Latest Posts:

Mostrando las entradas con la etiqueta CO2. Mostrar todas las entradas
Mostrando las entradas con la etiqueta CO2. Mostrar todas las entradas

1 de junio de 2018

Nuevo récord en la medición de CO2

El Observatorio de Izaña, en Tenerife, registra de nuevo la máxima concentración de dióxido de carbono en la atmósfera de la Tierra.


Hace por lo menos 800.000 años que no se acumulaba tal cantidad de dióxido de carbono en la atmósfera del planeta Tierra. Aunque la cifra no diga gran cosa, las 413,9 partes por millón (ppm) registradas el 7 de abril en la estación de Izaña, junto al Teide, son una medición récord, otra más, para ese observatorio puntero. Récord de acumulación del mayor responsable del efecto invernadero y por tanto, del calentamiento del planeta. Esos 413,9 ppm también son la advertencia de lo que le estamos haciendo al planeta, alterando de forma irreversible sus ciclos naturales; saturando el aire con gases de efecto invernadero; provocando que ya estemos sufriendo un calentamiento global, con 400 meses seguidos por encima de la media histórica.

Esa medición histórica es una noticia triste, pero alguien tiene que hacerla. “Me fastidia tener que anunciar otro récord, es desagradable tener que dar malas noticias, pero las tengo que dar. La ciudadanía se merece que la informemos de este crecimiento incesante”, lamenta Emilio Cuevas-Agulló, director del Centro de Investigación Atmosférica de Izaña. Cuevas (Santa Cruz de Tenerife, 1961) llegó en el año 1990 a esta estación meteorológica, cuando se medía un máximo de 360 ppm, y entonces ni se imaginaba lo que depararía el futuro: “Aunque conozcas la física que hay detrás, no lo esperas. Y yo creo que no queremos esperarlo porque esto a nosotros nos desagrada”. En aquella época la curva de acumulación de CO2 en la atmósfera iba hacia arriba, pero todavía fluctuaba. 

“Ahora es clarísimo”, dice mientras señala con el dedo la gráfica, “la curva se está acelerando”. “No solo aumenta sino que aumenta cada vez a mayor ritmo, eso es lo que está ocurriendo. A nosotros, a mí personalmente, me agobia un montón ver esta curva. Me produce desazón, tristeza”, asegura.

Durante los últimos 800.000 años y hasta la Revolución Industrial, el CO2 fluctuó entre unos 180 y 280 ppm dependiendo de las épocas gélidas o los períodos cálidos interglaciales. Sin embargo, hoy la tasa de aumento de hoy en día es más de 100 veces más rápida que el aumento que se dio cuando terminó la última glaciación.

Cuevas señala en su ordenador el récord global de dióxido de carbono en la atmósfera.
La nota completa en:

El País (España)

6 de noviembre de 2017

OMM alerta nuevo récord de concentración de CO2 en la atmósfera

Según la organización, este "aumento peligroso de la temperatura" se debe a actividades humanas y al potente fenómeno de "El Niño", que aumenta las temperaturas del océano Pacífico, provocando sequías y fuertes precipitaciones.


La concentración de dióxido de carbono (CO2) en la atmósfera aumentó a una velocidad récord en 2016 y alcanzó el nivel más alto en 800.000 años, advirtió este lunes la Organización Meteorológica Mundial (OMM).

Tras actividades humanas y un potente fenómeno de "El Niño", los niveles de concentración de CO2 pasaron de 400 partes por millón (ppm) en 2015, a 403,3 ppm en 2016, un incremento jamás visto en la atmósfera en un solo un año.

"La última vez que la Tierra conoció una cantidad de CO2 comparable fue hace cinco millones de años: la temperatura era entre 2 y 3 °C más alta y el nivel del mar era 10 o 20 metros más alto que el nivel actual", sostuvo la agencia en su Boletín mundial de Gases de Efecto Invernadero.

El aumento del CO2 y otros gases de efecto invernadero en la atmósfera tienen el potencial de iniciar cambios sin precedentes en los sistemas climáticos, que conlleva a "graves perturbaciones ecológicas y económicas", acota el informe.

