Latest Posts:

Mostrando las entradas con la etiqueta origen del universo. Mostrar todas las entradas
Mostrando las entradas con la etiqueta origen del universo. Mostrar todas las entradas

27 de septiembre de 2011

¿El universo se expande de forma asimétrica?

Artículo publicado por Estelle Asmodelle el 26 de septiembre de 2011 en Cosmos Magazine

Recientes exámenes de la velocidad de supernovas sugieren que el universo puede estar expandiéndose de manera no uniforme en su aceleración, lo que implica que las leyes de la física puede variar a través del cosmos.

Los físicos que trabajan con el conjunto de datos Union2 del Proyecto de Cosmología de Supernovas (Supernova Cosmology Project), han sugerido que la expansión del universo parece mostrar un eje preferente, lo que significa que el universo se está expandiendo más rápidamente en una dirección que en cualquier otra.


Esta expansión asimétrica se conoce como anisotropía, que es la propiedad de ser dependiente direccionalmente, y difiere de la isotropía, que implica propiedades idénticas en todas las direcciones.

El resultado es inconsistente con el modelo cosmológico estándar, que se basa en el principio cosmológico que requiere que el universo sea isotrópico y homogéneo, a saber: que tenga la misma estructura y principios subyacentes que operen en todos sitios, y parezca idéntico en todas las direcciones.

Desafiando la comprensión isotrópica

Publicado a principios de 2010, el conjunto de datos Union2 consta de 557 supernovas de Tipo 1a – las supernovas más brillantes conocidas, que son el resultado de las violentas explosiones de estrellas enanas blancas en el final de sus vidas.

A finales de 2010, dos cosmólogos de la Universidad de Ioannina, en Grecia, publicaron un desafío al principio cosmológico en Journal of Cosmology and Astroparticle Physics proporcionando pruebas estadísticas que apoyan la idea de un eje preferente de expansión.

A principios de este mes otro de tales desafíos se publicó en la página web de arXiv por parte de Rong-Gen Cai y Tuoy Zhong-Liang, cosmólogos del Instituto de Física Teórica de la Academia China de Ciencias. Su artículo también explora la expansión acelerada no uniforme del cosmos.

“Este resultado actual es muy interesante, dado que una de las ideas clave que subyacen a nuestra comprensión del universo es que es isotrópico y que debería tener el mismo aspecto en todas las direcciones”, comentó el astrofísico Geraint Lewis de la Universidad de Sídney.

“En los próximos años, el número de observaciones de supernovas lejanas se incrementará y se sabrá a ciencia cierta si este resultado es correcto”.

El modelo cosmológico actual

Desde el descubrimiento de la aceleración cósmica en 1998, respaldado por las observaciones de las supernovas de tipo Ia (SNIa) que eran más débiles de lo esperado, estas explosiones estelares se han convertido en una herramienta importante en la determinación de los parámetros cosmológicos y la tasa de expansión de nuestro universo.

Se forjó un modelo cosmológico estándar mediante consenso general de físicos y cosmólogos, utilizando el análisis conjunto de datos de SNIa en combinación con otras observaciones, tales como la estructura a gran escala del universo y el fondo cósmico de microondas (CMB) – la radiación térmica que se cree que impregna nuestro universo observable.

El modelo actual sugiere que las leyes de la física son las mismas para todos los lugares del universo – excepto en los lugares extremos, como el interior de un agujero negro – y la expansión acelerada del universo sucede de manera uniforme, adhiriéndose a la isotropía y homogeneidad, que es esencialmente el principio cosmológico.

¿Socavando el principio cosmológico?

Estos nuevos estudios – de verificarse – significarían que las leyes de la física puede variar dependiendo de dónde te encuentres en el universo, lo que haría extremadamente difícil de comprender plenamente la evolución del universo y sus orígenes.

Por ejemplo, si las leyes de la física fuesen diferentes en otras partes, significaría que todo lo que entendemos sobre la naturaleza quedaría limitado a nuestra pequeña parte del universo y el resto del cosmos seguiría siendo un enigma.

Ambos equipos llevaron a cabo un análisis del hemisferio, comparando velocidades de supernovas en el hemisferio norte respecto a las del hemisferio sur. Estos hemisferios se definieron a partir del plano orbital galáctico de la Vía Láctea como ecuador de referencia.

El análisis determinó un eje preferente de anisotropía en el hemisferio norte. Esto sugiere que una parte del cielo del norte representa una parte del universo que se expande hacia el exterior, con una aceleración mayor que en otros lugares.

En lugar de un universo en expansión, similar a una burbuja esférica perfecta, sería más como una expansión en forma de huevo o asimétrica, lo que significa que el extremo visible de nuestro universo observable estaría a distinta distancia en función de la dirección.

Análisis estadístico

Ambos equipos han declarado que el análisis estadístico no se corresponde necesariamente con resultados significativos, pero refuerza sus resultados apelando a otras anomalías en los datos del fondo cósmico de microondas (CMB).

De forma aislada, los resultados no son estadísticamente significativos, pero poniendo todas estas anomalías en conjunto, surge de alguna manera un significado consolidado que no era evidente en el aislamiento. En otras palabras, cada pequeño elemento de los estudios no es significativo por sí mismo, pero junto a muchos otros elementos surge, en efecto, un resultado significativo.

Otros investigadores, como el cosmólogo John Webb de la Universidad de Nueva Gales del Sur en Sídney, están trabajando en problemas similares. “Hay varias observaciones independientes que apuntan hacia grandes desviaciones de la isotropía. Por lo tanto, permanece la posibilidad de que el principio cosmológico sea sólo aproximadamente correcto”.

Es demasiado pronto para decir si estos resultados son definitivos. Otros investigadores tienen distintas opiniones en cuanto a cuál podría ser el origen de la anisotropía, o la propiedad de ser dependiente de la dirección.

Tamara Davis es la cosmólogo principal del equipo Australian WiggleZ Dark Energy Survey y mantiene reservas: “Parece sospechoso que la alineación sea directamente perpendicular a la Vía Láctea, por lo que bien puede ser un efecto de la observación que no comprendemos bien.

