Latest Posts:

Mostrando las entradas con la etiqueta atomos. Mostrar todas las entradas
Mostrando las entradas con la etiqueta atomos. Mostrar todas las entradas

15 de octubre de 2013

Premio Nobel de Química por llevar la experimentación al ciberespacio

Martin Karplus, Michael Levitt y Arieh Warshel

Los científicos fueron distinguidos por llevar la experimentación química al ciberespacio.

Atrás quedaron las pelotas de plástico y los palos de madera para mostrar cómo funcionan las moléculas y los átomos.

Aunque hoy parezca increíble, hace 50 años muchos científicos dedicados a la química utilizaban los mismos elementos que hoy usan los escolares para graficar sus modelos atómicos o moleculares.
Sin embargo, en la década de 1970 el investigador austriaco Martin Karplus, el británico Michael Levitt y el israelí Arieh Warshel -los tres además tienen nacionalidad estadounidense- sentaron las bases para los programas computacionales de gran alcance que hoy se utilizan para entender y predecir los procesos químicos.

Y este miércoles la Real Academia de Ciencias de Suecia les otorgó el Premio Nobel de Química 2013.
El galardón fue anunciado en Estocolmo por Staffan Normark, secretario permanente de la Academia, quien explicó que los científicos fueron distinguidos por llevar la experimentación química al ciberespacio.

Química en la computadora

Molécula digitalizada

Los modelos desarrollados por Karplus, Levitt y Warshel en los 1970 sentaron las bases para los complejos programas de simulación molecular.

El premio buscó destacar los modelos multiescala para sistemas químicos complejos desarrollados por los tres científicos, los cuales "sentaron las bases de los poderosos programas que se utilizan para entender y predecir procesos químicos", según la Academia.

"Los modelos computarizados que son espejo de la vida real se han vuelto cruciales para la mayoría de los avances de la química en la actualidad", aseguró la Fundación Nobel a través de un comunicado.

"Con la ayuda de los métodos de quienes hoy son galardonados con el Premio Nobel de Química, los científicos le dejaron a las computadoras revelar los procesos químicos, tales como la purificación de un catalizador de gases de escape o la fotosíntesis en las hojas verdes".

El artículo completo en:

BBC Ciencia

8 de octubre de 2013

La película más pequeña del mundo (con átomos)

Hecha con un potente microscopio, muestra los movimientos de los átomos expandidos 100 millones de veces.



Científicos de IBM han presentado la "película más pequeña del mundo", una obra revolucionaria hecha con un potente microscopio que muestra los movimientos de los átomos expandidos 100 millones de veces. Este cortometraje, que dura alrededor de 1 minuto y 30 segundos, se titula 'Un muchacho y su átomo' y cuenta la historia de un pequeño personaje que juega con un átomo y sigue sus movimientos, bailando y saltando, en una manera educativa de explicar la ciencia.



"Filmar, posicionar y dar forma a los átomos para crear una película de animación original es una ciencia exacta y completamente nueva", ha dicho Andreas Heinrich, científico de IBM Research. "En IBM no nos limitamos a leer libros sobre ciencia, la hacemos. Esta película es una forma divertida de compartir el mundo a escala atómica al tiempo que permite un diálogo abierto con los estudiantes y otros sobre las nuevas fronteras de las matemáticas y la ciencia", ha agregado.

Para hacer esta película, los átomos son desplazados con un microscopio desarrollado hace algunos años por IBM, un invento que le valió el Premio Nobel a sus diseñadores. Este instrumento "es el primero que permite a los científicos ver el mundo de lo infinitamente pequeño, los átomos", ha explicado Christopher Lutz, investigador de IBM.

Muy frío

El aparato no parece un microscopio tradicional, ya que pesa dos toneladas y opera a una temperatura de -268°C. Es capaz de ampliar 100 millones de veces los objetos colocados en la placa. "La posibilidad de controlar la temperatura, la presión y las vibraciones a niveles tan específicos hace del laboratorio de investigación de IBM uno de los pocos lugares en el mundo donde los átomos se pueden mover con tanta precisión", ha dicho Lutz.

El dispositivo utiliza una aguja muy fina, sobre una superficie de cobre, para atraer o repeler a los átomos y las moléculas en una ubicación específica. La película ha sido certificada por el Libro Guinness de los Récords como la "animación más pequeña del mundo", según IBM.

Fuente:


27 de septiembre de 2013

¿Por qué las llamas tienen distintos colores?

Llamas

Los colores que vemos en las llamas dependen de los elementos que los componen.

Cuando los átomos se calientan en la llama, se excitan, lo que lleva a una emisión de fotones.

Los distintos anchos de banda de esta luz producen varios colores. Por ejemplo, el cobre da lugar a una llama verde, mientras que el potasio a una lila.

Fuente.