Ante esto, el director de la OMM, Petteri Talas, exigió a los Gobiernos cumplir con el Acuerdo de Paris, firmado en 2015, para reducir el calentamiento global.

"Si no reducimos rápidamente las emisiones de gases con efecto invernadero, y principalmente de CO2, nos enfrentaremos a un peligroso aumento de la temperatura en lo que queda de siglo, muy por encima del objetivo fijado en el Acuerdo de París sobre el clima", alertó el finlandés.

“Esto demuestra que no nos estamos moviendo en la dirección correcta, de hecho, estamos haciendo exactamente lo contrario si pensamos en la implementación del Acuerdo de París. Esto demuestra que existe una necesidad urgente de elevar el nivel de ambición en la lucha contra el cambio climático”, afirmó.

De acuerdo a un estudio realizado por la World Resources Institute, en el 2015, en el mundo se emiten 43.286,2 toneladas métricas de dióxido de carbono producido por actividad humana.

En la investigación, China se encuentra en el primer lugar del ranking de 186 países emisores de CO2, y contamina tanto como Estados Unidos, India, Rusia y Japón juntos. 

Fuente:

TeleSur

5 de abril de 2014

Perú posee el primer árbol artificial que elimina CO2

El primer árbol artificial viable en el mundo se instaló en Lima para purificar el aire de esta contaminada ciudad, que podrán disfrutar de los 200 mil metros cúbicos de aire limpio que el esperado purificador emite cada día.

Un sueño hecho realidad es el desarrollo de máquinas para extraer dióxido de carbono del aire , y al parecer, ha dejado de ser una utopía. Algunos ejemplos recientes, inspirados en sistemas de limpieza de gases que se usan en grandes industrias, demuestran que la idea no es tan descabellada.

Los elementos que se han inventado para satisfacer estas necesidades de purificar el aire que respiramos son variadas, por ejemplo está el AirDrop, que es un purificador de aire que funciona de manera natural. O la bicicleta que literalmente, se come el smog mientras pedaleas. Y si queremos hablar de arboles artificiales que nos aportan algo, no podemos dejar de nombrar al árbol LED que ocupa energía solar. Una buena idea que debería estar disponible ya.



Pero ahora queremos hablarle del primer árbol artificial viable en el mundo que se instaló en Lima para purificar el aire de esta contaminada ciudad. De acuerdo con un estudio del Banco Mundial hecho público en 2008 es una de las ciudades más contaminadas de Latinoamérica, podrán disfrutar de los 200 mil metros cúbicos de aire limpio que el esperado purificador emite cada día.

Se trata del purificador de aire urbano PAU-20, una especie de árbol metálico que a pesar de carecer de ramas, tronco y hojas es capaz de imitar artificialmente la fotosíntesis y convertir las partículas de dióxido de carbono en oxígeno.

El artículo completo en:

Veo Verde

8 de marzo de 2014

“Nos gastamos millones en defensa, pero contra el cambio climático no hacemos nada”

El 8 de agosto de 1975, Wallace Broecker publicó en la revista Science un texto profético. Con el título Cambio Climático: ¿Estamos al borde de un calentamiento global pronunciado?, advertía de que la temperatura del planeta se incrementaría durante las décadas siguientes. El motivo de ese “calentamiento global”, un término acuñado por el propio investigador de la Universidad de Columbia, sería la acumulación en la atmósfera de dióxido de carbono y otros gases por la quema de combustibles fósiles.

Casi cuatro décadas después y miles de estudios científicos ha quedado claro que tenía razón. Pese a la satisfacción que haya podido extraer de su logro profesional, el investigador se siente abrumado por la certeza de que la continua emisión de CO2 provocará problemas medioambientales serios y los que podrían evitarlo no muestran determinación para evitarlo.

Wallace_Broecker_entrevista_OpenMind_FBBVA

Wallace Broecker fue galardonado con el premio Fronteras del Conocimiento en cambio climático en 2008. Crédito: FBBVA

Conociendo lo que han descubierto los científicos sobre el cambio climático, ¿cree que nos lo tomamos lo bastante en serio?