Además, los resultados son consistentes con el modelo de energía oscura, que ha sido confirmado recientemente por nuestro equipo, pero son incompatibles con las primeras semillas de la fluctuación del universo”, comentó.

Fuente:Enlace

Ciencia Kanija

25 de agosto de 2011

Cómo lograr que más jóvenes estudien física

Un físico moderno y muy atípico, presentador de un programa en la BBC, ha vuelto a poner de moda la ciencia.




Brian Cox visitó Chanquillo en Casma (Perú) para iniciar uno de sus programas en el famoso observatorio astronómico del desierto.



Esta es la seguna parte. Puede observar todos los videos en YouTube.

América Latina duplicó en la última década el número de científicos y tecnólogos, sin embargo, continúa rezagada en términos mundiales.

Según el informe Educación Superior en Iberoamérica, publicado en 2010 por el Centro Interuniversitario de Desarrollo en Chile, en 2007, sólo el 3,6% de los científicos del mundo trabajaban en la región. Unos 256.500 de un total de más de 7 millones.

El reto es incentivar el interés por esta área del conocimiento y para ello, América Latina podría utilizar el caso del Reino Unido, donde un programa de televisión ha puesto a la física de moda.

El causante de ese creciente interés por la ciencia se llama Brian Cox, de 43 años, quien parece sacado fuera del molde del científico tradicional.

Este británico que viste a la moda fue parte del exitoso grupo de pop D:Ream, después completó sus estudios de doctorado y más tarde empezó a presentar las populares series de televisión de la BBC Wonders of the Solar System y Wonders of the Universe.

Cox es un científico que hace experimentos con detectores de partículas, pero no calza el estereotipo del físico como un individuo socialmente inepto, con corte de pelo y vestimenta aburridos. Todo lo contrario. Es un tipo cool.

Algunos hablan incluso del "efecto Cox", que parece explicar una buena parte del creciente interés de los británicos por la ciencia y, en particular, por la física y la astronomía.

Interés en aumento

Jim Al-Khalili, profesor de física y también presentador de programas científicos, explicó cómo Cox y una mayor cobertura mediática están inspirando a una nueva generación de científicos.

"Ya no me parece vergonzoso decir en una fiesta que soy un físico teórico. ¡Los fanáticos de la ciencia están de nuevo de moda!", afirma Al-Khalili.

"Lo que ha ayudado tremendamente es que la BBC nombrara 2010 su Año de la Ciencia y que comisionara nuevos programas de ciencia", resalta.

El llamado efecto Cox parece verificarse en las estadísticas estudiantiles.

Los resultados de los exámenes de aptitud para ingresar a las universidades británicas (A-Levels), publicados el 18 de agosto por la Comisión Mixta de Calificaciones (un organismo que otorga calificaciones estudiantiles en el Reino Unido), revelaron un incremento por quinto año consecutivo en el número de jóvenes que optaron por la física.

La materia está entre las diez más populares por primera vez desde 2002. Las postulaciones para cursos universitarios de física crecieron un 17% en comparación con el año pasado, mientras que las de astronomía lo hicieron en un 40%.

El presidente del Instituto de Física del Reino Unido, Peter Knight, se complace con esos números. "La física se está rejuveneciendo gracias –no en poca medida- al efecto Cox y al Colisionador de hadrones", asegura.

Pero otros, como el director de la Campaña para la Ciencia y la Ingeniería, Imran Khan, analizan el tema de manera más cautelosa.

"A pesar de que física estuvo entre las diez materias más populares de los A-levels, hasta ahora estamos en los niveles de 2002 en términos de entrada (a la universidad)", indicó.

"Una comparación internacional de 24 países mostró que Inglaterra, Gales e Irlanda del Norte estaban entre los únicos países en los que menos del 20% de los jóvenes estudian matemáticas después de los 16 años", continuó. "Debemos mantener el impulso".

La ciencia y América Latina

El panorama en América Latina es ambivalente en cambio, pues por un lado luce rezagada y sólo supera a África en número de científicos, según las estadísticas del informe Educación Superior en Iberoamérica.

Examen de ciencia en el Reino Unido

América Latina sólo cuenta con el 3,7% de científicos del mundo.

Pero por el otro, el porcentaje de incremento de científicos en relación con el número de habitantes fue el mayor en el mundo y evidencia "la magnitud del esfuerzo" que están haciendo los diferentes gobiernos por hacer que el interés científico aumente.

En Brasil, por ejemplo, el gobierno de Dilma Rousseff presentó a principios de agosto un plan, llamado "Brasil sin fronteras", para formar a decenas de miles de científicos en los próximos años con el objetivo de convertirse en una potencia en la materia.

El Ministerio de Ciencia y Tecnología destinará US$2.000 millones para crear 75.000 becas de posgrado, mientras que el sector privado añadirá otras 25.000.

Asimismo buscará atraer unos 1.200 científicos extranjeros para que realicen sus investigaciones en el país sudamericano.

La estrategia brasileña pretende crear las condiciones para generar invenciones y tecnologías en el país, algo que muchos consideran que es la clave del verdadero desarrollo económico.

Brian Cox en una entrevista de la BBC (en inglés)



Fuente:

BBC Ciencia

Contenido relacionado

10 de agosto de 2011

También la Luna tuvo su luna

Científicos creen que, en su origen, nuestro satélite natural orbitaba junto a una «compañera» que finalmente chocó contra su misteriosa cara oculta.



En los orígenes del Sistema Solar, hace unos 4.500 millones de años, un enorme objeto del tamaño de Marte chocó contra la Tierra. El violentísimo impacto generó una gran cantidad de escombros que salieron expulsados hacia el espacio. Todo ese material terminó unido formando la Luna. Hasta aquí, la historia que explica el origen de nuestro satélite natural es bien conocida, pero ahora un equipo de científicos de la Universidad de California en Santa Cruz ha añadido un nuevo capítulo y un nuevo personaje a la trama. Según los investigadores, el gigantesco impacto también creo otro cuerpo, más pequeño -alrededor de una trigésima parte de la masa de la Luna-, que se convirtió a su vez en una luna compañera de nuestro satélite natural, como si se tratara de un juego de muñecas rusas. Sin embargo, decenas de millones de años después, algo modificó su órbita y finalmente se precipitó contra su hermana mayor. Esta teoría, que aparece publicada en la prestigiosa revista Nature, puede explicar la existencia de una región montañosa en la cara oculta de la Luna, algo que hasta ahora resultaba un misterio.

