Latest Posts:

Mostrando las entradas con la etiqueta liquidos. Mostrar todas las entradas
Mostrando las entradas con la etiqueta liquidos. Mostrar todas las entradas

16 de marzo de 2013

Mecánica de Fluídos: Introducción

Hoy iniciamos el cuarto “bloque de conocimiento”, tras los dedicados a la electricidad, la termodinámica y la mecánica clásica. Como aquéllos, se trata de un bloque introductorio en el que no supondré conocimientos previos por parte del lector e intentaré mantener las matemáticas en el mínimo necesario: nuestro objetivo ahora no es alcanzar fórmulas tanto como establecer conceptos cualitativos. Esto no significa, por otro lado, que todo sea un camino de rosas: son necesarias cierta disciplina e inteligencia para asimilar cada bloque, y hace falta esfuerzo para sacar todo el partido posible a cada artículo.

Como siempre, cada capítulo del bloque incluirá cajas de texto con contenido adicional: advertencias, ampliaciones, desafíos y experimentos. Quienes hayáis leído alguno de los otros bloques notaréis una diferencia: en vez de cajas de colores, vamos a utilizar los iconos de los libros, pues creo que son más elegantes. En cualquier caso, mi recomendación es siempre leer el artículo una primera vez saltándote las cajas y centrándote en lo fundamental. Deja pasar un tiempo –por ejemplo, un día o dos– y vuelve a leerlo, pero esta vez con las cajas de texto incluidas. De este modo no debería resultar un exceso de información y seguramente lo entenderás mejor.

Dicho esto, empecemos nuestro camino para conocer la mecánica de fluidos. En este artículo pretendo explicar en qué consiste esta parte de la Física, cuál ha sido el camino que hemos seguido para desentrañar sus secretos a lo largo de la historia y cuáles son las características fundamentales de su objeto de estudio, los fluidos. ¡Vamos con ello!


¿Qué es la mecánica de fluidos?

Hombre, no hace falta una larga explicación sobre esto, pero quiero detenerme en ello porque hay un par de aspectos interesantes. La mecánica de fluidos, como indica su nombre, estudia los fluidos. Sin embargo, no trata de describir todo lo relacionado con ellos: se centra en aspectos mecánicos del comportamiento de los fluidos, como su movimiento, la presión que ejercen, cómo alteran el movimiento de objetos introducidos en ellos, etc. Otras facetas del comportamiento de los fluidos, como sus cambios de temperatura y cosas así, son estudiados por la termodinámica. De hecho, si has leído aquel bloque, verás que aquí repito algunos conceptos definidos allí, aunque en un contexto diferente y haciendo énfasis en cosas distintas; disculpa la repetición, pero al ser ambos bloques introductorios, he preferido mantener ambos independientes a costa de repetir alguna cosa que otra.

La mecánica de fluidos es, por tanto, una aplicación de la mecánica, que estudia el movimiento de partículas puntuales y establece principios generales sobre su comportamiento, a un tipo especial de cuerpos: los fluidos. En cierto sentido, esto hace de esta disciplina algo derivado y no fundamental. Con esto me refiero a que sería posible describir el comportamiento de los fluidos utilizando los principios de la mecánica clásica; en otras palabras, si nos sumergimos de verdad en la mecánica de fluidos y preguntamos “¿por qué?” una y otra vez ante cada afirmación que realiza, al final llegamos a los principios básicos de la mecánica.
Sin embargo, el hecho de que la mecánica de fluidos sea teóricamente derivable a partir de la mecánica clásica no quiere decir que, en la realidad, la hayamos derivado de ella. Esta parte de la Física fue desarrollada en paralelo a la mecánica newtoniana, y contiene muchos principios físicos obtenidos de manera empírica, en varios casos siglos antes de que su explicación teórica a partir de las leyes de la dinámica fuera posible, porque esas leyes no eran aún conocidas.

Incluso ahora que nuestra mecánica está bien madura, sigue teniendo sentido utilizar una mecánica específica para los fluidos. Al fin y al cabo, estudiar el movimiento de una partícula utilizando los principios de la mecánica es bastante simple; hacerlo con dos partículas es más complicado, y hacerlo con cien algo más difícil. Pero piensa lo siguiente: un litro de agua contiene unas 3,35·1025 moléculas, treinta y tres cuatrillones de moléculas en cada litro. ¿Tiene sentido determinar el movimiento de cada molécula con sus propias ecuaciones para describir el comportamiento de un litro de agua? Desde luego que no, sobre todo porque es posible hacerlo con principios que se aplican al conjunto de todas las moléculas — de ahí la existencia, incluso hoy, de la mecánica de fluidos.

Agua
 
Ondas formadas por gotas sobre el agua (Brocken Inaglory / CC Attribution-Sharealke 3.0 License).

En ella, en vez de tratar los fluidos como conjuntos de moléculas, se tratan como un continuo. Para comprender el concepto lo mejor, en mi opinión, es alcanzarlo llevando un proceso al límite. Imagina 1 kg de arena de playa, formada por un grano de arena de 1 kg de masa. Ahora imagina que lo partimos en dos, de modo que la arena está formada por dos granos de 0,5 kg cada uno. Si seguimos haciendo esto hasta tener granos de 1 gramo, la arena estará formada por mil granos de 1 g cada uno.

Ahora imagina que los volvemos a partir un millón de veces, y luego un millón de veces más. Tendríamos un número gigantesco de granos tan pequeños que serían invisibles, individualmente, al ojo humano. Bien, ahora imagina que repetimos el proceso hasta el infinito: la “granularidad” de la arena se haría infinitamente fina, como si triturásemos la masa con una trituradora infinitamente poderosa. El resultado es un continuo, en el que no tiene sentido hablar de las partes, sino del conjunto formado por ellas. Evidentemente la materia no es continua y los fluidos, por tanto, tampoco lo son, pero recuerda el número de moléculas de agua en un litro del líquido; la mecánica de fluidos parte de esta premisa para simplificar enormemente las cosas sin perder apenas rigor y precisión en el resultado.


¿Qué es un fluido?

Como sucede tantas otras veces, es muy fácil tener una idea intuitiva bastante razonable sobre qué es un fluido, pero dar una definición rigurosa no lo es tanto porque se trata de una “etiqueta” más o menos arbitraria que damos a ciertos medios. Dicho mal y pronto,

Un fluido es un medio capaz de fluir, es decir, de cambiar de forma y adaptarse al recipiente que lo contiene.
Esta propiedad la cumplen, en su definición ideal, los líquidos, los gases y los plasmas. Es lo que tienen en común, por mucho que se diferencien en otras cosas, y esta propiedad determina gran parte de su comportamiento en contraposición al de los sólidos. De las diferencias entre los distintos tipos de fluidos hablaremos en la próxima entrega pero, por ahora, centrémonos en lo que los une.