BBC Ciencia

24 de septiembre de 2013

La composición de la materia (I)



Aire, agua, tierra y fuego han sido los materiales que, desde la edad de piedra, el ser humano a reconocido y utilizado. No fue hasta el inicio de la ciencia moderna, con la escuela Jónica, en la antigua Grecia, que el ser humano no se planteó cual era la composición básica de todo lo que lo rodeaba.
Fue Leucipo de Mileto(1), maestro de Demócrito, quien en el siglo V e.a.(2) fundó la escuela atomista, la cual afirmaba que la realidad estaba formada por partículas infinitas, indivisibles, de formas variadas y siempre en movimiento llamadas átomos, que significa “indivisible” («ἄτομον» - «sin partes»). Afirmaban que la materia estaba formada por partículas materiales indestructibles, desprovistas de cualidades y que no se distinguen las unas de las otras más que por la forma y dimensión(3).
Siempre su asocia la idea de la primera teoría atómica a John Dalton (4) y, no sin razón. Pero a decir verdad fué Mijail Vasílievich Lomonósov quien, en unos artículos escritos entre 1743 y 1744 ( “Sobre las partículas físicas intangibles que constituyen las sustancias naturales” y “Sobre la adhesión de los corpúsculos”) recupera este concepto de átomo y lo plasma de forma evidente en un tercer artículo donde utiliza en término mónada (acuñado por Leibniz), con el título “Sobre la adhesión y la posición de las mónadas físicas”.
John Dalton (4), alimentandose de las ideas de Leucipo de Mileto y, conocedor de los trabajos de Lomonósov, propone de nuevo una teoría atómica pero, esta vez, con bases científicas. Esta ley fué formulada para explicar porqué ciertas reacciones químicas se daban solamente, en proporciones constantes (la denominada Ley de las proporciones constantes(5) ). Dalton explicó su teoría en base a seis enunciados simples:
  1. La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.
  2. Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de diferentes elementos tienen pesos diferentes. Comparando los pesos de los elementos con los del hidrógeno tomado como la unidad propuso el concepto de peso atómico relativo .
  3. Los átomos permanecen sin división, aún cuando se combinen en las reacciones químicas.
  4. Los átomos, al combinarse para formar compuestos guardan relaciones simples.
  5. Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.
  6. Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.
Dados los conocimientos actuales, el modelo atómico de Dalton puede parecernos insuficiente e, incluso, un poco infantil, pero constituyó el primer intento basado en evidencias y pruebas científicas de explicar como y porqué estaba constituida la materia. Eso sin contar que serviría de base para todos los modelos posteriores que, sin duda, han resultado cruciales en el avance científico y técnico de la actualidad.


Varios átomos y moléculas representados en A New System of Chemical Philosophy (1808 de John Dalton )
 
A finales del siglo XIX hay dos descubrimientos clave en el avance de nuestro conocimiento de la composición de la materia. Por un lado, en 1896, Henri Becquerel(6) descubriría la radiactividad trabajando con sales de uranio. Descubrió que al colocar sales de uranio sobre una placa fotográfica en una zona oscura, esta se ennegrecía, debido a que la radiación emitida por el uranio atravesaba elementos opacos a la luz ordinaria.
Al año siguiente, Joseph John Thomson(8), descubriría el electrón. Determinó que la materia estaba constituida por una parte positiva y otra negativa. Y en 1898(7), el matrimonio Curie descubrirá el Polonio y el Radio.
Con toda esta serie de eventos, el propio Joseph John Thomson, en 1903, propondrá su propio modelo atómico, en el que se incluyen por primera vez la polaridad de cargas, existiendo una carga positiva y otra carga negativa. Su modelo es popularmente conocido como el “modelo del puding de pasas” ya que propone que el átomo es una esfera de carga positiva, con los electrónes “incrustados” por toda su superficie, de forma uniforme, de forma similar a como veríamos las pasas en un punding.


Modelo atómico de Thomson

Pero este modelo, que aunaba las virtudes del modelo de Dalton, con los resultados obtenidos con los tubos de rayos catódicos (la existencia de una carga negativa), chocaba frontalmente con la teoría de la dispersión de Rutherford(9) (también conocida como dispersión de Couloumb - 1909). Esta teoría explicaba la dispersión de partículas eléctricamente cargadas, al acercarse a un centro de dispersión que también estaba cargado eléctricamente (experimento de Rutherford(10)). Con este experimento se llegó a la conclusión de que la carga positiva y la mayor parte de la masa del átomo debía estar concentrada en un pequeño espacio en el centro del átomo.
Un año después de que Joseph John Thomson desarrollara su teoría atómica, en 1904, Hantaro Nagaoka(11) desarrolló un modelo planetario, en el que consideraba que existia un centro cargado positivamente, muy masivo, mientras que los electrónes lo rodeaban orbitando a una distancia y unidos a él por fuerzas electrostáticas, de forma similar a como veríamos los anillos con Saturno.
El propio Nagaoka desecharía su propia teoría en 1908, pese a que el antes mencionado experimento de Rutherford diera confirmación experimental a su teoría. Nagaoka consideró que los anillos se repelerían entre sí, dando lugar a un modelo inestable.
El propio Rutherford, en el artículo que escribió, proponiendo la existencia de un núcleo atómico, cita a Nagaoka, como base de su teoría. Como veremos más adelante, esta es la base del modelo de Bohr (también conocido como modelo atómico) y que resultaría fundamental para los siguientes modelos actuales.