Las notables diferencias entre las dos caras de la Luna han desconcertado a los científicos desde hace mucho tiempo. El lado cercano es relativamente bajo y plano, mientras que la topografía de la cara oculta es alta y montañosa, con una corteza más gruesa. Para Erik Asphaug, uno de los autores de la investigación, estas tierras altas pueden ser los restos sólidos de la colisión de la Luna con su pequeña compañera.

Los científicos consideran que la luna compañera fue atrapada incialmente por la Luna, compartiendo órbita con ella, pero en un determinado momento se desestabilizó y ambas chocaron. ¿Cómo se produjo ese choque? Para reproducirlo, los investigadores realizaron una serie de simulaciones computacionales del impacto, donde pudieron estudiar su dinámica y seguir la evolución y la distribución del material lunar.

Colisión a baja velocidad

Los científicos creen que la colisión se produjo a baja velocidad, de forma que el impacto no formó un cráter, sino que arrastró la mayoría de los materiales afectados y los acumuló como una gruesa capa de residuos sólidos, formando las tierras altas de la cara alejada de la Luna. Al mismo tiempo, desplazó el océano de magma bajo la superficie selenita hacia el hemisferio opuesto, lo que supone una explicación para la concentración de potasio, elementos de tierras raras y fósforo en su lado más cercano.

Otras teorías han intentado dar sentido al enigma de las dos caras diferentes de la Luna, como, por ejemplo, por causa de las fuerzas de marea. «El hecho de que el lado cercano de la Luna sea tan diferente al lejano ha sido una incógnita desde los inicios de la era espacial, quizás el segundo misterio después del origen de la propia Luna», afirma Francis Nimmo, investigador de la Universidad de California. Por ahora, no hay suficientes datos para saber qué teoría está en lo cierto. En la medida en que las sondas y artefactos humanos enviados al espacio proporcionen más y más información, descubrirlo será una cuestión de tiempo.

Fuente:

ABC Ciencia


16 de junio de 2011

La NASA descubre que los agujeros negros eran comunes en los principios del Universo

Especial: Astronomía

  • Nuevos descubrimientos demuestran que los agujeros negros jóvenes crecieron con mayor rapidez de lo que se pensaba.
  • Entre el 30 y 3l 1005 de las galaxias contienen un agujero negro supermasivo que se está expandiendo a gran velocidad.

Científicos de la NASA estadounidense encontraron pruebas directas de que los agujeros negros eran comunes en los principios del Universo, gracias a las fotografías tomadas por el Observatorio de rayos-X Chandra.

Este descubrimiento muestra que los agujeros negros jóvenes crecieron con mayor rapidez de lo que se pensaba hasta ahora, a la par que el crecimiento de las galaxias que los albergan.

Chandra escrutó durante seis semanas una zona del cielo determinada y los astrónomos obtuvieron los resultados combinados de las imágenes ópticas e infrarrojas que, combinados con imágenes del Telescopio Espacial Hubble, permitieron buscar agujeros negros en 200 galaxias distantes.

"Hasta ahora, no teníamos idea del papel de los agujeros negros en estas primeros galaxias, o si existían", señaló Ezequiel Treister de la Universidad de Hawai y autor principal de un estudio que publica esta semana la revista Nature.

"Ahora sabemos que están allí, y están creciendo frenéticamente", señaló el científico.

Las observaciones mostraron que entre el 30 y el 100% de las galaxias distantes contienen un agujero negro supermasivo creciente.

Extrapolando estos resultados a observaciones más pequeñas del cielo raso, se calcula que hay por lo menos 30 millones de agujeros negros supermasivos en el Universo temprano.

Fuente:

20 minutos

21 de mayo de 2011

Abhay Ashtekar, físico: antes del Big Bang hubo otro universo

¿Qué había antes del 'Big Bang'?

Los científicos Abhay Ashtekar y Carlo Rovelli llevan años tratando de responder a esa pregunta

Los físicos no tienen herramientas para enfrentarse al origen del universo. Han logrado demostrar que hace unos 13.700 millones de años toda la materia y la energía estaban concentradas en una región de escala diminuta, que empezó a expandirse en el proceso conocido como Big Bang; pero les falta una explicación sobre ese 'tiempo cero' y sobre si realmente pudo o no pasar algo antes de esa expansión. La teoría de la Gravedad Cuántica de Lazos, formulada por Abhay Ashtekar hace ahora 25 años, podría dar esas respuestas.

El propio Ashtekar, Director del Instituto para Física Gravitacional y Geometría de la Universidad del Estado de Pensilvania (EEUU), y su colega y colaborador Carlo Rovelli, de la Universidad del Mediterráneo (Francia), han expuesto en la sede de la Fundación BBVA en Madrid los últimos avances de la teoría de la Gravedad Cuántica de Lazos. Ambos han viajado a España para participar en el Congreso Internacional LOOP’s 11, que se celebra del 23 al 28 de mayo en Madrid y que cuenta con la colaboración de la Fundación BBVA.

La teoría de la Gravedad Cuántica de los Lazos es hoy sólida candidata a resolver uno de los principales retos de la física actual: unificar las leyes de la relatividad general con las de la mecánica cuántica. La Gravedad Cuántica de Lazos se ha asociado a un modelo en el que el Big Bang es precedido por una o varias fases previas de colapso y expansión, en una especie de 'rebote' o, en la jerga, Big Bounce.

Fuente: Atlas News


El físico Abhay Ashtekar ha afirmado que antes del Big Bang hubo otro universo que se contrajo, rebotó y formó el actual, durante la celebración de unas conferencias sobre el origen del cosmos que se están celebrando en la Fundación BBVA.