¡Ojo! Fluido ≠ líquido

Sí, ya sé que acabo de definir fluido, pero esta confusión está tan extendida que no puedo dejar de dedicarle su propia advertencia. Los líquidos son fluidos, pero no son los fluidos, sino simplemente un subconjunto de ellos. Tan fluidos como los líquidos son los plasmas, y tanto como ellos los gases.

Existen diferencias entre esos estados de agregación (no se comporta igual el agua que el plasma que forma el núcleo del Sol), pero todos tienen en común una propiedad fundamental, que es la que determina el hecho de que sean fluidos. De modo que un líquido siempre es un fluido, pero hay fluidos que no son líquidos. Sí, ya dejo de ser pedantón.

Así, un ladrillo es un sólido y no es capaz de fluir: tendrá siempre forma de ladrillo esté dentro de un barril, sobre tu mano o en el suelo. Sin embargo, el agua de una botella es un fluido, ya que tiene forma de botella mientras está en ella, pero si la viertes sobre tu mano se adapta a su forma; puesto que tu mano tiene huecos entre los dedos, de hecho, la gravedad terrestre hará que el fluido se escape entre ellos y caiga al suelo. Y, una vez en el suelo, se adaptará a su forma y creará un charco más o menos amplio dependiendo de la profundidad que pueda tener por la forma del terreno.

El aire dentro de un globo tiene la misma propiedad: puedes apretar la superficie del globo con un dedo creando una hendidura, y el gas del interior cambiará de forma para adaptarse a la nueva superficie del globo. Si metes el globo dentro de una caja cuadrada y lo fuerzas a tomar la forma de la caja, el aire tomará forma cuadrada como la caja, etc.



¿Y el puré de patatas?

Como he dicho muchas veces anteriormente en El Tamiz, los nombres que damos a las cosas, nuestras definiciones y nuestras ecuaciones están en nuestra cabeza y son herramientas que nos ayudan a predecir el comportamiento de las cosas, pero no forman parte de las propias cosas.

Siempre se nos enseña que hay sólidos, líquidos y gases, y que los primeros no son fluidos pero los segundos sí. Sin embargo, esos nombres idealizan comportamientos. Ningún líquido es realmente un fluido de acuerdo con la definición, y ningún sólido deja de serlo realmente. Se trata de una cuestión de grado. Por ejemplo, ¿qué es el puré de patatas? ¿Un sólido? Si así fuera daría igual la forma del recipiente en el que lo introduces, porque siempre tendría una forma propia, algo que no sucede. ¿Un fluido? No, porque sería imposible tomar puré de patatas con un tenedor, ya que fluiría entre los dientes y caería de nuevo al recipiente.

Ah, puedes pensar, depende de la consistencia del puré de patatas. Si tiene mucha leche o agua, entonces se irá aproximando a un fluido hasta que sea imposible cogerlo con un tenedor, y si tiene muy poca leche o agua, llegará un momento en el que tenga casi una forma propia, independiente del recipiente. Pero si piensas así habrás llegado, creo, a la conclusión que intento hacerte ver: es una cuestión de grado. No hay sólidos y fluidos, sino medios que se parecen más a unos o a otros. Cuando un medio se aproxima muchísimo a un comportamiento, las conclusiones teóricas derivadas de la definición serán casi idénticas a lo que sucede en la realidad y viceversa.

Esto significa, claro, que las sustancias que están “a medio camino”, como muchos plásticos, la plastilina, el puré de patatas, etc., no se definen bien mediante las definiciones de fluido o sólido. A lo largo del tiempo hemos ideado magnitudes y ecuaciones que tienen en cuenta estas desviaciones de los comportamientos ideales, como la viscosidad, y de ellas hablaremos tarde o temprano. Mi objetivo en esta ampliación es simplemente recordarte que no te dejes llevar por las etiquetas que damos a las cosas y pensar así que en la Naturaleza existe tal cosa como un “sólido”.


Hidráulica, hidrodinámica y mecánica de fluidos

La necesidad de comprender el comportamiento de los fluidos ha sido siempre imperiosa para nosotros: al fin y al cabo, nuestra vida depende de dos fluidos, el aire y el agua. Asegurar el suministro de ambos es un requisito indispensable para nuestra supervivencia, y esto significa que mucho antes de que Newton estableciera principio alguno ni supiéramos lo que es una fuerza con el menor rigor ya teníamos cierta idea sobre las características fundamentales de los fluidos y cómo manipularlos.

Esto significa que, en sus comienzos –mucho antes de recibir su nombre actual– la mecánica de fluidos era algo completamente empírico, y no tanto el campo de estudio de los científicos como de los ingenieros civiles: sin un conocimiento, aunque sea rudimentario, de la flotabilidad de los cuerpos, las variaciones de presión del agua y hasta dónde es posible elevarla y cosas parecidas, es muy difícil establecer una civilización tecnológica. Esta versión eminentemente práctica, no demasiado preocupada por principios fundamentales y sí por las aplicaciones técnicas del conocimiento, fue denominada hidráulica por su preocupación central, el agua.

Por poner un ejemplo, los romanos utilizaron sus conocimientos de hidráulica para construir canalizaciones que alimentaban de agua potable lugares alejadísimos de sus fuentes, y disponían de sistemas de tuberías y alcantarillado bastante sofisticados. Durante muchos siglos continuamos avanzando muy lentamente en nuestra comprensión del comportamiento de los fluidos de este modo empírico. El famoso principio de Arquímedes –que destriparemos a conciencia en este bloque– es un buen ejemplo de esto. Se trata de un fenómeno que puede explicarse a partir de leyes más fundamentales, pero durante siglos fue un principio natural sin necesidad de más explicación.

La ausencia de una verdadera teoría unificada sobre el comportamiento de los fluidos y, sobre todo, de las matemáticas y ecuaciones que describieran ese comportamiento, hizo que nuestro conocimiento fuera cualitativo. Por ejemplo, desde el principio fue algo evidente que la forma de la quilla de un barco influye sobre el flujo de agua sobre el casco cuando la nave se mueve por el agua, y es posible ir probando hasta obtener formas razonablemente hidrodinámicas sin utilizar ecuaciones. Por otro lado, es muy difícil alcanzar una perfección enorme en este aspecto sin un aparato teórico más avanzado, de modo que llegó un momento en el que, en casi todo lo relacionado con los fluidos, nos quedamos estancados.

Uno de los primeros en atacar el problema de una manera más científica fue Leonardo da Vinci. El divino italiano realizó multitud de experimentos bastante metódicos sobre el flujo de agua y aire alrededor de objetos, y documentó sus descubrimientos con diagramas maravillosos, como hacía casi siempre. Leonardo llegó a introducir pequeños objetos en el agua para observar su movimiento según fluía el líquido, observó los remolinos que aparecen cuando el agua fluye rápidamente sobre un cuerpo, es decir, la aparición de la turbulencia, y llegó a realizar diseños que minimizaban esa turbulencia.

Flujo de agua por Leonardo
 
Dibujo de flujo turbulento por Leonardo da Vinci.