Fuente:

Enamorado de la Ciencia

23 de septiembre de 2013

¿Cuántos átomos hay en el cuerpo humano?



Tengo la sanísima costumbre de emplear una de mis primeras clases de cada curso universitario en tratar de enseñar a mis estudiantes a hacer cálculos que, aparentemente, pueden resultar imposibles de llevar a cabo. Esta aparente dificultad para llevarlos a buen fin viene dada por la falta de datos, de información relevante.
El físico de origen italiano Enrico Fermi (1901-1954), quien fue una de las cabezas más visibles en el desarrollo del célebre proyecto Manhattan, que concluiría con la construcción de la primera bomba atómica, poseía una asombrosa facilidad para resolver cierto tipo de problemas, como los que os describo en el primer párrafo. Partiendo de unos datos exiguos, era capaz de obtener unas buenas estimaciones, aproximaciones asombrosamente precisas a las soluciones de los problemas planteados. En su honor, a estos problemas o cuestiones se les llama problemas de Fermi. Y para resolverlos, Fermi trataba siempre de descomponer el problema original en otros más simples, lo desmenuzaba hasta que a cada uno de estos micro-problemas le podía asignar una respuesta sencilla.
Para explicaros en qué consisten estos problemas, os pondré un ejemplo de los que suelo proponer a mis estudiantes. Se trata de determinar o estimar el número aproximado de átomos que se encuentran en el cuerpo de un ser humano. No me negaréis que tiene enjundia, ¿verdad? ¿Entendéis ahora por qué digo lo que digo en los párrafos anteriores? ¿Cómo diablos se puede dar una solución aproximada a semejante cuestión? Pues, justamente eso, es lo que me dispongo a contar ahora mismo.

Bien, comencemos por el principio: ¿cuántos átomos hay en un cuerpo humano? Veamos, el cuerpo está formado por una serie más o menos diversa de elementos químicos constituyentes, pero no sabemos exactamente cuántos hay de cada tipo. Sin embargo, sí conocemos que un gran porcentaje de nuestro cuerpo es agua. Digamos, pues, como primera aproximación, que todo nuestro cuerpo está constituido por agua. Aun siendo este porcentaje del 60-70%, esto no quiere decir que cometamos un 30% de error, ya que justamente ese otro 30% está formado por otros átomos, aunque no sean de agua. Bien, un conocimiento básico de química nos dice que cada molécula de agua posee tres átomos: dos de hidrógeno y uno de oxígeno. El siguiente paso modesto es saber cuánto pesa una molécula de agua o, lo que es lo mismo, cada átomo que la constituye. Esto también lo aprendimos en el colegio. En un mol de agua hay el número de Avogadro (unos 600.000 trillones) de moléculas y cada mol pesa 18 gramos. Únicamente nos resta asumir un peso medio para un cuerpo humano. Pongamos 70 kg. Resulta trivial deducir que en un cuerpo humano hay, pues, unos 3900 moles de agua y, por tanto, 1028 átomos, esto es, un 1 seguido de 28 ceros o, lo que es lo mismo, 10.000 cuatrillones. Problema resuelto.
Para que podáis apreciar la potencia del método de Fermi, vamos a llevar a cabo el mismo cálculo, pero esta vez teniendo en cuenta los distintos tipos de elementos químicos de los que está constituido un ser humano. Este dato concreto podemos sacarlo de la Wikipedia. Como allí dice, las abundancias relativas son las siguientes:
·       Hidrógeno 10,0 %
·       Oxígeno 65,0 %
·       Carbono 19,37 %
·       Nitrógeno 3,2 %
·       Calcio 1,38 %
·       Fósforo 0,64 %
·       Cloro 0,18 %
·       Potasio 0,22 %

Con estas proporciones de cada uno de estos nueve elementos y volviendo a suponer que el cuerpo humano promedio pesa unos 70 kg, se encuentra fácilmente que de ellos 7 kg serán de hidrógeno; 45,5 kg de oxígeno; 13,56 kg de carbono; 2,24 kg de nitrógeno; 0,97 kg de calcio; 0,45 kg de fósforo; 0,13 kg de cloro y 0,15 kg de potasio.
Si ahora acudimos a los valores de los pesos atómicos de cada uno de los anteriores ocho elementos de la tabla periódica y utilizamos el número de Avogadro, podremos calcular el número de átomos de cada especie. Así, se obtiene:
·       Hidrógeno 4,18 1027 átomos
·       Oxígeno 1,71 1027 átomos
·       Carbono 6,8 1026 átomos
·       Nitrógeno 9,63 1025 átomos
·       Calcio 1,46 1025 átomos
·       Fósforo 8,75 1024 átomos
·       Cloro 2,21 1024 átomos
·       Potasio 2,31 1024 átomos


Finalmente, tan sólo queda sumar las cifras anteriores. ¿El resultado? 6,7 1027 átomos. ¿No os parece asombroso?


22 de septiembre de 2013

¿Cuál es la bomba nuclear más potente jamás detonada?

Explosión nuclear.