Ashtekar, que es director del Instituto para Física Gravitacional y Geometría de la Universidad del Estado de Pensilvania (EE.UU.), ha defendido que la teoría de la Gravedad Cuántica de los Lazos es "la única bien desarrollada en la que todo, la materia y el espacio-tiempo, son cuánticos desde su nacimiento".

Así, el autor del trabajo que abrió la puerta a la Gravedad Cuántica de Lazos en 1986 ha señalado que esta teoría "funciona allí donde la relatividad general falla, lo que es algo muy, muy difícil de lograr". Esta teoría, según añade la fundación BBVA, se ha asociado a un modelo en el que el Big Bang es precedido por una o varias fases previas de colapso y expansión, en una especie de rebote o 'big bounce'.

En el modelo clásico del Big Bang, al retroceder en el tiempo se acaba llegando a lo que los físicos llaman una 'singularidad', un punto en donde la densidad de la materia y la curvatura del espacio tiempo se vuelven infinitas y en el que, por tanto, las ecuaciones de la relatividad general no funcionan. Según Ashtekar, con esta teoría "esto no ocurre". "La singularidad, y por consiguiente el Big Bang, es sustituida por el 'big bounce'", ha afirmado.

Ashtekar se encuentra en Madrid junto a su colaborador Carlo Rovelli, de la Universidad del Mediterráneo (Francia), para participar en el Congreso Internacional LOOP's 11, que se celebra del 23 al 28 de mayo en Madrid y que cuenta con la colaboración de la Fundación BBVA. Rovelli ha también ha defendido esta teoría y ha asegurado que "es la mejor que los físicos tienen actualmente para combinar la mecánica cuántica y la relatividad general".

De hecho, Rovelli defiende que con esta teoría "se pueden hacer cálculos y computar lo que puede haber pasado, mientras que la región del Big Bang es inaccesible para la física convencional". Asimismo, ha reconocido que esta teoría y la llamada 'teoría de cuerdas' mantiene un debate que "a veces es demasiado vivo". La teoría de cuerdas es su competidora en el intento de unificación la mecánica cuántica y la relatividad general.

La Gravedad Cuántica de Lazos predice que a escalas muy pequeñas --en concreto, a la llamada 'distancia de Planck', muy inferior a la billonésima parte del diámetro de un átomo-- el espacio-tiempo aparece formado por una red de lazos entretejidos en una especie de espuma. Uno de los principales retos a los que se enfrenta la comunidad científica es la comprobación de sus predicciones mediante observaciones.

Fuente:

Europa Press

13 de abril de 2011

Un bombardeo de asteroides cambió el destino de la Tierra

Científicos españoles creen que una lluvia de rocas espaciales convirtió nuestro planeta de un desierto yermo en habitable, y hallan similitudes químicas entre la atmófera terrestre y la de Titán.


Pulse para ver el video
Pulse para ver el video
Un bombardeo de asteroides dio origen a la Tierra

Investigadores del Consejo Superior de Investigaciones Científicas (CSIC) han hallado un nexo común en el origen de las atmósferas de la Tierra y del satélite de Saturno Titán. El análisis de los datos obtenidos por la misión Cassini Huygens, un proyecto de la NASA, la Agencia Espacial Europea (ESA) y la Agencia Espacial Italiana, sugiere que la evolución química de ambas atmósferas estuvo marcada por el último gran bombardeo de asteroides y cometas durante la formación del Sistema Solar, hace unos 3.900 millones de años.

Según los científicos del CSIC Josep Maria Trigo y Francisco Javier Martín, autores del estudio que aparece publicado en el último número de Planetary & Space Science, este “gran bombardeo tardío” se inició cuando los planetas gigantes Júpiter y Saturno migraron hasta sus actuales órbitas, lo que produjo un impulso gravitatorio sobre cuerpos helados formados en varias regiones de la parte externa del Sistema Solar. Como consecuencia, una gran cantidad de objetos ricos en agua y en materia orgánica empezaron a impactar sobre planetas rocosos como la Tierra.

Los científicos han hallado grandes similitudes entre la Tierra y Titán, a pesar de que ambos cuerpos planetarios se formaron muy lejos el uno del otro (el planeta azul se encuentra nueve veces más cerca del Sol que el satélite de Saturno). En concreto, sus atmósferas tienen en común la abundancia de nitrógeno molecular, deuterio, hidrógeno, carbono, nitrógeno y oxígeno. Todos estos elementos apuntan al mismo origen derivado del impacto de cometas y asteroides.

Los resultados del estudio también sugieren que la evolución química de ambas atmósferas habría sido similar, marcada por varios impactos. “Dado que la Tierra se formó en un entorno muy caliente próximo al Sol, ese gran bombardeo tardío resultó fundamental para enriquecerla con los ingredientes básicos para la aparición de la vida. De hecho, la mayoría de cuencas y grandes cráteres de la Luna fueron provocados por el impacto de estos objetos enriquecedores en ese periodo, tal y como dataron las rocas lunares recogidas por las misiones Apolo”, explica Trigo, que trabaja en el Instituto de Ciencias del Espacio (CSIC) y el Instituto de Estudios Espaciales de Cataluña.

Según Trigo, además del registro lunar de cráteres, existen otras evidencias del importante papel que tuvo el impacto de estos objetos. Una de ellas revela que la composición de la corteza y el manto terrestre, en concreto su abundancia en metales, tiene su origen en ese proceso de enriquecimiento. “El manto alberga metales que, de no haber llegado de manera tardía, deberían estar en el núcleo terrestre. Además, los volcanes emanan gases con anomalías características de los meteoritos condríticos”, señala Trigo.

Una atmósfera inestable

Los investigadores van más allá y creen que el “gran bombardeo tardío” fue clave para cambiar el destino de la Tierra, un planeta que hace 3.900 millones de años no era adecuado para la vida. Aunque la superficie luminosa del Sol era en aquel periodo un 30% menor que en la actualidad, el flujo de radiación ultravioleta que emitía hacia la Tierra era mucho mayor.