Sin embargo, en la época de Leonardo la Física no se había casado aún con las Matemáticas –algo que empezaría a suceder con Galileo Galilei–, con lo que una auténtica teoría de fluidos no podía surgir. El propio Galileo, que yo sepa, no dedicó demasiado esfuerzo a esa tarea, pero dos de sus discípulos, Benedetto Castelli y Evangelista Torricelli, fueron de los primeros en establecer las bases de lo que se llamaría hidrodinámica, la contrapartida teórica de la hidráulica. Fíjate en que el nombre seguía estando derivado del fluido más estudiado de todos, el agua.

El problema era la complejidad del comportamiento de los fluidos: son muy difíciles de describir teóricamente, en parte por las sutiles diferencias entre fluidos y sólidos, en parte por la interacción de unas partes del fluido con otras y con las paredes que lo contienen. Por tanto, durante mucho tiempo la hidrodinámica sólo fue útil en casos muy particulares y para situaciones concretas; fuera de ellas era un desastre como predicción del comportamiento real. Una vez más, nuestras limitaciones matemáticas eran las culpables, ya que haría falta el desarrollo del cálculo infinitesimal para describir acertadamente el movimiento de los fluidos.

En el caso de fluidos en equilibrio, dado que no había movimiento del fluido, la cosa era bastante más sencilla. Su descripción, la hidrostática –un caso partícular de la hidrodinámica–, sí era posible matemáticamente con una precisión muy razonable. Torricelli estableció algunas de sus bases, pero el auténtico padre de la hidrostática y, por tanto, uno de los pioneros de la hidrodinámica, fue el francés Blaise Pascal, del que hablaremos con seguridad en este bloque.

Isaac Newton realizó algunos avances en hidrodinámica, como el estudio del flujo del agua a través de orificios y la descripción de la viscosidad, pero su principal aporte a esta ciencia fue el desarrollo del cálculo infinitesimal –probablemente de manera independiente y casi simultánea a Gottfried Leibniz–. Con esa “madurez” de las matemáticas fue posible atacar el problema de verdad, con una herramienta realmente preparada para el problema.

Otros científicos tras Newton, como Daniel Bernoulli y Jean le Rond d’Alembert, realizaron grandes avances en hidrodinámica. A estas alturas, a mediados del siglo XVIII, los científicos ya no estudiaban casos concretos del comportamiento de los fluidos, sino que trataban de establecer principios generales; por ejemplo, una de las mejores obras de d’Alembert se llama Traité des fluides. Las matemáticas nos proporcionaron, una vez más, las herramientas para dar un salto en nuestro conocimiento de los fluidos cuando el genial Leonhard Euler desarrolló las ecuaciones en derivadas parciales y las empleó para describir, por primera vez, el comportamiento general de un fluido de manera teórica.

El problema era que las ecuaciones de Euler y otras basadas en su trabajo eran desastrosas en la mayor parte de los casos, y sólo funcionaban bien de verdad en algunas situaciones. Por lo tanto, incluso en el siglo XVIII gran parte de la hidrodinámica era considerada una curiosidad teórica. Los ingenieros seguían obteniendo mejores resultados simplemente utilizando métodos puramente empíricos que recurriendo a las ecuaciones de Euler y similares.

Todo cambió en el siglo XIX. Primero, un par de físicos –un inglés, Sir George Stokes, y un francés, Claude-Louis Navier– establecieron en 1822 una ecuación que describía razonablemente bien el comportamiento de los fluidos. Posteriormente, el alemán Gustav Kirchhoff (cuyo nombre puede sonarte por la radiación de cuerpo negro). Kirchhoff refinó las ecuaciones para determinar un coeficiente relacionado con el movimiento turbulento de un fluido a través de un agujero –una de las circunstancias en las que anteriormente los resultados teóricos y los experimentales divergían enormemente–. El coeficiente no es importante ahora mismo, pero sí lo es el hecho de que Kirchhoff predijo un valor de 0,61 utilizando las ecuaciones diferenciales. El resultado experimental resultó ser 0,60. Todo cambiaría desde entonces: ya no estábamos frente a una curiosidad, sino a algo utilísimo en la práctica.

A partir de entonces se diluyó la diferencia entre hidráulica e hidrodinámica y nació una verdadera mecánica de fluidos. El nombre es, desde luego, infinitamente mejor que cualquiera de los otros dos, porque no sugiere nada acerca del agua. Hoy en día hablamos de ella cuando nos referimos al estudio de fluidos en general, pero seguimos usando los términos antiguos de hidrostática e hidrodinámica para el estudio de los líquidos –no cualquier fluido– en equilibrio o no. También utilizamos aerodinámica, por ejemplo, para referirnos al flujo de gases; como en el caso del agua, el aire forma parte del nombre por ser el gas al que más aplicamos esta teoría.

El caso es que desde la segunda mitad del XIX los ingenieros empezaron a utilizar más y más las ecuaciones diferenciales, perfeccionadas por muchos otros científicos. Ya en el siglo XX nos encontramos con un nuevo obstáculo: las matemáticas funcionaban, pero en muchos casos el comportamiento de los fluidos resultó ser caótico, es decir, endiabladamente difícil de calcular con exactitud más allá de cierto tiempo. Las matemáticas estaban preparadas, pero nuestra capacidad de cálculo no.

En este caso quien vino a nuestro rescate fue la informática. Hoy en día, para las aplicaciones prácticas que involucran conjuntos de ecuaciones no lineales son nuestros programas informáticos quienes resuelven las ecuaciones y predicen el comportamiento de los fluidos. Pero, por más complejas que se hayan hecho las matemáticas involucradas, la base teórica sigue siendo la misma: la aplicación de la mecánica newtoniana a medios continuos capaces de fluir.

Si todo esto de ecuaciones diferenciales te ha dejado un poco apabullado, no te preocupes: como Pascal, nosotros empezaremos a estudiar los fluidos en equilibrio –es decir, la estática de fluidos– para luego ir adentrándonos en asuntos más tortuosos. Lo bueno de la mecánica de fluidos es que unas bases sólidas no demasiado extensas permiten ya entender muchas cosas del mundo que nos rodea sin necesidad de meterse en camisas de once varas.

En la siguiente entrega hablaremos sobre las diferencias entre los tres tipos de fluidos y, ya que tiene que ver con el asunto, definiremos una de las propiedades más importantes de cualquier fluido: la densidad.


Ideas clave

Para empezar el bloque con ganas, espero que te hayan quedado clarísimas las siguientes ideas, ya que son solamente tres:

  • La mecánica de fluidos estudia los fluidos en cuanto a su comportamiento mecánico (movimientos, fuerzas, presiones, etc.).
  • Un fluido es un medio capaz de fluir, es decir, cambiar su forma libremente.
  • Existen tres tipos de fluidos: líquidos, gases y plasmas.

Tomado de:

El Tamiz

6 de marzo de 2013

Cómo sobrevivir a una avalancha de nieve ¡empleando la física de los cereales!



