Latest Posts:

Mostrando las entradas con la etiqueta inercia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta inercia. Mostrar todas las entradas

26 de julio de 2015

Newton tenía razón: su lógica también se aplica a la productividad

Newton revolucionó la historia de la ciencia con sus leyes, y lo bueno del asunto es que también se cumplen en el mundo de la empresa. Conocer su alcance nos permite actuar por anticipado para ser más productivos y sacar el trabajo adelante.
Sentado bajo un árbol y con la cabeza en ebullición. El joven británico se vio de pronto sorprendido por un sonido seco entre las hojas del suelo. Se aproximó interesado y observó una manzana que acababa de caer por su propio peso del árbol. Bien, aquel famoso incidente (aunque hay teorías que desmienten este episodio) fue el detonante de la ley de la Gravedad de Isaac Newton, el físico y matemático británico a quien hoy debemos tanto. Sin embargo, habíamos limitado sus valiosas aportaciones al ámbito de la ciencia, pero ¿sabes qué? Sus leyes son aplicables también en el trabajo.

¿Qué? ¿Qué puede aportar un científico nacido en el siglo XVII a las teorías modernas de productividad? Pues bien, parece que lo hace, y mucho además. El autor y coach James Clear ha encontrado una serie de curiosos paralelismos entre esta ley y nuestro comportamiento en el trabajo que nos pueden servir de gran ayuda a la hora de darlo todo en la oficina. Realmente, no es que ni el autor ni el mismísimo Newton nos vayan a descubrir nada nuevo que no supiéramos, pero conocer que sus leyes se cumplen también empíricamente en nuestro trabajo nos permite entendernos mejor, y lo que resulta más interesante, anticipar las decisiones.

6022013431_b98a365035_b

Las leyes de Newton aplicadas a la productividad

Como sabes, Sir Isaac Newton fue el creador de las leyes que llevan su nombre y que fueron demostradas en su ensayo de referencia "Los principios matemáticos de la filosofía natural". Esta obra describe las tres leyes (inercia, fuerza y principio de acción-reacción) que hoy rigen en la ciencia con peso. Ahora bien... ¿cómo relacionar unas leyes físicas con la productividad diaria? De esta manera:
  • Ley de la inercia: Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él. El autor descubrió que en el trabajo actuamos de la misma manera y el vínculo evidente es la procrastinación: los objetos tienden a estar en reposo, y de la misma manera, nosotros también. Sin embargo, la gran noticia es que la inversa también se cumple, con lo que una vez que nos ponemos en marcha, tendemos a seguir de esta manera. Por ello es tan importante romper con la procrastinación y arrancar a hacer algo productivo, aunque sea algo pequeño y sin importancia aparente.
Time Lost
  • Ley de la fuerza: El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime. El autor divide en este caso los elementos, fuerza y dirección, para interpretar una interesante aplicación de esta ley en el trabajo. Según él, la clave del éxito de un proyecto depende de la fuerza que apliquemos (impulso o entusiasmo y dedicación) y también de una segunda variable que no debemos olvidar: el foco, o ser capaces de dirigir el proyecto en la dirección adecuada.
  • Principio de acción y reacción: Con toda acción ocurre siempre una reacción igual y contraria: quiere decir que las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto. Y también en el trabajo nos sucede lo mismo: el impulso productivo se ve inevitablemente frenado por fuerzas que van siempre con nosotros, como el estrés, la presión, las interrupciones... En esta situación, tenemos dos opciones: o forzar al máximo la maquinaria para derribar las resistencias, o una más interesante, centrarse en las últimas y lograr reducirlas. La idea básica es evitar todos los obstáculos en el camino que te impidan llevar a efecto tu proyecto.
En resumen, se trata en definitiva de ponerse en acción de manera inmediata porque una vez que arranquemos tenderemos a seguir en marcha, pero hay que priorizar bien en qué vamos a poner nuestro esfuerzo: elegir con claridad cuál es el proyecto que más rentabilidad nos aporta y moverse en la dirección adecuada. Claro que estas máximas se vienen abajo si las distracciones, problemas personales o demás factores, nos impiden avanzar, por ello es fundamental eliminar todo lo que se nos interpone en el camino a la hora de desempeñar una tarea.