“Debido a este flujo de un joven Sol, una atmósfera terrestre rica en nitrógeno molecular hubiese sido inestable. Esta circunstancia, unida al gran impacto que dio origen a la Luna, hace pensar que la Tierra pudo perder, quizás varias veces, su atmósfera”, explica al respecto Javier Martín Torres, que trabaja en el Centro de Astrobiología, un centro mixto del CSIC y el Instituto Nacional de Técnica Aerospacial.

“La llegada de tales compuestos, y de partículas metálicas catalizadoras capaces de sintetizar moléculas orgánicas más complejas bajo el influjo de la radiación solar, permitió convertir nuestro planeta en el único oasis de vida que, por ahora, conocemos”, aseguran los autores del estudio.

Fuente:

ABC Ciencia

29 de marzo de 2011

Las primeras rocas del sistema solar eran como algodón de azúcar

Las primeras rocas de nuestro Sistema Solar se parecían más al algodón de azúcar que a la roca dura que se nos presenta hoy en día, según una investigación publicada en la revista Nature Geoscience.



El trabajo, realizado por investigadores del Imperial College de Londres y otras instituciones internacionales, proporciona la primera evidencia geológica para apoyar teorías previas, basadas en modelos de ordenador y experimentos de laboratorio, acerca de cómo se formaron las primeras rocas. El estudio añade peso a la idea de que el primer material sólido en el Sistema Solar era frágil y extremadamente poroso y que se compactó en períodos de turbulencia extrema, formando los bloques de construcción que prepararon la forma de planetas como la Tierra.

El doctor Phil Bland, autor principal del estudio del Departamento de Ciencias de la Tierra e Ingeniería del Imperial College de Londres, dice: "Nuestro estudio nos hace aún estar más convencidos de que las tempranas rocas de condrita carbonosa fueran formadas por la turbulenta nebulosa a través de la que viajaron hace miles de millones de años, en gran parte de la misma manera que las piedras en un río se alteran cuando se someten a alta turbulencia en el agua. Nuestra investigación sugiere que la turbulencia causó que estas partículas tempranas se compactaran y endurecieran con el tiempo para formar primero las rocas pequeñas".

Los investigadores llegaron a estas conclusiones después de llevar a cabo un análisis muy detallado de un fragmento de asteroide conocido como un meteorito de condrita carbonosa (en la imagen), que llegó a la Tierra desde el cinturón de asteroides entre Júpiter y Marte. Se formó originalmente en el Sistema Solar cuando microscópicas partículas de polvo chocaron y quedaron pegadas, uniéndose en torno a grandes granos o partículas llamadas cóndrulos, de alrededor de un milímetro de tamaño.

Para analizar la muestra de condrita carbonosa, el equipo utilizó una técnica de difracción de electrones. Los investigadores observaron el patrón de interferencia resultante usando un microscopio para estudiar las estructuras internas. Esta técnica permitió a los investigadores estudiar la orientación y la posición de cada una de las partículas que se había unido en torno a los cóndrulos. Encontraron que los granos recubrían los cóndrulos en un patrón uniforme, lo que se deduce que sólo podría ocurrir si esta piedra pequeña fue sometida a las perturbaciones en el espacio, posiblemente durante estos períodos de turbulencia.

El equipo también definió un nuevo método para cuantificar la cantidad de compresión que la roca había experimentado y deducir la estructura original de la roca frágil.

El doctor Bland añade: "Lo emocionante de este enfoque es que nos permite - por primera vez - reconstruir la historia cuantitativa de acreción e impacto de los materiales más primitivos del sistema solar con gran detalle. Nuestro trabajo es otro paso en el proceso para ayudarnos a ver cómo se formaron los planetas rocosos y las lunas que conforman parte de nuestro Sistema Solar".

Fuente:

Europa Press

23 de marzo de 2011

"El Big Bang es parecido a un agujero negro pero al revés"


Personajes

Entrevista a Kip Thorne


Kip Thorne es uno de los mayores expertos del mundo en agujeros negros, esos objetos del universo tan populares seguramente por su violencia extrema, porque engullen para siempre cualquier cosa que se acerque demasiado, incluida la luz. A Thorne también le gustan, y tiene sus motivos: "Me fascinan porque en ellos muchas leyes de la física que conocemos fallan, y así podemos aprender cosas nuevas de la naturaleza: para mí, un agujero negro es un laboratorio donde estudiar cómo se comporta el espacio". Le interesan, dice, las condiciones extremas del cosmos y, sobre todo, el inicio mismo del universo: si un agujero negro es una singularidad donde la gravedad más intensa curva infinitamente el espacio-tiempo formando el pozo definitivo del que nada puede salir, el Big Bang es lo contrario, una singularidad de la que todo emerge.

Thorne, de 70 años, estadounidense, físico teórico de Caltech (California), ha estado en Madrid para impartir una conferencia sobre El universo curvo, del ciclo Astrofísica y Cosmología de la Fundación BBVA. Amigo y colega de Stephen Hawking, con el que hace apuestas sobre agujeros negros y las gana, Thorne está metido también en un proyecto cinematográfico, una película en la que no faltarán los agujeros y los exóticos, y solo teóricos, agujeros de gusano.

Pregunta. ¿Entienden los físicos los agujeros negros a fondo?

Respuesta. Lo entendemos bien cuando se trata de un agujero negro estático, en equilibro, gracias a la relatividad de Einstein. Pero no entendemos tan bien los agujeros negros en situaciones dinámicas, es decir, cuando colisionan, cuando rotan a gran velocidad... Los estudiamos con simulaciones y esperamos conocerlos mejor con los detectores de ondas gravitacionales, como el Ligo [que funciona ya en EE UU, en su fase preliminar].

P. ¿Son todos iguales o hay agujeros negros de varios tipos?

R. Los hay de tamaños diferentes. Un agujero negro en equilibrio, en tanto que sea suficientemente grande para ser de tipo clásico, es un objeto simple en que todas sus propiedades (como forma y tamaño) están determinadas por su masa y su rotación y se pueden calcular con la teoría de Einstein. Pero en los agujeros negros muy pequeños, como los que podrían hacerse en un acelerador de partículas, intervienen las leyes de la física cuántica y pueden tener propiedades muy diferentes que solo ahora empezamos a comprender.