El principio por el que un esquiador consigue salir a la superficie tras un alud de nieve es el mismo que funciona con las cajas de cereales. Hasta hace unos años, se pensaba que el mejor consejo para sobrevivir a una avalancha era tratar de "nadar" como si se tratase de un río, pero las características de una avalancha son distintas de las de un líquido.

El desprendimiento masivo de nieve constituye lo que los físicos conocen como un "flujo granular" y provoca que los fragmentos más grandes asciendan a la superficie mientras que los más pequeños se quedan en el fondo. Es lo mismo que sucede cuando uno abre una bolsa de cereales y encuentra los trozos más grandes y pesados en lo alto de la bolsa. Este fenómeno contraintuitivo fue descubierto en la década de 1930 por las industrias relacionadas con el empaquetado  y lo bautizaron como  "efecto muesli" o "efecto nuez de Brasil", dado que en una lata de nueces es esta variedad (la más grande) la que suele aparecer en la parte superior.

Esquema del efecto de nuez de Brasil  - Foto: Wikimedia Commons

"Las avalanchas son flujos granulares, un fenómeno que reúne características de los líquidos y los sólidos", asegura Dale Atkins, representante de la Comisión Internacional de Rescate Alpino. "En estos flujos", añade, "las partículas más grandes son las que terminan en la superficie".  Lo mismo, insiste, es lo que sucede con las cajas de cereales, "y los humanos somos una 'nuez' bastante grande que suele salir a la superficie".

"Esto lo conocemos como segregación positiva y hace que todo aquello que tiene un volumen mayor tienda a estar en superficie si hay menos densidad", asegura Fernando Rivero Díaz, teniente en la jefatura de Montaña de la Guardia Civil con 24 años de experiencia en rescate sobre el terreno. Su equipo ha intervenido en el rescate de personas atrapadas por avalanchas en el Pirineo y dos de sus compañeros han vivido la experiencia en su propia piel. "Uno de ellos se mantuvo a flote procurando controlar la situación desde el principio", recuerda, "y al otro le pilló de sorpresa y lo enterró. Tuvo la suerte de hacerse una buena cámara de aire y aguantar hasta que otro compañero le rescató".

El chaleco salvavidas, en funcionamiento  -Foto: Hansi Heckmair/ABS

Si uno realiza esquí de travesía, la primera medida de seguridad es llevar una baliza de localización y una pala, para realizar un rescate temprano. Pero en los últimos años varias empresas han comercializado un sistema de supervivencia basado en una especie de mochilas con 'airbag' que se hinchan cuando se produce una avalancha y presentan altos índice de éxito. Añadir 28 litros de volumen al cuerpo del montañero que se ve atrapado en un alud no le ayuda a flotar como en un río, sino a ascender por las características del propio flujo granular. "Convertirse en una gran nuez, por decirlo de alguna manera", insiste Atkins, "es el motivo por el que los sistemas de airbags han aumentado las cifras de supervivencia".

"Nadar sobre la avalancha  puede matar"

En un polémico artículo publicado en 2007 por la Asociación Americana de Avalanchas, Dale Atkins recomendaba olvidar la recomendación tan extendida de ponerse a "nadar" encima de la nieve en caso e avalancha. En su opinión - y ha entrevistado a cientos de supervivientes - el gesto de nadar puede provocar que la víctima aleje las manos de la zona de la boca, y una de los consejos más útiles para sobrevivir es construir un hueco con las manos frente a la cara que te permita respirar. "Una vez que tus pies se levanten del suelo", escribe, "debes ponerte las manos en la cara. Por supuesto, si puedes agarrarte a algún objeto fijo, hazlo. Cada segundo que aguantes suspendido significa que mucha más nieve pasa y ya no puede enterrarte".

En su opinión, el testimonio de los cientos de supervivientes que dicen haber nadado" sobre la avalancha para sobrevivir pertenecen a una muestra sesgada por el hecho de  que aquellos que nadaron y murieron en el alud no pueden contar su experiencia. "Durante los últimos 150 años", concluye, "la gente ha explicado cómo nadar les sirvió para no ser enterrados por la nieve, pero armados con el conocimiento moderno de los flujos de avalanchas resulta que permanecer en la superficie no tiene nada que ver con nadar".

"Efectivamente, en los últimos años se ha descubierto que en ciertas partes de la avalancha si te pones a nadar es posible que en realidad te estés enterrando  más profundo", confirma el teniente Rivero en conversación telefónica a lainformacion.com. Rivero es miembro del Grupo de Trabajo en Tecnologías Avanzadas para Rescate en Nieve, de la Universidad de Zaragoza, y su grupo también ha tenido que actualizar sus conocimientos. "Una avalancha se comporta de tres maneras", asegura, "al principio es una rotura de bloques de la que hay que intentar salir de manera oblicua, luego hay un movimiento turbulento intentar salir hacia uno de los laterales y rodando como un tonelete, y en la última parte lo importante es mantener una cámara de aire, usando la mochila si la llevamos, y la parte interior del codo. Eso aumenta las posibilidades de supervivencia".

El problema viene si hacemos el movimiento de nadar en el momento equivocado.  "Si en la parte final hacemos movimientos natatorios", relata. "puede que estemos entrando más profundo de lo que nosotros quisiéramos". La dificultad, añade, es que todo esto sucede en apenas 20 ó 30 segundos y "es muy difícil identificar en qué parte de ese movimiento estás tú".

En cualquier caso, el protocolo de actuación en caso de avalancha está muy claro: además de tratar de flotar y hacerse una cámara de aire, lo primero es deshacerse de los esquís y los bastones y todo aquello que nos pueda dejar anclados en la nieve. "Lo que hay que intentar es mantenerte lo más suelto que puedas de todo aquello que luego te impediría salir", incide Rivero. "Imagina que te quedas a solo 20 cm y no te puedes mover porque tienes pillados los pies por todo lo largo de tu esquí". Y sobre todo, si uno sale a hacer esquí de travesía, lo importante es llevar siempre un transmisor (ARVA), una sonda y una pala que permita hacer un autosocorro rápido de un compañero. "Una vez transcurridos los primeros 20 minutos", asegura, "las posibilidades de sobrevivir se reducen en un 90%".

Tomado de:

La Información Ciencia

20 de diciembre de 2012

Cables elásticos de metal líquido que se extienden 8 veces su longitud

Investigadores de la Universidad de Carolina del Norte han creado nuevos cables elásticos que pueden expandirse hasta ocho veces su longitud original, sin que dejen de funcionar por ello, como informan en NewsRoom. Un nuevo formato que no habíamos visto hasta ahora, pues los materiales utilizados hacían imposible algo así.



Para hacerlo posible, han desarrollado un cable compuesto de polímero elástico relleno de una aleación de metal líquido, galio e indio (utilizados en fotosensores, por ejemplo), con lo que ayudar a la conducción de la electricidad a pesar de que el cable resultante se vaya deformando. Igualmente válido resulta para la transmisión de sonido en el caso de los auriculares, que a priori no perderá calidad. 