Hay mucha incertidumbre sobre la magnitud del cambio, pero aunque los científicos aceptamos eso, nuestra mejor estimación es que si se dobla la cantidad de CO2 en la atmósfera, vamos a incrementar la temperatura del planeta en unos 3 grados centígrados. Podrían ser cinco o dos, pero en cualquier caso, si continuamos lanzando CO2 al aire, estamos haciendo algo estúpido. El problema es que el precio de los combustibles fósiles se mantiene bajo y eso hace difícil que la energía solar o el viento puedan competir, así que la transición va extraordinariamente lenta y si uno extrapola, para hacer la transición, van a ser necesarios 50 o 60 años.
“El problema es que el precio de los combustibles fósiles se mantiene bajo y eso hace difícil que la energía solar o el viento puedan competir”.
Con la crisis, en países como España, el cambio climático ha descendido en la lista de prioridades. ¿Hay alguna forma de convencer al público de que preste atención a un problema tan importante pese a que no parezca tan urgente?

Ese es el reto. Vamos a tener que hacerlo, pero también ha habido mucha propaganda diciendo que no se trata de un problema serio. Como el ciudadano medio tiene la esperanza de que no sea un problema, hicieron muchos conversos. Lo malo es que lo único que ha disminuido es la percepción pública, no el problema.

No obstante, recientemente, en EEUU, algunas grandes compañías como Exxon han asumido que en sus planes futuros es necesario incluir un precio para el carbono. Si emitimos carbón, tendremos que hacer algo para capturarlo y tendremos que incluir esos costes en el precio de la energía. Eso es un gran cambio, porque Exxon antes no admitía que el CO2 es un problema.

Además, nuestro secretario de Estado [encargado de la política exterior estadounidense], Kerry, ha dicho recientemente que su principal preocupación durante los próximos dos años va a ser qué hacer respecto al clima.

Algunos políticos plantean que una lucha global contra el cambio climático podría suponer un impulso para la economía mundial similar al que supuso la II Guerra Mundial.

Para mí, lo que sea que hagamos, si vamos a cambiar hacia la solar o la nuclear o vamos a retirar de la atmósfera el CO2 que producimos, va a crear una gran industria y habría grandes oportunidades.
Aún no estamos preparados para capturar y enterrar el CO2 que hemos lanzado a la atmósfera. Deberíamos saberlo todo sobre esa tecnología para saber si podemos usarla o no, cuánto costaría o cuál sería el impacto medioambiental. Todo este tipo de cosas que no estamos haciendo. Vivimos en un mundo en el que gastamos grandes cantidades en seguridad interna, ejércitos o prevenir enfermedades que pueden afectarnos, por miedo, pero respecto a la mayor amenaza a la que nos enfrentamos no estamos haciendo prácticamente nada. Hay algo equivocado en que EEUU se gaste todos los años 500.000 millones de dólares en defensa y solo mil en problemas medioambientales.

“Aún no estamos preparados para capturar y enterrar el CO2 que hemos lanzado a la atmósfera”
Cree que los científicos pueden hacer algo más para convencer a la gente de que el cambio climático puede ser más peligroso que, por ejemplo, el terrorismo.

Hay que afronta este problema de la misma manera que afrontamos el de la basura o las aguas residuales, que se convirtieron en problemas enormes en áreas urbanas y la gente decidió que tenía que gastar dinero en gestionarlos. Esto es a una escala totalmente diferente. Afecta a todo el mundo y mientras las ciudades tienen un gobierno que puede tomar decisiones, el mundo no tiene un gobierno global capaz de tomar estas decisiones.

¿Cree que sería posible resolver el problema del CO2 en la atmósfera con alguna tecnología de captura, aunque se tardase mucho en empezar a aplicarla?

Estoy convencido de que se puede hacer con un incremento razonable en el precio de la energía que se produce con combustibles fósiles, subiendo entre un 10% y un 15% el precio.

Hay muchas razones por las que deberíamos capturar el CO2 y hacerlo inmediatamente, porque cuanto más tardemos será más caro y más difícil. Además, si lo logramos, podríamos mantener la gasolina como combustible para algunas aplicaciones en las que la electricidad no sería tan práctica, como los vuelos o la conducción de larga distancia.