El 30 de octubre de 1961 la Unión Soviética probó la bomba termonuclear AN6302, apodada "Bomba del Zar", sobre Nueva Zembla, al norte del Círculo Polar Ártico.
La explosión propulsada por fusión nuclear fue equivalente a más de 50 millones de toneladas de dinamita; mil veces más devestadora que las bombas atómicas lanzadas sobre Japón en 1945.

Fuente:

BBC Ciencia

17 de agosto de 2013

¿Podría existir la vida en un universo sin interacción débil?

Existen cuatro interacciones fundamentales en el universo conocido: la gravitatoria, la electromagnética y las dos nucleares: la fuerte y la débil. La primera es responsable de que existan los planetas, estrellas y galaxias, por ejemplo; la segunda de que la luz del Sol llegue hasta nosotros; la tercera explica que existan los núcleos atómicos.


Actualmente, la gran mayoría de los físicos y cosmólogos creen que nuestro universo se originó en un acontecimiento singular conocido como Big Bang. Cuando se generaron los protones, las partículas con carga positiva que constituyen, junto a los neutrones, los núcleos atómicos de todos los elementos que conocemos, la cuarta de las fuerzas fundamentales aludida en el párrafo anterior, fue la responsable de que grupos de cuatro protones se fusionasen para dar lugar a núcleos de helio-4 (formados por dos protones y dos neutrones, de ahí el 4, que indica el número másico). De hecho este es el proceso mediante el que nuestra estrella madre, el Sol, produce la energía que nos llega en forma de luz y calor a la Tierra.

Resulta muy difícil imaginar un universo en el que no estuvieran presentes las cuatro fuerzas fundamentales anteriores, especialmente las tres primeras. Sin embargo, parece ser que la cuarta de ellas, la fuerza nuclear débil, no es tan restrictiva como pudiera pensarse. Al menos esto es lo que han demostrado los físicos Alejandro Jenkins y Gilad Pérez, quienes han llevado a cabo una serie de simulaciones con ordenador en las que analizan la posibilidad de la existencia de universos capaces de albergar vida en ausencia de la interacción nuclear débil. Y han llegado a unas conclusiones, cuando menos, inesperadas.


Lea el artículo completo en:

El Tercer Precog

6 de agosto de 2013

Electricidad III - Corriente Eléctrica

Ésta es la tercera parte del Bloque [Electricidad I]. En la primera parte hablamos acerca del concepto de carga eléctrica, y en la segunda parte lo hicimos sobre la Ley de Coulomb y la electrización. Si te fijas, hasta ahora no hemos estudiado apenas movimientos de cargas, que es en lo que normalmente pensamos al hablar de “electricidad”. La razón es que, para entender esos movimientos y conceptos relacionados con ellos –como la corriente eléctrica–, necesitábamos establecer unas bases, como el concepto de carga eléctrica. En la última entrada ya hablamos de la causa esencial del movimiento de cargas, la fuerza de Coulomb, con lo que ya estás preparado para entender el concepto de corriente eléctrica.

Fíjate en que digo “no hemos estudiado apenas” porque, aunque no hayamos entrado en detalles, en la entrada anterior sí que describimos movimientos perceptibles de cargas: por ejemplo, en el chorro de agua del grifo en el Experimento 1 o el movimiento del péndulo en el Experimento 2 había cargas moviéndose debido a atracciones y repulsiones de Coulomb. Sin embargo, se trataba de movimientos muy leves, a lo largo de distancias minúsculas, y desde luego no intentamos entonces evaluarlos de ninguna manera rigurosa — a eso nos dedicaremos hoy.


Por cierto, una aclaración: hay cargas moviéndose siempre que cualquier objeto se mueve, porque cualquier objeto está hecho de cargas de ambos tipos. Sin embargo, no se observan efectos eléctricos perceptibles cuando se mueve un objeto con equilibrio de cargas por la misma razón que no se notan las fuerzas de Coulomb salvo que te acerques mucho: porque los efectos de ambos tipos de carga, “desde lejos”, se cancelan.

Solución al Desafío 1 – Pilas y electrones
Como dijimos la semana pasada, el primer Desafío del bloque tenía como principal objetivo acostumbrarte a pensar de cierta manera más que cuestionar tu conocimiento. Si aún no has leído el Desafío, hazlo antes de seguir con la solución, ¡el objetivo es que pienses, no que leas!
El razonamiento básico para demostrar que la explicación que dimos de cómo funcionan las pilas es algo así: si esa explicación fuera cierta, una pila gastada no tendría electrones. Pero, dado que el número total de cargas positivas/negativas en cualquier cuerpo es tan gigantesco, aunque normalmente se compensen unas con otras, esa pila tendría un desequilibrio brutal de carga positiva. Y como la fuerza de Coulomb se nota tanto por pequeño que sea el desequilibrio de carga, una pila gastada sería una fuente de fuerzas increíbles y una catástrofe continua: induciría tremendos desequilibrios de carga en todo lo que la rodease, generando efectos muchos órdenes de magnitud mayores que los del experimento del peine y el chorro de agua. Estos fenómenos tan extremos no se notan en absoluto, luego esa explicación es absurda.
Aunque con eso queda demostrado, tal vez hayas ido un poco más allá: si la pila ha perdido esos electrones según se gastaba, ¿dónde están esas miríadas de electrones? Si han quedado en los aparatos que usan la pila, éstos tendrían entonces un desequilibrio brutal de cargas y originarían, igual que lo hacía la pila –pero al revés, claro, por tener el tipo contrario de carga excesiva– fenómenos tremendos que no se observan. Si esos electrones se quedasen en el cable, lo mismo sucedería entonces con los cables.
Observa cómo, para desmontar una explicación de cómo funciona una pila, no nos hace falta entender cómo funciona de verdad ni dar una explicación alternativa. Simplemente sabemos que las consecuencias de la explicación que se nos dio no se cumplen, luego la explicación es falsa. Más adelante, en este mismo Bloque, explicaremos cómo funciona de verdad una pila… y no es, claro está, porque pierda electrones poco a poco hasta quedarse sin ninguno.