Tradicionalmente, una mayor cantidad de metal aumentaba la conductividad del material compuesto, pero hacía prácticamente imposible su elasticidad. Este nuevo enfoque aísla los materiales, los trata por separado, con lo cual se obtiene la máxima conductividad sin poner en peligro la buscada elasticidad. Según sus creadores, estos nuevos compuestos son mucho más flexibles y elásticos que los materiales más conductores, y algo más conductores que los tubos más elásticos que se conocen actualmente.


Este avance tendrá consecuencias claras, y es que la aplicación de estos cables elásticos en la electrónica de consumo traerá mejoras sumamente notables. Podemos pensar en auriculares con los que ya no haga falta estar tan pegado a la fuente de sonido, o hacer algunos movimientos mientras estamos usándolos sin temor a arrastrar el dispositivo o que se nos caigan éstos. En eso mismo han pensado sobre todo sus creadores, como ilustra el vídeo que encabeza esta entrada. O también en cargadores de teléfonos móviles, tablets, ordenadores portátiles o cámaras, por ejemplo, que se expandirán a nuestra voluntad, y podremos tenerlos a mano a pesar de estar lejos del enchufe donde se conecten.

Por el momento, sólo hay un impedimento para que este tipo de cables elásticos comiencen a implantarse y popularizarse entre los fabricantes, y es la necesidad de evitar fugas de este metal en el caso de que el cable sea cortado. No obstante, se avanza a buen ritmo y no se pone en duda la capacidad de sus creadores para sortear el último obstáculo antes de su llegada a los consumidores. Asimismo, ya se ha lanzado la publicación en la que se recoge el proceso de desarrollo de este material, Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core.

Si ahora contamos con cables de dispositivos que oscilan mayoritariamente entre los 50 centímetros y el metro de longitud, entre auriculares y cargadores, éstos podrían alcanzar entre cuatro y ocho metros de emplear este tipo de cable elástico en todo el conjunto. En las pruebas y prototipos iniciales únicamente se han utilizado para partes algo más pequeñas, por ejemplo en un tramo de los auriculares algo más pequeño. Un gran paso para la ansiada electrónica flexible.

Fuente:

ALT1040

19 de diciembre de 2012

Crean un enjambre de pequeños robots que funciona como un “líquido pensante”

Está formado por “gotitas” que se agregan unas con otras para realizar tareas conjuntas

Si los robots individuales ya pueden llevar a cabo acciones específicas, ¿qué pasaría si se desarrollasen conjuntos coordinados de robots? Partiendo de esta idea, un investigador de la Universidad de Colorado en Boulder (Estados Unidos) ha desarrollado un enjambre de 20 robots pequeños y esféricos capaces de ensamblarse unos con otros, y actuar como uno solo. El avance abre nuevas posibilidades para tareas tan dispares como la limpieza de vertidos de petróleo en alta mar o la colonización del espacio.

Enjambre de pequeños robots esféricos. Fuente: Universidad de Colorado en Boulder.

Enjambre de pequeños robots esféricos. Fuente: Universidad de Colorado en Boulder. 
Nikolaus Correll, profesor asistente de la Universidad de Colorado en Boulder (Estados Unidos), y sus colaboradores, Dustin Reishus y Nick Farrow, han desarrollado una “manada” de pequeños robots esféricos.

La idea de partida para este trabajo fue la siguiente: si un robot es capaz de realizar una tarea concreta… ¿cuánto se conseguiría si, en vez de un solo robot aislado, pusiéramos a trabajar de manera conjunta a cientos de ellos?

Correll y su equipo de especialistas en ciencias de la computación esperan que este bloque básico de fabricación robótica les permita desarrollar sistemas robóticos cada vez más complejos, informa la Universidad de Colorado en un comunicado.

Gotitas que cooperan

El equipo ha creado recientemente un enjambre de 20 robots, cada uno de ellos del tamaño de una pelota de ping-pong. Las unidades han sido bautizadas con el nombre de “gotita”. Cuando estas “gotitas” se unen, pasan a formar una especie de “líquido pensante”, explica Correll.

El investigador planea usar las “gotitas” para demostrar la capacidad de autoensamblaje y de comportamiento inteligente de estos enjambres, que pueden reconocer patrones, realizar movimientos a partir de la información registrada por sus sensores, y cambiar de forma para adaptarse.

Estas capacidades podrían ser transferidas a grandes enjambres o conjuntos robóticos, para que estos realicen tareas aéreas o acuáticas, afirma Correll.

Por ejemplo, enjambres robóticos inteligentes podrían controlar vertidos de petróleo en el mar. Asimismo, las “gotitas” podrían ensamblarse unas con otras para formar un único dispositivo, tras haber sido lanzadas al espacio por separado, añade el investigador.

Además, Correll espera desarrollar una metodología de diseño que permita a las “gotitas” agregarse unas a otras para desarrollar tareas aún más complejas, como montar piezas de telescopios espaciales de gran tamaño, e incluso de aeronaves. 


Colonización robótica del espacio

Según el investigador, la fuente de inspiración de los enjambres robóticos se encuentra en la naturaleza, donde “cada organismo vivo está compuesto por un enjambre de células colaboradoras”.

“Quizá, algún día, nuestros enjambres (robóticos) colonicen el espacio para preparar hábitats y jardines exuberantes (en otros planetas), que acojan a los futuros exploradores espaciales”, señala.

De momento, con el objetivo de acelerar el proceso de innovación en marcha, el investigador ha creado un laboratorio en el que los estudiantes exploran y trabajan en el desarrollo de nuevas aplicaciones robóticas con herramientas básicas, y a bajo coste.

Por otra parte, el científico sigue trabajando en una tecnología de jardín robotizado que desarrolló en 2009 en el Instituto Tecnológico de Massachussetts (MIT).

El objetivo a largo plazo de este otro proyecto es la creación de un invernadero, atendido por robots autónomos y en el que macetas y plantas sean mejoradas usando medios computacionales, de comunicación y sensores.

La red de robots, macetas y plantas transformarían la energía, el agua y los nutrientes en productos y frutos. En este tipo de agricultura de alta precisión, el sistema de agua y nutrientes se distribuiría localmente a demanda, y la fruta sería cosechada de manera óptima.

Las plantas dirigirían las actividades de los robots a través de la información de sensores que registrarían datos como las condiciones del medio o los modelos de crecimiento específicos de cada planta (que ayudarían a hacer predicciones del estado de los frutos). 
Fuente:

2 de diciembre de 2012

El tamaño si importa... ¡para nadar!

Uno de los temas recurrentes del cine de ciencia ficción es la miniaturización de seres humanos, desde los clásicos El increíble hombre menguante y Viaje alucinante hasta las más recientes Cariño, he encogido a los niños y Arthur y los minimoys. La gran mayoría de estas películas, por no decir todas, caen en el mismo error: Los protagonistas beben o nadan con normalidad, cuando en realidad tendrían muchas dificultades para hacer esas cosas con su tamaño reducido, porque el comportamiento de los fluidos cambia con la escala.