Fuente:

Hipertextual

29 de mayo de 2013

Girobuses: cuando recargaban autobuses "dándoles cuerda"

Hay muchas formas de almacenar energía, aunque la más común es en forma química o electroquímica. Son las usadas en el combustible de los vehículos de combustión interna o en las baterías del móvil, por ejemplo. Otros tipos de almacenamiento son la energía potencial (en centrales hidroeléctricas), energía elástica (los muelles de un reloj de cuerda), etc.

A lo largo de la historia ha habido alternativas de lo más curiosas para intentar mover nuestros vehículos de forma económica y sostenible explotando distintas fuentes de energía, como en el ejemplo que os traigo hoy: autobuses que andan con energía cinética guardada en un volante de inercia.

¿Qué es un volante de inercia? Es tan simple como una rueda diseñada para girar con el mínimo rozamiento posible. El tipo de energía que almacena es del tipo cinético: se recarga empujándola de alguna forma para que gire cada vez más rápido. Como la energía cinética rotacional es:



se ve que a mayor velocidad (ω) mayor la energía almacenada. El otro parámetro (Ix) depende de la forma física que tenga el volante.

Uno de los diseños más fáciles de entender consiste en un motor eléctrico acoplado al disco del volante de inercia. Aplicando electricidad se recarga el volante al hacerlo girar cada vez más rápido. Al desconectar la alimentación, el mismo motor puede actuar de generador y vuelve a convertir el movimiento del volante en corriente eléctrica, frenando más al disco cuanta más corriente se extraiga.

Os dejo un vídeo de un sistema inercial casero que demuestra este concepto, reutilizando un motor (brushless) de un ventilador de PC. Primero se aplica tensión para almacenar la energía y luego se extrae para dar alimentación a un LED:



 En la práctica, el límite de este tipo de "baterías cinéticas" está limitado por cuestiones de seguridad por un lado (¿te fiarías de llevar en tu coche un pesado disco girando a alta velocidad?) y por tiempo de almacenamiento, ya que cualquier rozamiento por pequeño que sea va disipando la valiosa energía en inútil calor.

Prototipos desarollados por la NASA han alcanzado 41.000rpm (es decir, ¡unas 683 vueltas por segundo!), pero incluso con suspensión magnética del rotor para limitar el rozamiento dentro de un compartimento al vacío, a las pocas horas se acaba disipando gran parte de la energía en forma de calor. En un vehículo real se tendría el inconveniente adicional de que el movimiento provocaría un rozamiento extra, debido al efecto giroscópico.




Lea el artículo completo en:

Ciencia Explicada

6 de diciembre de 2012

La Primera Ley de Newton (o Ley de la Inercia)


Una de las herramientas fundamentales para comprender nuestro entorno son las leyes de Newton. Estas permitieron dar un paso fundamental en el campo de la Física, explicando las causas del movimiento. En el día de hoy hablaremos sobre la primera ley de Newton, la cual enuncia:
Todo cuerpo permanecerá en reposo o con un movimiento rectilíneo uniforme a no ser que una fuerza actúe sobre él.
Esta primera ley resulta intuitiva en el primero de los casos: "todo cuerpo permanecerá en reposo si no actúa una fuerza sobre él". Parece bastante lógico, ¿no? Pero la segunda parte de la afirmación, donde se asevera que continuará moviéndose parece menos evidente.