Pero vamos con el contenido del artículo de hoy: la causa de que las cargas se muevan y la manera de cuantificar ese movimiento.

Desequilibrio como fuente del movimiento de cargas

De lo que no debería caberte duda, si comprendiste las dos entradas anteriores, es de que es muy fácil producir movimientos de cargas simplemente creando un desequilibrio entre ambos tipos. Es posible además, si se es cuidadoso, utilizar la Ley de Coulomb para controlar tanto la intensidad como la dirección y sentido de esos movimientos… pero permite que te muestre esto con un pequeño experimento mental.

Imagina que tenemos un protón y un electrón separados una distancia cualquiera (digamos que dos metros). E imagina también, para simplificar nuestro experimento, que de algún modo hemos conseguido “clavar” ambas partículas en las posiciones en las que se encuentran; de otro modo, claro está, se atraerían el uno al otro y acabarían juntos. Observa de lo que partimos: un desequilibrio de cargas.


Corriente 1


Supón que ahora dejamos libre, justo en medio de las dos partículas, un segundo protón. En este caso no lo “clavamos”, sino que lo dejamos moverse libremente. De acuerdo con la Ley del buen Coulomb, ese protón empezará a moverse, alejándose del protón fijo y acercándose al electrón: estamos haciendo que este protón se mueva empleando la fuerza de Coulomb a través de un desequilibrio de cargas. Y podemos controlar hacia dónde se mueve — si el electrón fijo se encuentra al norte del protón fijo, nuestro protón libre irá hacia el norte, y si el electrón está hacia el este, sucederá lo propio.

Pero también podemos controlar cómo de rápido lo hace: si en vez de tener un protón y un electrón fijos tenemos dos protones y dos electrones fijos en cada sitio –es decir, el desequilibrio de cargas es mayor–, el protón sufrirá una mayor fuerza de repulsión por parte de los protones, y de atracción por parte de los electrones, con lo que su movimiento será más violento que antes.

Dos maneras básicas de crear corrientes eléctricas
El desequilibrio entre cargas eléctricas de uno y otro tipo es una de las dos maneras más comunes mediante las que los seres humanos ponemos cargas en movimiento y producimos corrientes eléctricas: es lo que sucede, como veremos más adelante en el Bloque, con las pilas de nuestros aparatos eléctricos. Sin embargo, es más común todavía emplear una segunda manera de hacer que las cargas se muevan: utilizar el campo magnético para crear la corriente eléctrica, como se hace en la mayor parte de las centrales eléctricas. De este segundo modo de producir corriente, sin embargo, hablaremos cuando hayamos estudiado el campo magnético.

Corriente eléctrica

Dado que el movimiento de cargas desempeña un papel fundamental en nuestra sociedad –tanto en ciencia como en tecnología–, es muy conveniente definirlo cuidadosamente y cuantificarlo de algún modo. El fenómeno en sí del movimiento de cargas eléctricas recibe un nombre arcaico, inventado cuando conocíamos bastante menos que ahora acerca de la naturaleza de la carga eléctrica y su comportamiento. Algunos pensaban entonces que la carga eléctrica era una especie de fluido invisible que se encontraba dentro de los cuerpos, y que esta sustancia podía fluir de unos cuerpos a otros. Ese flujo, como el de un río, era una especie de corriente, pero no de agua, sino de electricidad: una corriente eléctrica.

Una vez definido el fenómeno, hace falta una magnitud que lo cuantifique y una unidad para medirla. En el caso de la corriente eléctrica, esa magnitud recibe el nombre de intensidad de corriente. A menudo se utiliza “corriente eléctrica” para referirse a la magnitud, y no al fenómeno, pero esto crea a veces malentendidos que se resuelven fácilmente distinguiendo ambos términos. De modo que, a lo largo de esta serie –si no se me escapa alguna vez, claro– emplearemos el término corriente para referirnos al fenómeno físico del movimiento de cargas, e intensidad de corriente (o simplemente intensidad) para la magnitud que cuantifica el movimiento.