Que el comportamiento de un fluido depende del tamaño ya lo podemos intuir cuando vemos películas en las que se han filmado escenas de barcos con maquetas a escala reducida: Ni el movimiento de los barcos ni la propia agua parecen reales.


Los físicos caracterizan el movimiento de los fluidos mediante un parámetro llamado número de Reynolds, que describe la importancia relativa de las fuerzas inerciales frente a las fuerzas viscosas en el fluido; cuanto mayor es ese número, mayor es el efecto de las primeras y menor el de las segundas. Las fuerzas inerciales son las que hacen que un nadador siga avanzando aunque deje de mover brazos y piernas, mientras que las fuerzas viscosas son las que oponen resistencia a ese movimiento y acaban por detenerlo.


El número de Reynolds depende de la densidad y viscosidad del fluido, pero también de su velocidad y del tamaño del objeto que se mueve en él (o del grosor de la tubería por la que fluye). Así, el número de Reynolds de un nadador humano es de unos 10 millones, mientras que el de una bacteria es de 0,00001. En el primer caso, las fuerzas dominantes son las de inercia, mientras que en el segundo es todo lo contrario. Un nadador, o una embarcación, siguen moviéndose durante un tiempo aunque dejen de propulsarse, mientras que una bacteria en el mismo caso se detiene inmediatamente. En términos prácticos, el agua opone más resistencia al movimiento cuanto menor es el tamaño y la velocidad del objeto que se mueve en ella.


El estudio de los líquidos a escala microscópica tiene multitud de aplicaciones prácticas, desde la medicina hasta la nanotecnología. Pero resulta más fácil realizar los experimentos con maquetas de nuestro tamaño. Para que esas maquetas se comporten como objetos microscópicos es preciso reducir su número de Reynolds, lo que se logra sustituyendo el agua por un líquido más viscoso; tan viscoso, de hecho, como la miel. Así deberían experimentar el agua los miniaturizados protagonistas de las películas que citábamos; les resultaría enormemente difícil nadar e incluso beber.


Otra consecuencia del aumento de las fuerzas viscosas a pequeña escala es el llamado teorema de la vieira. La vieira, ese exquisito molusco, se desplaza cerrando violentamente sus valvas, con lo que el chorro de agua que expulsa propulsa su cuerpo hacia atrás. El teorema de la vieira afirma que un movimiento de vaivén como ése sólo es eficaz cuando el número de Reynolds es alto. A bajo número de Reynolds, cuando las fuerzas viscosas dominan a las inerciales, la apertura de las valvas generaría el mismo impulso que su cierre, pero en sentido contrario; el desplazamiento neto de la vieira sería nulo. A un nadador humano le ocurriría lo mismo con el movimiento de vaivén de las piernas en el estilo libre; a escala normal genera alrededor de la quinta parte del impulso total, pero a escala reducida, en un líquido tan viscoso como la miel, no produciría ningún impulso. Más dificultades para nuestros protagonistas.


Pero, pensándolo bien, el error es disculpable, ya que si llevamos la física hasta sus últimas consecuencias, los personajes tendrían incluso dificultades para respirar, ya que el aire también es un fluido. Y si los personajes no pueden respirar, nos quedamos sin película.


Tomado de:

El Neutrino

20 de noviembre de 2012

Experimento: Los líquidos que no se mezclan

O dicho más finamente… inmiscibles.

Supongo que conocéis el caso del agua y del aceite.

Por si no es así, empezamos con este.

Echad un poco de agua y un poco de aceite en un vaso.

Veréis que el aceite queda arriba y no se mezclan.

Agitad vigorosamente, incluso con una batidora si queréis.

Ahora parece que están casi mezclados, pero si observáis pacientemente, veréis que las gotas (se llaman micelas) van uniéndose y al cabo de un rato… de nuevo el aceite arriba y el agua debajo.

Y ahora, a lo profesional, con CINCO LÍQUIDOS DISTINTOS: Miel, jabón, agua, aceite y alcohol.

Veréis que echan colorante al agua y al alcohol para hacerlo más vistoso.





Impresionante, verdad?

En el video van dando instrucciones porque ya veis que hay que hacerlo con mucho cuidadín. Básicamente echar los dos primeros sin tocar las paredes y los otros haciéndolos deslizar por las paredes.

Cuando echas colorante al alcohol y al agua se puede estropear el efecto porque el alcohol atraviesa la capa de aceite (aunque luego suba) y los colorantes se pueden mezclar. En el video se aprecia que queda una pequeña capa de rojo sobre la de agua verde.
Pero les sale estupendo de todas formas.

La explicación de por qué no se mezclan tiene que ver con la estructura molecular de los líquidos.
Si los extremos de las moléculas de un líquido son afines con los del otro, se atraerán, “se pegarán” unas a otras formando una mezcla, como pasa con el alcohol y el agua.

En cambio, si no hay atracción, las moléculas no se unen y el líquido menos denso quedará sobre el más denso, como en el caso del agua y el aceite.

Puede ser un bonito regalo para el Día de la Madre (científica)??

Actualización:

Releyendo quizá pueda inducir a error. Así que aclararé.

El agua, el alcohol, la miel y el jabón son polares y pueden mezclarse entre sí.

El aceite es apolar.

La miel, el jabón y el agua se mantienen separados (si se hace con cuidado) por la diferencia de densidad.

El agua y el aceite por ser polar y apolar y se “colocan” según densidad.

El aceite y el alcohol se separan por la misma razón que el agua y el aceite.

Si lo remueves todo, se mezcla todo lo polar y queda separado del aceite.

Actualización: Aquí tenéis cómo hacer una torre con nueve líquidos 

Fuente:

La Ciencia Para Todos

27 de octubre de 2012

Inyecciones sin agujas usando microchorros líquidos supersónicos

Artículo publicado el 11 de octubre de 2012 en The Physics ArXiv Blog

Una nueva técnica para disparar microchorros líquidos a través de la piel humana promete revolucionar la administración de medicamentos.

Las inyecciones son un eje clave e inevitable de las técnicas médicas modernas. La idea es forzar la entrada de un líquido directamente en el cuerpo usando una aguja hueca para penetrar en la piel. Sin este tipo de herramientas, el panorama médico sería considerablemente más pobre.


Inyecciones sin agujas

Pero las inyecciones tienen un número de inconvenientes. Son una importante fuerza de transmisión de enfermedades, particularmente cuando se reusan las agujas, y en las lesiones por punción de los profesionales sanitarios, son dolorosas y las agujas son peligrosas y difíciles de manejar. De ahí la fobia a las agujas y todo eso.

Por esto, los ingenieros biomédicos y los doctores y pacientes han soñado con encontrar una forma de administrar inyecciones sin agujas similar al hipospray de Star Trek administrado tan hábilmente por el Dr. McCoy.