La-primera-ley-de-Newton-Ley-de-Inercia-2.jpg

Los cuerpos tienden a mantener su estado

Newton no fue el primero en intuir que los cuerpos tendían a mantener su estado si no actúa el entorno, y encontramos precedentes en Leonardo, Galileo, Descartes o Hooke. Si impulsamos un trineo, ¿cuánto tiempo se moverá antes de detenerse? Parece evidente que depende de la superficie sobre la que se mueva. Si la superficie es más lisa, tardará más en detenerse, mientras que si la superficie es más rugosa, tardará menos. Así pues, si se mueve sobre hielo, tardará muchísimo más en detenerse que si rueda sobre gravilla. Imaginad que conseguimos una superficie más lisa que el hielo, de modo que casi eliminemos el rozamiento. ¿Se detendrá entonces en algún momento? Todo parece indicar que sí, pero ¿cuál es la causa? El aire.

Cuando vamos en una motocicleta a gran velocidad notamos como el aire nos frena, es por eso que para alcanzar mayores velocidades es conveniente agacharse para adoptar una postura más "aerodinámica". De esa manera reducimos el efecto del rozamiento con el aire. Imaginad ahora que lo eliminamos. Ya no habría nada que nos frenase.

La primera ley de Newton nos habla de la tendencia de un cuerpo a mantener su estado de reposo o movimiento y podemos encontrar un ejemplo en este famoso anuncio de coches:



Las caderas de Elvis tienden a permanecer en su estado de movimiento a una velocidad constante o de reposo, pero un bache, y esa tendencia provoca el sexy bamboleo. El resto del cuerpo avanza mientras que las caderas intentan quedarse atrás. Cuando sin embargo el vehículo mantiene una velocidad constante (y sin baches) no se produce ese movimiento.

¿Qué es la inercia?

Una muestra de la primera ley de Newton es la "inercia" de un cuerpo. Esta inercia da una idea de la dificultad que tiene un cuerpo para cambiar ese estado de reposo o movimiento, y está relacionada con la masa de un cuerpo. Imaginad que tenemos un elefante montado en un monopatín a una velocidad de 20 km/h. Intentad pararlo. Difícil, ¿cierto? El elefante quiere seguir adelante y pobre al que se ponga en su camino. Hay mucha inercia.

Volvamos ahora a un coche. Imaginad que vamos en el asiento de atrás en un coche estrecho que toma una curva cerrada a gran velocidad. Y a nuestro lado va  Shaquille O'Neal. Si el vehículo toma la curva hacia la izquierda, y tenemos a Shaquille a la izquierda, sentiremos la inercia en nuestros órganos aplastados por esta mole contra la puerta del vehículo. El coche ha girado, pero la inercia de Shaquille hace que intente seguir su movimiento.

La-primera-ley-de-Newton-Ley-de-Inercia-4.jpg

Los efectos de la inercia son como digo muy tenidos en cuenta por los constructores de vehículos, y para prevenirnos de frenadas en seco incluyeron un cinturón de seguridad que evita que nuestro cuerpo salga disparado por la luna del vehículo. ¿Qué otros ejemplos de la primera ley de Newton se te ocurren?

Tomado de:

Ojo Científico 

2 de diciembre de 2012

El tamaño si importa... ¡para nadar!

Uno de los temas recurrentes del cine de ciencia ficción es la miniaturización de seres humanos, desde los clásicos El increíble hombre menguante y Viaje alucinante hasta las más recientes Cariño, he encogido a los niños y Arthur y los minimoys. La gran mayoría de estas películas, por no decir todas, caen en el mismo error: Los protagonistas beben o nadan con normalidad, cuando en realidad tendrían muchas dificultades para hacer esas cosas con su tamaño reducido, porque el comportamiento de los fluidos cambia con la escala.


Que el comportamiento de un fluido depende del tamaño ya lo podemos intuir cuando vemos películas en las que se han filmado escenas de barcos con maquetas a escala reducida: Ni el movimiento de los barcos ni la propia agua parecen reales.


Los físicos caracterizan el movimiento de los fluidos mediante un parámetro llamado número de Reynolds, que describe la importancia relativa de las fuerzas inerciales frente a las fuerzas viscosas en el fluido; cuanto mayor es ese número, mayor es el efecto de las primeras y menor el de las segundas. Las fuerzas inerciales son las que hacen que un nadador siga avanzando aunque deje de mover brazos y piernas, mientras que las fuerzas viscosas son las que oponen resistencia a ese movimiento y acaban por detenerlo.