Aquí tienes una definición lo más llana posible de lo que es la intensidad de corriente:
La intensidad de corriente a través de una superficie es la cantidad de carga que la atraviesa por unidad de tiempo.
Como puedes ver, se trata de una definición que no tiene mucho sentido para un solo protón, o electrón, que se mueva. Recuerda que es un concepto antiguo, que no funciona demasiado bien para describir las cosas a escala microscópica sino a gran escala, con continuos movimientos de cargas a través de algo. De ahí que, cuando se trabaja –como hicimos nosotros en nuestro experimento mental unos párrafos más arriba– con unas pocas cargas sueltas, se suelan utilizar para describir su movimiento cosas como su velocidad o aceleración, mientras que, cuando se trabaja con muchas partículas cargadas moviéndose (como sucede, como veremos más adelante, en un cable eléctrico) sea muy útil emplear el concepto de intensidad de corriente.

La idea de un “fluido eléctrico” que se mueve se percibe en la propia definición. Si te fijas, es muy parecida a la del caudal de agua en un río: en vez del volumen de agua que fluye por unidad de tiempo, se mide la cantidad de carga que fluye por unidad de tiempo. El concepto es, de hecho, muy similar: si la intensidad de corriente es pequeña, hay poca carga atravesando la superficie por unidad de tiempo. Si es grande, hay mucha carga atravesando la superficie por unidad de tiempo.

Normalmente se asigna a la intensidad de corriente eléctrica, además de un valor, una dirección y sentido, como hacemos con la velocidad del viento, por ejemplo. Sin embargo, con la velocidad del viento no hay problema: su dirección y sentido es la del aire que se mueve. ¡Pero la corriente eléctrica puede ser un movimiento de cargas positivas, o negativas, o de ambas a la vez! Hace falta establecer un convenio –y podría haber varios, todos arbitrarios, como nos ha sucedido antes en este bloque–. El que se eligió históricamente, y que seguimos usando hoy en día, es el siguiente:
La dirección y sentido de la intensidad de corriente son los del movimiento de las cargas positivas, y contrario al de las cargas negativas.
Con este convenio, si se mueven, por ejemplo, protones hacia la derecha, la intensidad de corriente va hacia la derecha:


Intensidad de corriente con protones


Si se trata, por el contrario, de electrones que se muevan hacia la izquierda, la intensidad de corriente va también hacia la derecha:


Intensidad de corriente con electrones


Este convenio puede parecer peor que otro en principio más simple, como el de que la intensidad de corriente tuviera el sentido de movimiento de las cargas, cualquiera que fuera su tipo… pero tiene ventajas en el cálculo que lo hacen muy útil, aunque a veces cree confusión o incluso induzca a error –aunque, como en este Bloque aún no usaremos fórmulas, por ahora tendrás que creerme–.

Fuente:

Lea el artículo completo en:

El Tamiz

4 de mayo de 2013

¿De qué color es un espejo?

Bajo luz blanca, la cual incluye la longitud de onda de todo el espectro visible, el color de un objeto está determinado por las longitudes de onda de luz que la superficie de sus átomos no logran absorber.

Un espejo perfecto reflejaría todos los colores comprendidos en la luz blanca, por lo tanto, sería blanco.

Sin embargo, los espejos reales no son perfectos y los átomos de su superficie le dan a sus proyecciones un tenue tinte verde, ya que los átomos del vidrio reflejan la luz verde más fuertemente que cualquier otro color.

Fuente:

BBC Ciencia

11 de abril de 2013

Revelan método que utiliza moléculas de ADN para moldear el grafeno



(CC) snickclunk


En un artículo publicado en el número del 9 de abril de Nature Communications, un equipo de ingenieros químicos y moleculares del MIT y de la Universidad de Harvard describen un método para crear moldes a escala nanométrica para darle formas al grafeno utilizando moléculas de ADN.

Tras construir nanoestructuras de ADN de variadas y precisas formas, estas moléculas se pueden utilizar como moldes para crear chips electrónicos hechos de grafeno, pues como recordaremos, el material que consiste en un arreglo hexagonal y bidimensional de átomos de carbono tiene increíbles propiedades eléctricas.

Aunque suene increíble, crear nanoestructuras complejas de ADN no es algo tan complejo, de hecho, uno de los autores del estudio, Peng Yin, ha creado más de 100 distintas formas a  escala nanométrica, como por ejemplo todo el alfabeto y varios emoticones. Todas las letras y figuras de la siguente imagen fueron creadas por Yin utilizando una técnica que apoda: ‘Origami de ADN‘. (Click para agrandar la imagen).


Link: Folded DNA templates allow researchers to precisely cut out graphene shapes which could be used in electronic circuits (Phys.org)

Fuente:

FayerWayer

9 de abril de 2013

La Relatividad está en las cosas que nos rodean...



Al hablar de la relatividad especial siempre nos da la impresión, al menos a mí me pasa, de que estamos tratando con una teoría que explica fenómenos que difícilmente tendrán una influencia directa en cosas tangibles para nosotros. Siempre tenemos a mano efectos chulos de partículas que “viven” más porque van a velocidades cercanas a la de la luz, los gemelos se hacen un lío con los años, las llaves no entran en las cerraduras, etc. Pero la pregunta es

¿Hay algo que nos rodee que manifieste características relativistas?
 
Y la respuesta está en la química.