No ha sido por falta de intentos, algunos de los cuales incluso son anteriores a la serie Star Trek. La idea es que si se dirige el líquido hacia el paciente con suficiente fuerza, penetrará en la piel y lo conducirá al interior del cuerpo.

Distintos grupos han realizado intentos usando aire comprimido y distintos tipos de bombas, pero ninguno ha tenido un gran éxito. Un problema es que los chorros líquidos pueden ser tan dolorosos como las agujas, e incluso más dañinos para la piel y el tejido subyacente.

Pero el problema más serio es el splashing. En todas las técnicas usadas hasta el momento, parte de los líquidos salpican fuera de la piel o no penetran con suficiente profundidad y esto hace que sea imposible saber qué dosis ha recibido el paciente. Este problema es grave para cualquier enfermedad que requiera un volumen preciso de medicación – y esto se aplica a casi todas ellas.

Esto parece que va a cambiar. Hoy, Yoshiyuki Tagawa de la Universidad de Twente en los Países Bajos junto a algunos colegas dicen haber resuelto este problema gracias a una nueva técnica que focaliza un flujo de líquido en un microchorro que viaja a 850 m/s. Sí, aproximadamente la misma velocidad que el avión supersónico Blackbird SR-71.

La técnica es bastante simple. Estos chicos llenan un capilar con líquido y enfocan un pulso láser sobre un extremo. Esto calienta rápidamente una parte del líquido, provocando que se evapore súbitamente, y envíe una onda de choque a través del tubo. Este empuje acelera el resto del líquido forzando su salida del capilar a gran velocidad.

El tubo y la velocidad de calentamiento están diseñados para generar ondas de choque que enfocan este microchorro de forma que su punta tenga apenas unas decenas de micrómetros de diámetro, menor que el probóscide de un mosquito.

Cuando el líquido impacta en la piel a esta velocidad, el microchorro penetra fácilmente, administrando el volumen de líquido preciso al tejido subyacente. Y eso pasa con muy poco, si es que algún, splashing.

Tagawa y sus colegas han puesto a prueba su sistema en una gelatina cubierta de piel sintética y dicen que funciona bien, como las imágenes de arriba parecen atestiguar. “Los resultados… dejan las inyecciones sin agujas un paso más cerca de su uso generalizado”, comentan.

Desde luego, quedan aún pasos significativos por dar. Una preocupación es que el pulso láser, además del calor y la onda de choque que genera, podría dañar cierto tipo de medicamentos. Las pruebas han incluido por el momento agua con tintura roja, por lo que esto tendrá que examinarse con cuidado.

Otro problema de ingeniería es el diseño y fabricación de un dispositivo robusto que tenga un amplio uso sin obstruirse. Las inyecciones sin agujas serán muy útiles en los hospitales modernos y en cirugías, pero los países en desarrollo son los que más tienen que ganar.

Finalmente, la técnica tendrá que ponerse a prueba en un amplio rango de individuos. Es posible que los microchorros tengan que ajustarse con precisión para tratar con los distintos tipos de piel, de forma que el volumen de medicamento administrado a un hombre joven con una piel como la de un elefante sea la misma que la dosis recibida por una anciana señora con la piel como papel de fumar.

Las inyecciones sin agujas tienen enormes beneficios potenciales para millones de personas tales como diabéticos que viven con la rutina de múltiples inyecciones diarias. Para ellos, es un desarrollo que nunca llegará demasiado pronto.

Artículo de Referencia: arxiv.org/abs/1210.1907: Needle-Free Injection Into Skin And Soft Matter With Highly Focused Microjets
Fecha Original: 11 de octubre de 2012
Enlace Original

Fuente:

10 de septiembre de 2012

¿Cómo vaciar una botella por completo?


Vaciar una botella es algo que todo el mundo sabe hacer. Incluso corren por ahí auténticos expertos, si sabéis a lo que me refiero.

Pero… ¿se vacía completamente la botella? ¿no queda líquido en su interior?
Pues sí que queda. Aunque la mantengamos boca abajo, aunque la agitemos para que se desprendan algunas gotas… siempre queda algo. La adherencia del líquido a la pared de cristal y la tensión superficial de las microgotas de líquido impiden que este se reúna y fluya hacia el exterior.
Pero hay una manera de vaciarlas, de extraer 10 o 15 gotas (dependiendo del tamaño de la botella) cuando ya parece que no salen más.

Esto nos da pie a hacer una pequeña apuesta con los amigos: cuando ellos consideren que una botella está vacía y que ya no cae más líquido hacia el exterior, nosotros afirmaremos extraer unas 10 gotas más (o un mayor número si es que las pruebas que hemos reslizado anteriormente en casa nos da para ello).

¿Y cómo lo haremos? Pues con la ayuda de un trozo de palillo, la capilaridad y la fuerza de la gravedad.

Colocaremos un palillo o medio palillo en el cuello de la botella, tal como se ve en la imagen. La humedad del cuello de la botella por la que acaba de pasar el líquido se adherirá al palillo, la tensión superficial del líquido se romperá y el líquido empezará a resbalar por el palillo y a gotear. La capilaridad de la madera también nos ayudará en el goteo cuando el palillo se empape haciendo que actúe de condensador y cuentagotas.

Enseguida comenzará a gotear para pararse tras 5 o 6 gotas. Pero el ritmo de goteo comenzará a aumentrar pasados unos segundos hasta alcanzar la cantidad de gotas anunciada.

Por supuesto, en las pruebas previas, iremos variando la inclinación de la botella hasta dar con la más adecuada.

Fuente:

25 de agosto de 2012

El Big Bang fue en realidad un cambio de fase

Artículo publicado por Natalie Wolchover el 21 de agosto de 2012 en SPACE.com

¿Cómo se inició el universo? Tradicionalmente se ve al Big Bang como el momento en el que un paquete de energía infinitamente denso estalla súbitamente, expandiendo las tres direcciones espaciales y enfriándose gradualmente conforme lo hace.

Ahora, un equipo de físicos dice que el Big Bang debería modelarse como un cambio de fase: el momento en que un universo amorfo análogo al agua líquida enfriada, cristaliza repentinamente para formar un espacio-tiempo de cuatro dimensiones, que sería análogo al hielo.



Big Bang © by { pranav }

En el nuevo estudio, el autor principal James Quach y sus colegas de la Universidad de Melbourne en Australia dicen que la hipótesis puede ponerse a prueba buscando defectos en la estructura del espacio-tiempo cuando se cristalizó el universo. Actualmente, el universo tiene unos 13 700 millones de años.

“Piensa en los inicios del universo como en un líquido”, dice Quach en un comunicado. “Luego, cuando se enfría el universo, ‘cristaliza’ en las tres dimensiones espaciales y una temporal que vemos hoy. Imaginado de esta forma, cuando se enfría el universo, esperaríamos que se formasen grietas, similares a las que se forman en el hielo cuando se congela el agua”.