El número de Reynolds depende de la densidad y viscosidad del fluido, pero también de su velocidad y del tamaño del objeto que se mueve en él (o del grosor de la tubería por la que fluye). Así, el número de Reynolds de un nadador humano es de unos 10 millones, mientras que el de una bacteria es de 0,00001. En el primer caso, las fuerzas dominantes son las de inercia, mientras que en el segundo es todo lo contrario. Un nadador, o una embarcación, siguen moviéndose durante un tiempo aunque dejen de propulsarse, mientras que una bacteria en el mismo caso se detiene inmediatamente. En términos prácticos, el agua opone más resistencia al movimiento cuanto menor es el tamaño y la velocidad del objeto que se mueve en ella.


El estudio de los líquidos a escala microscópica tiene multitud de aplicaciones prácticas, desde la medicina hasta la nanotecnología. Pero resulta más fácil realizar los experimentos con maquetas de nuestro tamaño. Para que esas maquetas se comporten como objetos microscópicos es preciso reducir su número de Reynolds, lo que se logra sustituyendo el agua por un líquido más viscoso; tan viscoso, de hecho, como la miel. Así deberían experimentar el agua los miniaturizados protagonistas de las películas que citábamos; les resultaría enormemente difícil nadar e incluso beber.


Otra consecuencia del aumento de las fuerzas viscosas a pequeña escala es el llamado teorema de la vieira. La vieira, ese exquisito molusco, se desplaza cerrando violentamente sus valvas, con lo que el chorro de agua que expulsa propulsa su cuerpo hacia atrás. El teorema de la vieira afirma que un movimiento de vaivén como ése sólo es eficaz cuando el número de Reynolds es alto. A bajo número de Reynolds, cuando las fuerzas viscosas dominan a las inerciales, la apertura de las valvas generaría el mismo impulso que su cierre, pero en sentido contrario; el desplazamiento neto de la vieira sería nulo. A un nadador humano le ocurriría lo mismo con el movimiento de vaivén de las piernas en el estilo libre; a escala normal genera alrededor de la quinta parte del impulso total, pero a escala reducida, en un líquido tan viscoso como la miel, no produciría ningún impulso. Más dificultades para nuestros protagonistas.


Pero, pensándolo bien, el error es disculpable, ya que si llevamos la física hasta sus últimas consecuencias, los personajes tendrían incluso dificultades para respirar, ya que el aire también es un fluido. Y si los personajes no pueden respirar, nos quedamos sin película.


Tomado de:

El Neutrino

21 de mayo de 2010

¿Podriamos dar la vuelta al mundo mediante el "efecto helicóptero"?

Viernes, 21 de mayo de 2010

¿Podriamos dar la vuelta al mundo mediante el "efecto helicóptero"?

Nuestra intuición nos dice que, si la Tierra rota tan velozmente, al dar un salto lo suficientemente alto sobre ella, el punto de salto se alejaría de nosotros.

La superficie de la Tierra rota a unos 450 m/s en el Ecuador, 2 veces la velocidad media de un 747. Entonces, ¿por qué no hay ninguna aerolínea ofreciendo baratos deslizamientos a destinos seleccionados?

La razón se debe a que los objetos que hay en nuestra atmósfera comparten la rotación del planeta. Cuando un helicóptero despega verticalemente, por ejemplo, se lleva con él la velocidad de avance, de manera que se mantiene la relación con el terreno.

La primera ley de Newton permite profundizar en los entresijos de la inercia. Galileo fue el que enunció que un sistema o conjunto que se mueve a una velocidad constante tiene las características de un sistema en reposo. Por eso en un tren a velocidad constante nos podemos mover libremente como si estuvieramos en tierra. Y también una mosca puede volar por el interior del tren sin verse obligada a acelerar a la velocidad del tren.

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0