colores. A pesar de tenerse los diseños desde los años 50 el LED azul aún se haría esperar varias décadas.

Entorno a 1970 la mejora en las técnicas de crecimiento de cristales permitió un gran avance en el desarrollo de nuestros queridos LEDs azules. En principio se intentaron basar en GaN (Nitruro de Galio) pero pronto se vio que esa técnica no conseguía una luminosidad suficiente. Es aquí donde podemos establecer la creación del primer LED azul, aunque no era usable y apenas se veía su luz.

Ganadores del Premio Nobel de Física 2014

Ganadores del Premio Nobel de Física 2014

Para los más exigentes podemos establecer 1989 como la fecha en que se consiguió el primer LED azul con una emisión razonablemente alta, aunque su eficiencia era del 0.03% Una vez más parecía que el LED azul no era viable para la producción masiva; hasta que en 1994 nuestros laureados obtuvieron por primera vez un LED azul de “alta” eficiencia utilizando técnicas modernas. Como semiconductor usaron InGaN/AlGaN y obtuvieron eficiencia alrededor de 2.7% (comparable al 4% de las bombillas incandescentes).

A día de hoy los LEDs corrientes que podemos comprar en cualquier tienda, muy baratos, tienen una eficiencia superior al 50% y presentan la mejor fuente de luz artificial que conocemos. El LED azul eficiente (muy importante esta última palabra) ha permitido, en primer lugar, completar las matrices RGB que usan hoy todas las pancartas LED del mundo así como obtener LEDs blancos.

Screen Shot 2014-10-07 at 19.34.36

Sí, blancos, no os había hablado de ellos porque me lo guardaba para el final. El LED blanco funciona como los fluorescentes de casa, pero mejor. Tenemos que bombardear con luz de alta energía (azul, ultravioleta…) un fosfato de tal forma que su reacción sea emitir luz en todo el espectro visible, dando lugar al color blanco. No es así como se hace el blanco en la pantalla de tu móvil (se enciende un pixel verde otro rojo y otro azul), pero sí es la forma de conseguir bombillas caseras o de iluminación de calles.

En resumen, y ya termino la chapa, los galardonados este año son más que merecidos ganadores del premio Nobel pues han permitido una revolución tecnológica equiparable a la del PC. En un primer momento puede parecer una elección frívola y sin fundamento, pero a mi juicio ya era hora de que lo obtuvieran. ¿Vosotros que pensáis? ¿Estáis de acuerdo o creéis que ha sido una decisión “porque no había nada mejor”? Como siempre, los comentarios son vuestros.

Fuente:

MedCiencia

26 de septiembre de 2014

Stephen Hawking: "No hay ningún Dios, los milagros no son compatibles con la ciencia"

Stephen Hawking Stephen Hawking, en la ceremonia de apertura del Festival de Cine de Cambridge en septiembre de 2013. (GTRES)

El científico británico interviene esta semana en el Festival Starmus de Tenerife. Hawking confía en que el ser humano terminará entendiendo el origen y la estructura del Universo: "Ya estamos cerca de lograr este objetivo", dice.

Para el físico, la exploración espacial impulsará grandes avances: "Evitaría la desaparición de la Humanidad gracias a la colonización de otros planetas". 


El científico británico Stephen Hawking ha subrayado en España la importancia de contar con "licenciados con formación científica para garantizar el desarrollo económico" y ha advertido de la dificultad de que los jóvenes opten por carreras científicas si siguen los recortes. No se puede animar a los jóvenes a estudiar carreras científicas con recortes en el campo de la investigación En un encuentro con el diario El Mundo, Hawking, que esta semana interviene en el Festival Starmus de Tenerife, deja un mensaje para el Gobierno español: "No se puede animar a los jóvenes a estudiar carreras científicas con recortes en el campo de la investigación". 

El prestigioso físico inglés, que sufre una enfermedad neurodegenerativa (Esclerosis Lateral Amiotrófica, ELA) desde los 21 años, señala en la entrevista que le gustaría ser recordado por su trabajo en la cosmología y los agujeros negros. Hawking también deja clara su postura sobre la religión: "Antes de que entendiéramos la ciencia, lo lógico era creer que Dios creó el Universo, pero ahora la ciencia ofrece una explicación más convincente (...) no hay ningún Dios. Soy ateo. La religión cree en los milagros, pero estos no son compatibles con la ciencia". 

En esa línea, el científico confía en que el hombre terminará entendiendo el origen y la estructura del Universo: "De hecho, ahora mismo ya estamos cerca de lograr este objetivo. En mi opinión, no hay ningún aspecto de la realidad fuera del alcance de la mente humana". 

Sobre la exploración espacial, Hawking considera que "continuará impulsando grandes avances científicos y tecnológicos" porque representaría un seguro de vida para la supervivencia del ser humano: "Podría evitar la desaparición de la Humanidad gracias a la colonización de otros planetas", opina. El prestigioso científico, que usa un complejo sistema para comunicarse que activa con sus mejillas, tiene previsto intervenir en dos ocasiones en el Festival Starmus: para explicar su teoría acerca de cómo el Bosón de Higgs podría causar la destrucción del Universo y para hablar de agujeros negros. 

Fuente:

20 minutos

16 de septiembre de 2014

Stephen Hawking: 'Ahora mismo no sé aún por qué existe el Universo'

Stephen Hawking, a su llegada al puerto de Santa Cruz de Tenerife.  
Stephen Hawking, a su llegada al puerto de Santa Cruz de Tenerife

El astrofísico británico Stephen Hawking ha asegurado este sábado que durante toda su vida ha intentando comprender el Universo, aunque "ahora mismo no sé todavía por qué existe".

Hawking, que ha llegado a media mañana a Tenerife a bordo del crucero Oceana procedente de Inglaterra para participar en el Festival Starmus, ha agradecido a todos los que han hecho posible que esté en Canarias.

En un acto de bienvenida que ha tenido lugar en el puerto de Santa Cruz de Tenerife, el científico, quien debido a la enfermedad neurodegenerativa que padece precisa de un sistema de voz automatizado para comunicarse, se ha mostrado ilusionado con su próxima participación en el Festival Starmus.

Dentro de este evento, que se celebrará entre los próximos días 22 y 27 y que convertirá a la isla en el epicentro mundial de la astrofísica, Hawking ha avanzado que hablará de los agujeros negros y de otros descubrimientos recientes.

Fuente:

El Mundo Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0