P. Pero no se pueden observar directamente.

R. Las simulaciones de ordenador y los telescopios nos permiten conocer muchas cosas del papel de los agujeros negros en el universo, pero las observaciones directas solo llegarán con los detectores de ondas gravitacionales [vibraciones del espacio-tiempo generadas en fenómenos como las colisiones de agujeros negros y que se propagan por el espacio].

P. ¿También los agujeros de gusano?

R. Es que los agujeros de gusano probablemente no existen, son una idea teórica, pero no hay nada en la naturaleza, que sepamos, que forme un agujero de gusano, mientras que conocemos bien procesos que forman agujeros negros, como una estrella masiva que se agota y se encoge hasta formar uno. Además, son objetos diferentes: un agujero negro es una singularidad donde todo se destruye, mientras que en un agujero de gusano no. De alguna manera, en teoría, un agujero de gusano conecta dos puntos del hiperespacio... por ejemplo, este lugar, en Madrid, estaría conectado con mi casa, en Pasadena.

P. Sería un medio de transporte óptimo.

R. Sí, pero no tenemos motivos para pensar que se forman en la naturaleza, claro que tampoco hay ninguna ley que lo prohíba. Tal vez una civilización mucho más avanzada podría construirlos artificialmente.

P. ¿Cuál es el reto cosmológico que más le interesa?

R. Lo más emocionante es el nacimiento mismo del universo y los detectores de ondas gravitacionales, en los próximos cinco o diez años, pueden ayudarnos a estudiarlo.

P. ¿Quiere decir el auténtico momento cero?

R. Sí. Las ondas gravitacionales nos pueden dar una imagen del inicio mismo. La teoría estándar dice que el Big Bang es una fluctuación de vacío e inmediatamente después una fase de inflación que amplifica el proceso. Depende de los detalles, pero se puede conservar información del momento inicial. Se está pensando construir un detector de ondas gravitacionales avanzado, el Big Bang Observatory, para ver directamente las ondas gravitatorias del nacimiento del universo y estudiar sus propiedades.

P. ¿Tiene esto relación con los agujeros negros?

R. En cierto sentido la singularidad del interior del agujero negro es como la singularidad del inicio del universo, pero con el tiempo invertido: en el Big Bang todo emerge de la singularidad, mientras el agujero negro todo lo engulle. Es como dar la vuelta al tiempo de la singularidad.

P. Y nada de antes del Big Bang.

R. Bueno... eso nos gustaría saber. Hay teorías muy especulativas sobre si se conservaría información de antes del Big Bang a pesar de la singularidad inicial. Tal vez en 20 o 30 años podamos abordar este asunto.

P. Creo que fue Stephen Hawking quien dijo que plantearse el antes del Big Bang es tan absurdo como preguntar qué hay al norte del Polo Norte.

R. Sí. Stephen sostiene una idea del inicio del universo denominada sin fronteras. Es algo complicado: no define el inicio en función de espacio-tiempo sino solo de espacio y en ese contexto no tiene sentido el antes del Big Bang, pero no sabemos si esa idea es correcta o no.

P. Usted ha hecho apuestas con Hawking y las ha ganado.

R. Sí, pero Stephen es un auténtico líder mundial en agujeros negros. La primera apuesta fue en los años setenta acerca de si un objeto muy oscuro del universo podría ser un agujero negro y emitir en rayos X. El objeto resultó no ser realmente un agujero negro. Luego apostamos si la naturaleza permite que exista una singularidad desnuda, que sea observable desde fuera. Yo aposté que sí, mientras que la mayoría de los cosmólogos sostiene que una singularidad está siempre escondida dentro de un agujero negro, excepto la del Big Bang. Gané la apuesta.

P. Y ahora, además, está metido en una película.

R. Sí, soy coautor, junto con otras tres personas. Es una historia de ciencia ficción con agujeros negros, agujeros de gusano, estrellas de neutrones... Y no, no puedo decirle de qué trata, pero espero que esté lista en tres años. Además, quiero hacer una presentación adjunta a la película, explicando la ciencia que subyace. Mi objetivo es atraer a los jóvenes brillantes hacia la ciencia.

Fuente:

El País Sociedad

2 de septiembre de 2010

Dios no creó el Universo, dice Stephen Hawking


Stephen Hawking

Hawking publicará un nuevo libro este mes.

Uno de los físicos más eminentes del mundo, Stephen Hawking, dice haber cambiado de parecer con respecto a la creación del Universo y ahora afirma que Dios no tuvo nada que ver en ello.

En el pasado, Hawking expresó que la idea de un creador divino no era incompatible con el entendimiento científico del cosmos.

Pero en su libro más reciente, "El gran diseño", sostiene que las nuevas teorías dejan en claro que el fenómeno conocido como el Big Bang (la explosión que dio origen al Universo) fue una consecuencia inevitable de las leyes de la física.

"No es necesario invocar a Dios para encender la mecha y darle inicio al Universo", concluye el científico.

clic ¿Usted qué opina? ¿Hay lugar para Dios en el universo?

En su anterior libro de 1988, el popular "Una breve historia del tiempo", Hawking pareció aceptar la mano de Dios en la creación del cosmos.

"Si pudiéramos descubrir una teoría completa, sería el máximo triunfo de la razón humana, porque entonces conoceríamos la mente de Dios", escribió entonces.

Sin embargo, en su última obra, el físico más famoso del Reino Unido disputa la creencia de Isaac Newton, quien afirmó que el Universo debió haber sido diseñado por Dios y no pudo haber surgido del caos.

De la nada

Hawking identifica el descubrimiento, en 1992, de un planeta en órbita alrededor de una estrella diferente a nuestro Sol como la primera grieta en la teoría divina.

"Eso hace que las coincidencias de nuestras condiciones planetarias -un único Sol, la combinación de la distancia entre el Sol y la Tierra y la masa solar- sean mucho menos excepcionales y mucho menos convincentes como evidencia de que la Tierra fue cuidadosamente diseñada sólo para satisfacer a los seres humanos", sostiene.