En esta entrada no pretendo ser exhaustivo, tan solo quiero dar una lista de fenómenos, cotidianos, que no podrían darse de no verificarse las leyes de la relatividad especial. Como siempre, la naturaleza es maravillosa :)

Núcleos, electrones y orbitales

Generalmente nos dicen que las propiedades químicas de los elementos vienen determinadas por sus configuraciones electrónicas. Los átomos están compuestos por núcleos (con un número dado de protones y neutrones por allí) y electrones atraidos por este mediante la interacción eléctrica. Para entender estos hechos tenemos que recurrir a la mecánica cuántica. Muy brevemente (para una información más extensa: Orbitales Atómicos):
  1. Los electrones se disponen en orbitales.
  2. Estos orbitales vienen determinados por la energía del electrón (que solo puede tomar determinados valores), su momento angular, y su espín.
  3. En los orbitales encontramos la información de con qué probabilidad encontraremos al electrón con una determinada energía y momento angular a una distancia R del núcleo y en una determianda dirección.
Con esta información se pueden dar cuenta de las propiedades químicas y físicas de los elementos y se puede entender la organización de los mismos en la tabla periódica.



Si le preguntamos a un físico o un químico, nos dirán que esto viene descrito esencialmente por la ecuación de Schrödinger. Esto implica que los efectos relativistas (que serían necesarios si los electrones se movieran a fracciones apreciables de la velocidad de la luz) no se consideran necesarios para un buen entendimiento de la química. Y esta es la opinión más generalizada, de hecho, se estudia poco de esto en las carreras de física o química (por no decir nada).

Así pues, la relatividad especial parece algo que solo tiene importancia en cuestiones que involucran a partículas de alta energía que se mueven a muy alta velocidad. Pero no siempre es así.

Ahora presentaremos el argumento por el cual la relatividad influye en la química de algunos elementos muy usuales en nuestras vidas y hablaremos de algunos ejemplos.

La relatividad y su influencia en los átomos

Cuando uno estudia los orbitales atómicos puede calcular cual es la velocidad promedio de los mismos.  Según los cálculos esta velocidad media tiene la siguiente dependencia:

\langle v\rangle \approx Z

Es decir, la velocidad aumenta con el número atómico (número de protones en el núcleo). Esto implica que la química de los elementos pesados de la tabla periódica dependerá de características relativistas.
Uno de los principales efectos que tiene esto es lo siguiente:
  • Para núcleos con número atómico alrededor de 70 las velocidades de los electrones son superiores a 0.5c. A estas velocidades los efectos relativistas ya son apreciables.
  • Dado que a estas velocidades las energías de los electrones se pueden asociar a un incremento de su masa efectiva (y esto solo es un truco matemático, lo que se llama la masa relativista).  Ocurre que los orbitales de tipo s y p “disminuyen su tamaño” y bajan sus energías.
El radio promedio de un orbital se puede asociar a lo que se llama como radio de Bohr:

r_{Bohr}=\dfrac{Ze^2}{mv^2}

Así pues, se produce una contracción orbital si consideramos una masa relativista en vez de una masa no relativista.
  • Además se producen cambios en los niveles de energía:


En un mundo relativista, como el nuestro, los orbitales s y p tienen menor energía y los orbitales d y f tienen mayor energía que en los respectivos casos no-relativistas.

Mira tu anillo y verás la relatividad

Si la química está en lo cierto, todos los elementos de un grupo tienen que tener propiedades parecidas. Sin embargo, cuando uno mira la plata y el oro los podemos distinguir a simple vista sin más que ver su color.
¿Por qué la plata tiene color metálico plateado y el oro es amarillo?

Esta cuestión solo se puede responder en un contexto relativista. El color de estos metales es debido a una transición entre el nivel 5d y el 6s. Para la plata esta transición es muy poco probable porque la separación energética de estos niveles es grande. Pero el oro, con un Z=79 la relatividad obliga a que esos niveles estén más cercanos y la transición energética está en el rango óptico y es lo que explica su color característico.
En un mundo no relativista el oro tendría el color de la plata.

El mercurio



El mercurio es ese metal líquido. ¿Un metal líquido? ¿Un metal con un punto de fusión tan bajo que es líquido a temperaturas usuales?

Pues sí, este metal tiene las características que tiene por culpa de la relatividad.

La temperatura de fusión del oro es de unos 1000ºC y la del mercurio -39ºC. La diferencia no es poca, lo cual es sorprendente, porque están muy cerca el uno del otro en la tabla perdiódica, de hecho están al lado.

La diferencia entre el oro y el mercurio está en que el mercurio tiene su orbital 6s (contraido relativisticamente) lleno (el del oro tiene un hueco libre). Esto hace que las uniones Hg-Hg sean muy débiles y esencialmente sean uniones de Van der Walls. Eso le confiere las propiedades tan típicas a este elemento.

Abre tu coche



Las baterías que generalmente llevan los coches son las de Plomo/Ácido. Estas baterías producen corriente a través de unas reacciones de oxidación/reducción (mueven electrones de un átomo a otro). El caso es que las reacciones típicas involucran un ión del plomo, el Pb^{2+} y Pb^{4+}. Esto se consigue llevando electrones desde el orbital 6s contraido al 6p. Este proceso no es fácil de conseguir, está muy inhibido, y es lo que hace posible que estas baterías funcionen. Sin la relatividad no lo harían.