De existir, estas grietas serían detectables, dicen los investigadores, debido a que la luz y otras partículas se curvarían o reflejarían cuando cubren su camino a través del cosmos.

La idea de que el espacio y el tiempo son propiedades emergentes que se materializan repentinamente a partir de un estado amorfo, se propuso inicialmente por físicos del Instituto Perimeter de Canadá en 2006. Conocida como “quantum graphity”, la teoría mantiene que la geometría de cuatro dimensiones del espacio-tiempo descubierta por Albert Einstein no es fundamental; en su lugar, el espacio-tiempo es más similar a una retícula construida a partir de bloques básicos discretos de espacio-tiempo, de la misma forma que la materia tiene aspecto continuo, pero en realidad está hecha de bloques básicos llamados átomos.

Originalmente, a temperaturas extremadamente altas, los bloques básicos eran como el agua líquida: no tenían estructura, “representando un estado sin espacio”, escriben los investigadores en su artículo. En el momento del Big Bang, cuando la temperatura del universo empezó a bajar hasta el “punto de congelación” de los bloques básicos de espacio-tiempo, cristalizaron en la forma de retícula tetradimensional que vemos hoy.

Las matemáticas que describen la teoría cuadran bien, pero “el desafío ha sido que estos bloques básicos de espacio son muy pequeños, por lo que es imposibles verlos directamente”, explica Quach. Desde el punto de vista humano, el espacio-tiempo parece suave y continuo.

No obstante, aunque los propios bloques básicos podrían ser demasiado pequeños para detectarlos, los físicos esperan observar los límites que se habrían formado cuando las regiones de cristalización de los bloques básicos chocaron entre sí en el momento del Big Bang, creando “grietas” en el universo. Se requiere más trabajo para predecir la distancia media entre grietas – no se sabe si es microscópica o de años luz – para caracterizar sus efectos sobre las partículas.

La investigación de Quach y su equipo se detalla en el ejemplar de este mes de la revista Physical Review D.

Fuente:

26 de noviembre de 2011

El agua puede permanecer en estado líquido hasta los -48,33 ºC

El agua pura en estado líquido puede empezar a congelarse a temperaturas muy inferiores a 0 ºC, tras un cambio estructural previo en el que algunas moléculas se organizan en tetraedros. Estas estructuras, de localización aleatoria, determinan el ritmo de la formación de hielo a temperaturas de hasta -48,33 ºC, según un estudio que esta semana publica Nature.


La caja está llena de agua líquida (blanco). El líquido súper enfriado empieza a convertirse en ‘hielo intermedio’ (verde), de camino a la congelación (rojo), en una temperatura muy inferior a los 0 ºC. Finalmente se congela a -48,33 ºC. Imagen: Universidad de Utah.


¿Cuál es la menor temperatura a la que puede ‘resistir’ el agua líquida antes de convertirse en sólido? Un grupo de científicas de la Universidad de Utah (EE UU) han analizado con técnicas computacionales los factores que controlan la formación de hielo en agua ‘súper enfriada’ y ha comprobado que aguanta hasta los -48 ºC sin congelarse.

El cambio de estado de agua líquida a sólida, comienza en una región pequeña con un proceso llamado nucleación. En ese punto se crean los primeros cristales, sobre los cuales arranca el fenómeno de solidificación del líquido.

Las impurezas que a menudo lleva el agua actúan como núcleos que inducen su cristalización. Sin embargo en el agua pura, donde no hay partículas ni cristales que actúen como núcleos, es necesario que caigan mucho más las temperaturas para que se produzca una nucleación homogénea de hielo.

“En temperaturas cercanas a los -50 ºC la cristalización ocurre de manera muy rápida. Por encima de esta temperatura, el ritmo de formación de hielo está limitado por la capacidad de crear minúsculas semillas de hielo, a partir de las cuales crece la congelación”, explica a SINC Valeria Molinero, coautora del estudio y química de la Universidad de Utah.

Hasta ahora, se había conseguido observar experimentalmente este estado líquido súper enfriado del agua pura con temperaturas cercanas a la de nucleación, pero el mecanismo de cristalización del hielo no se había descifrado. Se desconocía tanto el tamaño como la estructura del núcleo crítico, donde empieza el proceso.

“La rapidez con la que el agua a muy bajas temperaturas cambia de estado está determinada por la transformación previa de la estructura del agua líquida en una disposición similar al hielo, aunque todavía desordenada”, explica la investigadora. “La formación de hielo está determinada por la movilidad de las partículas”.

Las investigadoras de la Universidad de Ohio han estudiado este proceso mediante simulaciones con ordenador, y han observado que está determinado por un cambio de estructura, en la que predominan las moléculas ligadas en forma de tetraedro, donde cada una está unida debilmente a las otras cuatro.

“El agua es un liquido anómalo. Por ejemplo, decrece su densidad con temperaturas más bajas que -40 ºC, y aumenta su capacidad calorífica”, señala Molinero. “Nosotras hemos mostrado que estas extrañas propiedades vienen del proceso intermedio de cambio de estructura”.

Agua líquida a menos de 0 ºC

El cambio de estado en el agua pura no sucede siempre a 0 ºC, como nos enseñan en el colegio. “0 ºC es la temperatura de fusión. La congelación ocurre en este punto cuando hay algún sustrato que ayude a la formación de los primeros cristales, sobre los que crecerá el hielo”, detalla Molinero. En esa región pequeña pero estable se produce el fenómeno de nucleación, que da comienzo al cambio de fase.

Las impurezas del agua actúan como ‘disparadores’ que inducen la cristalización, pero en sistemas puros la temperatura puede descender muy por debajo de los 0º (hasta los -48,33 ºC, según estos recientes resultados).

Las científicas han observado un cambio de estructura intermedio, entre el agua líquida y sólida, caracterizada por la disposición de las moléculas en tetraedros. “La sustancia cambia físicamente, en una forma en la que cada molécula de agua está ligada de manera flexible a otras cuatro moléculas, parecida a la del hielo, y que determina la temperatura en la que se congela el líquido”, describe Molinero.

El aumento de la proporción de las cuatro partículas coordinadas entre sí en la masa todavía líquida provoca la cristalización. “El cambio de fase no está controlado solo por la temperatura, sino también por la transformación estructural del líquido”, afirma la investigadora.

Computación del líquido

El proceso de cristalización se inicia súbitamente cuando se alcanza la temperatura requerida, con una velocidad tan alta que dificulta su observación. Las investigadoras han utilizado modelos computacionales de agua, bastante sencillos, sobre los que han podido realizar simulaciones del líquido súper enfriado.

“Los ordenadores, a través de la simulación, nos han dado una visión microscópica que los experimentos por ahora no pueden alcanzar”, asegura Molinero.

Estos resultados hacen posible prever la rapidez de la cristalización del agua, lo que puede ser útil para desarrollar modelos predictivos de ritmos y temperaturas de congelación del agua en materiales complejos o en condiciones particulares.

Fuente:

Agencia SINC

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0