El científico explica que es por la ley de la gravedad que el Universo puede crearse de la nada.

"La creación espontánea es la razón por la que hay algo en lugar de nada, el porqué de la existencia del Universo, el porqué de nuestra existencia".

El coautor del libro es el físico estadounidense Leonard Mlodinow y saldrá a a la venta el 9 de septiembre.

La publicación de "El gran diseño" ocurrirá una semana antes de que el papa Benedicto XVI visite el Reino Unido.

Fuentes:

BBC Ciencia & Tecnología

El País Sociedad

EFE

AFP

El Comercio (Perú)

RTVE.es

CNN

The Guardian

O Globo

Fox News

CBS News

31 de julio de 2010

Idean una nueva teoría sobre el origen del Universo

Científicos de la Universidad Nacional Tsing Hua de Taiwán han ideado una nueva teoría sobre el nacimiento del Universo que supondría el abandono de la Teoría genuina del Big Bang.

En este modelo no hay un origen ni un final. A nosotros, en Conocer Ciencia, nos parce una teoría coherente y que podría generar una nueva forma de ver el cosmos, las ciencias y a nosotros mismos.

Según un artículo publicado en la revista científica Technology Review, en su investigación, el físico taiwanes Wun-Yi Shu ha desarrollado una nueva descripción del Universo. Basándose en que los papeles del espacio-tiempo y la masa se encontrarían relacionados con una nueva forma de relatividad, Shu ha generado un debate que parece estar lejos de cerrarse.

Tal como recoge Shu en su estudio, el tiempo y el espacio no serían independientes, sino que serían unos entes interrelacionados que se encontraría a diferentes distancias. En este caso, la velocidad de la luz sería el factor de conversión de las mismas.

Por otro lado, la longitud y la masa serían intercambiables, en una relación donde el factor de conversión dependería de la constante gravitacional llamada G pero también de la velocidad de la luz. De ahí, que ninguna de las dos tendría porque ser constante.

Opiniones dispares sobre la teoría

Al partir de una teoría donde el universo no tendría principio ni fin, con periodos alternativos de expansión y contracción, muchos tachan la teoría del cosmólogo asiático como un modelo no realista.

Por otro lado, si se basan en las predicciones acertadas por dicha teoría sobre el funcionamiento del mismo, se puede comprobar que no es un mero sueño. Ejemplo de estas demostraciones es su teoría sobre la aceleración, que se convierte en una de las principales características diferenciadoras entre ésta y la Teoría del Big Bang.

Fuera trapos sucios

El modelo de Shu deja fuera algunas de las teorías que estaban cogidas con pinzas desde hace mucho tiempo. Según se comenta en el artículo de Technologies Review, los cosmologos habrían escondido ciertas teoría y leyes de la física para intentar cuadrar el círculo. Ejemplo de ello podría ser la ley de la conservación de la energía.

Según la perspectiva de Shu, no habría necesidad alguna de abandonar la conservación de la energía para que su teoría funcionara, a diferencia de lo que pasa con el Big Bang.

Fuentes:

Eco Diario

Fayer Wayer

29 de julio de 2010

Embriones planetarios en Orión

Discos protoplanetarios observados por Hubble en Orión. | NASA/ESA/L.RICCI 
Discos protoplanetarios observados por Hubble en Orión. | NASA/ESA/L.RICCI
El astrónomo Rafael Bachiller nos desvela e interpreta las imágenes más espectaculares del Cosmos. Temas de palpitante investigación, aventuras astronómicas y novedades científicas sobre el Universo.

El telescopio espacial Hubble ha realizado un censo de discos protoplanetarios (o proplyds) en la nebulosa de Orión, la región de formación estelar próxima más rica y espectacular. Esta imagen muestra una galería con algunos de los detectados más recientemente. Las pequeñas nubes de gas y polvo que rodean a estrellas jóvenes son embriones de sistemas planetarios, su estudio permite comprender cómo se formó y cómo ha evolucionado nuestro sistema solar. 
 
El irresistible poder de la gravedad

El espacio interestelar está poblado por grandes nubes compuestas esencialmente de hidrógeno gaseoso. Las regiones más inestables de tales nubes pueden hacerse más densas debido a la acción gravitatoria, y algunas de estas regiones pueden llegar a desplomarse sobre sí mismas (por no poder soportar su propio peso) dando lugar a la formación de estrellas.

Modelo de sistema protoplanetario. | NASA
Modelo de sistema protoplanetario. | NASA

La formación de una estrella es un complicado proceso físico mediante el que se genera un disco rotante de gas en torno a la protoestrella. La acreción de materia interestelar que alimenta a la estrella nueva se realiza a través de este disco que, a su vez, es capaz de originar unos espectaculares chorros de materia (flujos bipolares) que pueden propagarse por el espacio a distancias que pueden alcanzar varios años luz.

En el disco que queda rotando en torno a la estrella joven, la materia se aglomera a su vez para formar planetas, satélites, asteroides, cometas y todos los pequeños cuerpos que pueblan un sistema planetario. 

Orión, cuna de estrellas

La nebulosa de Orión es uno de los objetos más bellos y espectaculares del Hemisferio Norte. Situada a una distancia de unos 1500 años luz, ésta es la región más cercana a la Tierra en la que se encuentran estrellas masivas en formación. Algunas de las nubes están iluminadas por las estrellas jóvenes que se encuentran en la región y aparecen como nebulosas de brillantes colores, mientras que otras aparecen como nubes oscuras que recortan sus siluetas contra el fondo luminoso.

Nebulosa de Orión. | NASA/ESA/HST
Nebulosa de Orión. | NASA/ESA/HST

Toda la región ha sido objeto de una exploración muy minuciosa y las observaciones han revelado que las nubes de Orión están formando en torno al millar de nuevas estrellas de diferentes masas y luminosidades y que se encuentran en diferentes etapas de su evolución temprana.