¿Cree que estos cambios son posibles antes de que lleguemos a una situación demasiado crítica?

No creo que vayamos a cruzar necesariamente un umbral para sufrir grandes problemas. Pero cuanto más CO2 haya en el ambiente, más problemas tendremos, los glaciares se derretirán más, habrá regiones como España que serán más secas… No creo que si seguimos así, en 2030 tendremos un desastre, no  pienso en absoluto en esos términos, pero creo que el problema será cada vez más serio.

¿Qué es necesario para que la búsqueda de la solución al cambio climático sea vista como una oportunidad por los emprendedores?

De momento, el negocio es muy pequeño porque no se ha puesto un precio al carbono. Para que alguien se encargue de retirar el CO2 de la atmósfera es necesario pagar por delante el coste de su retirada junto con el del uso de la energía. Una vez que se haga eso, habrá todo tipo de oportunidades para la industria.

¿Cree posible que China o India estén  dispuestos a poner un precio en el carbono?

Si China pusiese un precio al carbono, eso incrementaría el precio de sus exportaciones inmediatamente y China está prosperando sobre las exportaciones. Las industrias en China no querrán ese coste extra y en una época en la que el dinero está más justo en el planeta, la gente no va a querer pensar en este problema. Y eso es lo que está pasando y es muy desgraciado y es muy estúpido, porque el problema no va a dejar de crecer y nos golpeará con fuerza.

Tomado de:

Open Mind

15 de septiembre de 2013

La Energía Química y la Combustión

Energía química

La humanidad ha utilizado desde su existencia reacciones químicas para producir energía. Desde las más rudimentarias, de combustión de madera o carbón, hasta las más sofisticadas, que tienen lugar en los motores de los modernos aviones o naves espaciales.

Las reacciones químicas, pues, van acompañadas de un desprendimiento, o en otros casos de una absorción, de energía.

¿Cuánta energía puede producir una reacción química? ¿De dónde procede esa energía? ¿Cómo puede medirse y calcularse?

Energía química almacenada
 
La energía es una propiedad inherente a la materia. La materia posee energía almacenada que se debe, por una parte, a la posición o a la altura de un cuerpo (energía cinética) y, por otra, a la naturaleza o las sustancias de que esté hecho el cuerpo al que se hace referencia, ya que a cada elemento o compuesto le corresponde cierta cantidad de energía química almacenada a la que se le denomina contenido energético.

Cuando se lleva a cabo un fenómeno químico, éste va acompañado por una manifestación de energía, ya sea que haya absorción o desprendimiento de ella, debido a la energía química que almacenan las sustancias
Lo anterior significa que, cuando la energía química almacenada de los reactivos es mayor que la energía de los productos, hay un excedente de energía que se libera, pues la energía se mantiene constante, es decir, no se crea ni se destruye.

Por ejemplo, al reaccionar metano (gas combustible) con el oxígeno (gas comburente), hay desprendimiento de energía como producto, porque el contenido energético del metano y del oxígeno es mayor al que posee el dióxido de carbono y el agua, que son las sustancias que se forman durante la reacción:

energiaquimica001

Por lo tanto, si, al reaccionar, una o varias sustancias producen otras con mayor contenido energético, habrá absorción de energía por parte de los reactivos, como lo muestra la siguiente reacción de fotosíntesis:

energiaquimica002


Las sustancias de gran contenido energético se utilizan como combustible, ya que al reaccionar con el oxígeno se genera una gran cantidad de energía en forma de luz y calor.

Alimentos
 
Los alimentos también almacenan energía química y mediante éstos los organismos obtienen la energía necesaria para vivir, es decir, para formar y renovar tejidos, mantener su temperatura, realizar trabajo muscular, etcétera.

Los alimentos contienen nutrientes tales como los carbohidratos, los lípidos (grasas), las proteínas y las vitaminas, a los cuales se les denomina biogenésicos (por ser de origen orgánico); otros nutrimentos de origen inorgánico son el agua y los minerales como el sodio, el fósforo, el azufre, el cloro, el cobalto, el manganeso y el zinc.