Lo obvio

Aparte de lo dicho, está claro que todas las características químicas de los elementos que involucran al espín, los acoplos espín-órbita, etc, son muestras de que vivimos en un universo donde operan las leyes dadas por la relatividad especial. El espín de las partículas es una consecuencia directa de la relatividad especial en la definición del concepto de partícula. Por lo tanto, cualquier fenómeno que dependa del espín es una muestra de la influencia de la relatividad, por poner un ejemplo, las resonancias magnéticas son una prueba palpable de que vivimos en un sitio relativista ;) .

Aquí solo hemos pretendido mostrar, muy por encima, que a veces las cosas que nos parecen más alejadas de nuestra experiencia en realidad tienen una influencia directa en nuestras vidas. Vivimos en el universo que vivimos y eso hace que podamos rastrear sus consecuencias hasta en las situaciones más insospechadas.

Desgraciadamente, no se suele puntualizar este hecho muy a menudo ni en las clases, ni en los libros de texto. Sin embargo, es interesante tener todo esto en mente, porque vivimos en un sitio sorprendente.
Nos seguimos leyendo…

Un artículo muy interesante sobre todos estos temas, para profundizar:

Fuente:

25 de marzo de 2013

¿Por qué se hace la oscuridad al apagar la luz?


Estamos en un cuarto donde la luz rellena totalmente la habitación. Decidimos apagar. Pulsamos el interruptor. La luz desaparece del espacio que nos rodea, aunque se mantiene unos instantes cierta luminosidad en los tubos de las lámparas de bajo consumo.

¿Por qué? ¿Adónde se va esa luz cuando apagamos? La respuesta es sencilla. El catedrático de Física Aplicada Antonio Ruiz de Elvira lo explica desde una de las estancias más oscuras de Cosmocaixa, el museo de la ciencia de la Obra Social La Caixa de Alcobendas.

La luz no es más que una onda electromagnética de las muchísimas que nos rodean constantemente. Vivimos en un mar denso de radiaciones electromagnéticas. Solo vemos una parte minúscula de ellas a las que se han adaptado nuestros ojos; lo que llamamos 'luz visible'.

Cuando apagamos la luz, los electrones de los átomos que solo emiten luz visible dejan de excitarse, y solo emiten radiación en otras frecuencias. La luz que 'vemos', los colores, son re-radiaciones de esos electrones de los átomos que responden con unas frecuencias propias a la energía que reciben. Cuando apagamos, la energía que hemos dado a los objetos vuelve a salir de ellos, ahora como una especie de 'luz' (en realidad, otras frecuencias) que no vemos.

Fuente:

El Mundo Ciencia

6 de marzo de 2013

Crean una batería que podría cargar teléfonos móviles en cinco segundos


 Crean una batería revolucionaria que podría cargar teléfonos móviles en cinco segundos 

Un grupo de investigadores ha presentado un nuevo tipo de batería que podría cargar un teléfono móvil o incluso la de un coche en segundos. El dispositivo puede cargar y descargar entre cien y mil veces más rápido que las baterías convencionales. Esta nueva clase de baterías, llamadas supercondensadores a microescala a base de grafeno, están hechas de una capa de un átomo de carbono de espesor. Además, su fabricación es relativamente sencilla y se podrá integrar fácilmente a distintos aparatos, ayudando incluso a reducir el tamaño de teléfonos móviles y demás aparatos de alta tecnología.

El equipo asegura que su invento no solo servirá para cargar en menor tiempo los teléfonos y coches eléctricos, sino también para reducir el tamaño de los aparatos. "La integración de las unidades de almacenamiento de energía en los circuitos electrónicos es difícil y a menudo limita la miniaturización de todo el sistema", explicó Richard Kaner, profesor de Ciencias de los Materiales e Ingeniería en la Escuela Henry Samueli de Ingeniería y Ciencias Aplicadas de la Universidad de California, Los Ángeles (UCLA). Para desarrollar su nuevo microsupercondensador, los investigadores utilizaron una lámina bidimensional de carbono, conocido como grafeno, que en la tercera dimensión (altura) tiene el grosor de un solo átomo.

 El equipo también encontró una manera fácil de producir estas revolucionarias pilas utilizando un quemador (grabador) de DVD estándar. "Los métodos tradicionales para la fabricación de microsupercondensadores implican técnicas litográficas muy complejas que han demostrado ser ineficaces para construir dispositivos rentables, lo que limita su aplicación comercial", afirmaron los creadores.

Los investigadores dicen que la gente podría incluso crear estas baterías en condiciones caseras. "El proceso es sencillo, rentable y se puede hacer en casa". "Uno solo necesita una grabadora de DVD y óxido de grafito disperso en agua, que está comercialmente disponible a un costo moderado". El equipo dice que ahora esperan asociarse con fabricantes de 'gadgets'. "Ahora estamos buscando socios de la industria para ayudarnos a producir en masa nuestros microsupercondensadores", concluyó Kaner.

Fuente:

Actualidad RT
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0