Entre este millar de estrellas jóvenes, las observaciones del telescopio espacial Hubble han contabilizado más de un centenar que están rodeadas por pequeños discos de gas y polvo. Algunos discos están iluminados desde el exterior y aparecen como brillantes nubecillas con su estrella en el interior. La principal fuente de iluminación en la zona es una gran estrella joven de 40 masas solares, 250.000 veces más luminosa que el Sol, denominada Theta 1 Orionis C. Los vientos y la radiación de esta gran estrella hacen que algunos de los discos protoplanetarios desarrollen estructuras cometarias que se extienden en sentido radial desde la estrella.

Un grupo de proplyps. | NASA/ESA/HST
Un grupo de proplyps. | NASA/ESA/HST

Los discos menos iluminados aparecen como pequeñas franjas negras. Los que están orientados de canto hacia nosotros bloquean la luz de la protoestrella interior, y en algunos casos es preciso realizar observaciones en el infrarrojo para llegar a observar tales estrellas.

Los discos son tan pequeños que ni siquiera el telescopio espacial Hubble es capaz de estudiar su estructura interna. Las propiedades del gas que los constituyen puede ser bien estudiado mediante técnicas de radioastronomía. En particular, se espera que el gran interferómetro ALMA de ondas milimétricas actualmente en construcción en el desierto de Atacama (Chile) revele los parámetros físicos y la composición química de estos fascinantes discos protoplanetarios.

También interesante

  • La nebulosa de Orión fue estudiada por varios astrónomos en los siglos XVI y XVII. Las jóvenes estrellas del Trapecio fueron descritas por primera vez por Galileo en 1617, mientras que la nebulosa fue incluida por Charles Messier en su catálogo del año 1774 con el número 42, razón por la que se sigue conociendo como M42.
  • La gran estrella Theta 1 Orionis C deberá acabar sus días, dentro de unos cuantos millones de años, en la forma de una gran supernova. Toda la nebulosa de Orión será afectada y dispersada por el efecto de la explosión.
  • Unas teorías que están basadas en la famosa hipótesis nebular que fue postulada por Laplace en 1796 en su famosa obra Exposition du Système du monde.

Tomado de:

9 de junio de 2010

Así se produjo el choque que formó la Tierra y la Luna

Miércoles, 09 de junio de 2010

Así se produjo el choque que formó la Tierra y la Luna

Sucedió más tarde de lo que hasta ahora se estimaba, cuando dos planetas del tamaño de Marte y Venus colisionaron en menos de 24 horas


Así se produjo el brutal choque que formó la Tierra y la Luna

La colisión entre una Proto-Tierra y Theia, de donde la Tiera y la Luna fueron creados hace unos 4.500 millones de años

La Tierra y la Luna fueron creadas como resultado de una colisión gigante entre dos planetas del tamaño de Marte y Venus. Hasta ahora se pensaba que sucedió cuando el Sistema Solar tenía unos 30 millones de años, aproximadamente hace 4.537 millones de años. Pero una nueva investigación del Instituto Niels Bohr sugiere que la Tierra y la Luna aparecieron mucho más tarde, quizás hasta 150 millones de años después de la formación del sistema solar. Los resultados de la investigación han sido publicados en la revista científica Earth and Planetary Science Letters.

"Hemos determinado las edades de la Tierra y la Luna usando isótopos de tungsteno, que puede revelar si los núcleos de hierro y sus superficies de piedra fueron mezclados durante la colisión", explica Tais W. Dahl, que realizó la investigación como proyecto de su tesis en Geofísica en el Instituto Niels Bohr en la Universidad de Copenhague en colaboración con el profesor David J. Stevenson, del Instituto de Tecnología de California (Caltech).

La Tierra y la Luna son el resultado de una colisión entre dos gigantescos planetas del tamaño de Marte y Venus. Los dos planetas chocaron en un momento en que ambos tenían un núcleo de metal (hierro) y un manto de silicatos que los rodea (roca). Pero, ¿cuándo y cómo sucedió? La colisión tuvo lugar en menos de 24 horas y la temperatura de la Tierra fue tan alta (7000 C), que tanto roca como metal se fundieron en la turbulenta colisión. Hasta ahora se pensaba que la roca y el hierro se mezclaron completamente durante la formación del planeta y, por tanto, la conclusión era que la Luna se formó cuando el Sistema Solar etnía unos 30 milones de años. Pero la nueva investigación muestra algo totalmente diferente.

La edad de la Tierra y la Luna se puede fechar mediante el examen de la presencia de ciertos elementos en el manto terrestre. Hafnio-182 es una sustancia radiactiva, que se descompone y se convierte en el isótopo de tungsteno-182. Los dos elementos tienen propiedades químicas muy diferentes y, aunque los isótopos de tungsteno prefieren adherirse a los metales, los de hafnio prefiere los silicatos, es decir, la roca.

60 millones de años


Se tarda entre 50 y 60 millones de años para que todo el hafnio se degrade y se convierta en tungsteno. Durante la colisión que formó la Luna casi todo el metal se hundió en el núcleo de la Tierra. "Hemos estudiado a qué temperatura metal y roca se funden en el curso de colisiones de formación planetaria. Usando modelos de cálculo dinámico de la turbulenta mezcla de roca líquida y masas de hierro se ha encontrado que los isótopos de tungsteno de la formación temprana de la Tierra permanecen en el manto rocoso" , explica Tais W. Dahl, Niels Bohr Institute de la Universidad de Copenhague.

Los nuevos estudios implican que la colisión de formación de la Luna se produjo después de que todo el hafnio se había deteriorado por completo en tungsteno. "Nuestros resultados muestran que el núcleo de metal y roca no es capaces de emulsionar en estas colisiones entre planetas que son mayores de 10 kilómetros de diámetro, por lo que la mayoría del núcleo de hierro de la Tierra (80-99%) no fue removido de tungsteno a partir del material rocoso en el manto durante la formación, explica Tais W. Dahl. El resultado de la investigación significa que la Tierra y la Luna deben haberse formado mucho más tarde de lo que se pensaba anteriormente.

Fuente:

ABC.es
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0