Los organismos utilizan los alimentos para obtener de ellos energía y nutrimentos; estos últimos son descompuestos para ser utilizados en el crecimiento y restauración celular. A este proceso de transformación se le denomina metabolismo.

La energía que se puede metabolizar a partir de los carbohidratos es de 4 kcal por gramo; de los lípidos, de 9 kcal por gramo y, de las proteínas, de 4 kcal por gramo. Se recomienda que en una dieta adecuada se ingieran alimentos que proporcionen aproximadamente 3.000 kcal por día (según la actividad física que se desempeñe), que contengan, de manera balanceada, todos los nutrimentos. Por ejemplo: 75 g de proteínas, 80 g de lípidos y de 400 a 500 g de carbohidratos. Además, se debe considerar que el agua es muy importante como nutrimento y que los seres humanos necesitan de 2 a 2,5 litros  por día, aunque los alimentos también proporcionan una cantidad proporcional de ella que se conoce como agua metabólica.
Es necesario recordar que los organismos obtienen energía a través de un mecanismo autotrófico o heterotrófico.

El mecanismo autotrófico es propio de las plantas, algas y cianobacterias que, a partir de dióxido de carbono y energía luminosa del Sol, producen oxígeno y glucosa. De esta última se forman moléculas más complejas.

El mecanismo heterotrófico es propio de organismos como los de los animales; éstos ingieren el alimento previamente elaborado (carbohidratos, lípidos, etcétera), sus células lo oxidan mediante la respiración y con ello producen CO2, vapor de agua y otras sustancias de desecho.

Eficiencia de un motor de combustión interna
 
Las reacciones químicas de combustión de compuestos de carbono con oxígeno para liberar energía son bien conocidas por todos. Ocurren, por ejemplo, al quemar madera o gas en el horno o bien cuando la bencina de un auto proporciona la energía necesaria para su funcionamiento. Estas reacciones son demasiado violentas y poco controladas para que los organismos vivientes las puedan usar dentro de una célula.

Para que un motor funcione, éste requiere de combustible que, al reaccionar, desprende energía. En el caso del motor de combustión interna, la energía del combustible se transforma en potencia y movimiento, de tal forma que la fuerza producida sirve para hacer funcionar un autobús, una hélice y un generador, entre otras cosas.

El motor de cuatro tiempos es el motor de combustión interna más conocido, y su funcionamiento se lleva a cabo en cuatro etapas, las cuales son:

Primer tiempo (admisión): tiene lugar la penetración de una mezcla de combustible y aire a la válvula de admisión, al bajar el pistón.

Segundo tiempo (compresión): el pistón sube y comprime la mezcla al reducir el volumen.

Tercer tiempo (explosión): al encender la bujía, ésta provoca la explosión de la mezcla; en este momento el pistón es empujado y baja.

Cuarto tiempo (expulsión): los gases producidos por la explosión son expulsados a través de la válvula de expulsión; en este momento el pistón baja.

energfiaquimica003

Representación esquemática del funcionamiento de un motor de cuatro tiempos.

La combustión

La combustión es una oxidación violenta, la cual, a su vez, desprende energía en forma de calor y luz. Los principales productos de ella son: el CO2, el vapor de agua y la energía.

Ejemplos de este proceso son la combustión del gas de la estufa, de la leña, y del carbón. En todos estos fenómenos se presenta una oxidación y, por lo tanto, también tiene lugar una reducción, ya que cuando se produce la combustión de una de estas sustancias, el oxígeno se reduce ganando electrones y el elemento que se oxida los pierde.

En el organismo de los seres vivos existen procesos de "combustión orgánica", los cuales se denominan así por la similitud que guardan con los productos obtenidos. Sin embargo, no son propiamente combustiones, pues no son, oxidaciones violentas.

Un ejemplo de éstas es la degradación de la glucosa que, durante la respiración celular, produce CO2, H2O y energía, de acuerdo con la siguiente reacción:

energiaquimica004

En esta ecuación se observa que cada átomo de oxígeno "gana" 2 electrones (se reduce) y el carbono "pierde" 4 electrones (se oxida).

energiaquimica005

La oxidación del gas butano es una combustión inorgánica, ya que no se efectúa en los seres vivos. Su reacción es la siguiente:

energiaquimica006

Energía química en el organismo

Las células requieren energía para llevar a cabo la mayoría de los procesos biológicos. La energía proviene de los alimentos que ingerimos.

El oxígeno presente en el aire que respiramos se combina con los átomos de carbono e hidrógeno presentes en las moléculas de los alimentos liberando energía y formando después de numerosos pasos dióxido de carbono y agua.

La fuente original de alimentos son las plantas verdes. Estas son capaces de utilizar la energía solar, dióxido de carbono del aire y agua para crear moléculas orgánicas complejas formadas mayormente por carbono, hidrógeno y oxígeno y ricas en energía.

Estas moléculas son de tres tipos básicos: carbohidratos, lípidos y proteínas. Cualquiera de estos grupos puede combinarse con oxígeno y generar la energía necesaria para la vida.

Los animales no pueden generar carbohidratos, lípidos o proteínas a partir de las simples moléculas de dióxido de carbono, agua y usando la energía solar. En cambio, se alimentan de plantas que ya han hecho este trabajo o de otros animales que ya se han devorado plantas.

Bioquímica de la respiración celular

La conversión de los nutrientes en energía ocurre durante los llamados procesos de catabolismo. La moneda fundamental de energía dentro de las células es una molécula denominada ATP. La estructura de esta molécula es tal que contiene uniones químicas capaces de liberar mucha energía al partirse.

energiaquimica007

Dos ejemplos fundamentales de catabolismo son:
 
1. Fermentación.
2. Respiración.

La fermentación es un proceso de generación de energía que no depende de la presencia de oxígeno. Los productos finales del proceso son moléculas orgánicas pequeñas como el etanol. Este es el proceso mediante el cual se generan las bebidas alcohólicas.

La respiración es un proceso que sí requiere de oxígeno y que genera mayores cantidades de energía mediante una oxidación completa liberando dióxido de carbono y agua. La energía proviene en definitiva de los alimentos que comemos. Estos son sometidos a diversos procesos enzimáticos que los convierten en moléculas más pequeñas que forman la base de los mecanismos generadores de energía.

Tomado de:

Profesor en Línea

11 de septiembre de 2013

2013: Récord histórico de dióxido de carbono en la atmósfera

Laboratorio Mauna Loa

Las principales medidas se realizan en la cumbre del volcán Mauna Loa, en Hawai.

Los niveles diarios de dióxido de carbono en la atmósfera han superado una marca simbólica.

Por primera vez, las mediciones diarias de CO2 superan las 400 partes por millón (ppm), según los datos divulgados por la Administración Nacional de Océanos y Atmósfera de Estados Unidos (NOAA, por su sigla en inglés).
Los datos los recogió un reputado laboratorio de Hawai situado en el volcán Mauna Loa y que mide la concentración de ese gas en la atmósfera desde 1958.

Según los científicos, la última vez que los niveles de CO2 se mantuvieron de forma estable por encima de esa marca fue entre 3 y 5 millones de años atrás, cuando el clima de la Tierra era mucho más cálido y los humanos modernos no existían.

El dióxido de carbono es el principal gas de efecto invernadero fruto de las actividades humanas y surge principalmente de la quema de combustibles fósiles como el carbón, el petróleo y el gas.

Lea el artículo completo en:

BBC Ciencia

21 de agosto de 2013

Calentamiento Global: Bosques tropicales absorberán menos CO2

Estudio del biólogo español Pep Canadell, señala que el fenómeno será causado por el cambio climático.

El calentamiento global disminuye la eficiencia de los bosques tropicales en la absorción de dióxido de carbono (CO2) de la atmósfera, según un estudio liderado por el biólogo español Pep Canadell divulgado hoy en Australia.

Canadell, jefe del Proyecto Mundial de Carbono, explicó que los bosques tropicales y los océanos son importante sumideros naturales de carbono que contribuyen a mitigar los efectos del cambio climático.

"Un poco más de la mitad de todas las emisiones antropogénicas de carbono son absorbidas por los océanos y la vegetación en tierra firme. Esto supone unos 10 mil millones de toneladas de CO2 anuales", dijo el biólogo.

Canadell, quien trabaja en Camberra para la Organización para la Investigación Industrial y Científica de la Mancomunidad de Australia, lideró el estudio sobre las variaciones anuales de CO2 en la atmósfera relacionadas con los cambios de temperatura y clima.

La investigación, que analiza el período entre 1958 y 2011, pretendía entender las reacciones de los bosques tropicales al cambio climático y determinar "qué puede pasar en el futuro a medida que aumenta la temperatura" en lo próximos cien años, explicó.

El estudio tuvo en cuenta las variaciones interanuales causadas por factores como el fenómeno de El Niño, que provocan un aumento de la temperatura, así como las erupciones de los volcanes, que causan su descenso.

"Los bosques responden de una manera específica a los cambios de temperatura y cuando ésta se eleva, absorben menos carbono", dijo Canadell, miembro del Panel de la ONU sobre Cambio Climático que recibió el Premio Nobel de la Paz de 2007.

Según la investigación, el aumento de la temperatura causa un descenso de la fotosíntesis de los árboles y un aumento de la respiración de microbios en el suelo, lo que provoca que los árboles tropicales absorban menos dióxido de carbono.

El estudio concluye que si bien los bosques tropicales han demostrado ser resistentes a las variaciones anuales de temperatura, éstos se verán afectados por la perturbación permanente que supone el cambio climático.

"(Provocará que) los bosques tropicales se conviertan en peores sumideros de carbono y, por lo tanto, se quedará en la atmósfera una mayor cantidad de dióxido de carbono proveniente de la quema de combustibles fósiles y de la deforestación", dijo Canadell.
Fuente:

20 de agosto de 2013

Los efectos del calentamiento global durarán 200.000 años

Dos estudios sobre el cambio climático sostienen que el calentamiento global podría ser una catástrofe mayor de lo que se imaginaba y que sus efectos durarán cientos de miles de años.


El primer estudio, publicado por investigadores del Instituto Scripps de Oceanografía en California, explica cómo serían nuestros océanos si no se frena la emisión de gases de efecto invernadero como el dióxido de carbono (CO2), y la descripción es preocupante. Los científicos examinaron fósiles que existieron en condiciones de efecto invernadero hace unos 50 millones de años, cuando la concentración de CO2 en la atmósfera era más del doble que en la actualidad, y concluyó que estas condiciones climáticas acabaron con numerosos arrecifes oceánicos.

Debido al calentamiento de las aguas, los arrecifes de coral, también denominados bosques marinos, fueron reemplazados por "aparcamientos de grava", dijo el investigador Richard Norris al portal de Internet Red Orbit. A continuación se produjo probablemente una extinción masiva de especies debido a la falta de plancton, agregó.

Aunque los efectos del calentamiento de ese periodo afectaron especialmente a las profundidades del mar, lo realmente sorprendente es el tiempo que duró: nada menos que 200.000 años. Y esos niveles de concentración de CO2 podrían alcanzarse en nuestro planeta en tan solo 80 años, señala el portal Quarzt.

Otra investigación realizada por el oceanógrafo Richard Zeebe, de la Universidad de Hawái, alerta también de que los efectos del cambio climático podrían durar mucho más de lo que sospechábamos.

Zeebe descubrió que, con el tiempo, la Tierra puede llegar a ser más vulnerable a los gases de efecto invernadero, lo que significa que un aumento relativamente bajo de CO2 puede incrementar de manera significativa las temperaturas.

El pasado mes de mayo se confirmó que la concentración de CO2 en la atmósfera ha alcanzado un nuevo máximo en la historia de las mediciones científicas. La presencia de CO2 en el aire llegó a las 400 partes por millón de moléculas en los registros de la estación atmosférica Mauna Loa (Hawái), considerada el epicentro mundial del estudio de los gases de efecto invernadero desde que comenzó a operar en 1958.

Fuentes:
 
RT Actualidad

TeleSur
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0