Latest Posts:

Mostrando las entradas con la etiqueta coulomb. Mostrar todas las entradas
Mostrando las entradas con la etiqueta coulomb. Mostrar todas las entradas

6 de agosto de 2013

Electricidad III - Corriente Eléctrica

Ésta es la tercera parte del Bloque [Electricidad I]. En la primera parte hablamos acerca del concepto de carga eléctrica, y en la segunda parte lo hicimos sobre la Ley de Coulomb y la electrización. Si te fijas, hasta ahora no hemos estudiado apenas movimientos de cargas, que es en lo que normalmente pensamos al hablar de “electricidad”. La razón es que, para entender esos movimientos y conceptos relacionados con ellos –como la corriente eléctrica–, necesitábamos establecer unas bases, como el concepto de carga eléctrica. En la última entrada ya hablamos de la causa esencial del movimiento de cargas, la fuerza de Coulomb, con lo que ya estás preparado para entender el concepto de corriente eléctrica.

Fíjate en que digo “no hemos estudiado apenas” porque, aunque no hayamos entrado en detalles, en la entrada anterior sí que describimos movimientos perceptibles de cargas: por ejemplo, en el chorro de agua del grifo en el Experimento 1 o el movimiento del péndulo en el Experimento 2 había cargas moviéndose debido a atracciones y repulsiones de Coulomb. Sin embargo, se trataba de movimientos muy leves, a lo largo de distancias minúsculas, y desde luego no intentamos entonces evaluarlos de ninguna manera rigurosa — a eso nos dedicaremos hoy.


Por cierto, una aclaración: hay cargas moviéndose siempre que cualquier objeto se mueve, porque cualquier objeto está hecho de cargas de ambos tipos. Sin embargo, no se observan efectos eléctricos perceptibles cuando se mueve un objeto con equilibrio de cargas por la misma razón que no se notan las fuerzas de Coulomb salvo que te acerques mucho: porque los efectos de ambos tipos de carga, “desde lejos”, se cancelan.

Solución al Desafío 1 – Pilas y electrones
Como dijimos la semana pasada, el primer Desafío del bloque tenía como principal objetivo acostumbrarte a pensar de cierta manera más que cuestionar tu conocimiento. Si aún no has leído el Desafío, hazlo antes de seguir con la solución, ¡el objetivo es que pienses, no que leas!
El razonamiento básico para demostrar que la explicación que dimos de cómo funcionan las pilas es algo así: si esa explicación fuera cierta, una pila gastada no tendría electrones. Pero, dado que el número total de cargas positivas/negativas en cualquier cuerpo es tan gigantesco, aunque normalmente se compensen unas con otras, esa pila tendría un desequilibrio brutal de carga positiva. Y como la fuerza de Coulomb se nota tanto por pequeño que sea el desequilibrio de carga, una pila gastada sería una fuente de fuerzas increíbles y una catástrofe continua: induciría tremendos desequilibrios de carga en todo lo que la rodease, generando efectos muchos órdenes de magnitud mayores que los del experimento del peine y el chorro de agua. Estos fenómenos tan extremos no se notan en absoluto, luego esa explicación es absurda.
Aunque con eso queda demostrado, tal vez hayas ido un poco más allá: si la pila ha perdido esos electrones según se gastaba, ¿dónde están esas miríadas de electrones? Si han quedado en los aparatos que usan la pila, éstos tendrían entonces un desequilibrio brutal de cargas y originarían, igual que lo hacía la pila –pero al revés, claro, por tener el tipo contrario de carga excesiva– fenómenos tremendos que no se observan. Si esos electrones se quedasen en el cable, lo mismo sucedería entonces con los cables.
Observa cómo, para desmontar una explicación de cómo funciona una pila, no nos hace falta entender cómo funciona de verdad ni dar una explicación alternativa. Simplemente sabemos que las consecuencias de la explicación que se nos dio no se cumplen, luego la explicación es falsa. Más adelante, en este mismo Bloque, explicaremos cómo funciona de verdad una pila… y no es, claro está, porque pierda electrones poco a poco hasta quedarse sin ninguno.

Pero vamos con el contenido del artículo de hoy: la causa de que las cargas se muevan y la manera de cuantificar ese movimiento.

Desequilibrio como fuente del movimiento de cargas

De lo que no debería caberte duda, si comprendiste las dos entradas anteriores, es de que es muy fácil producir movimientos de cargas simplemente creando un desequilibrio entre ambos tipos. Es posible además, si se es cuidadoso, utilizar la Ley de Coulomb para controlar tanto la intensidad como la dirección y sentido de esos movimientos… pero permite que te muestre esto con un pequeño experimento mental.

Imagina que tenemos un protón y un electrón separados una distancia cualquiera (digamos que dos metros). E imagina también, para simplificar nuestro experimento, que de algún modo hemos conseguido “clavar” ambas partículas en las posiciones en las que se encuentran; de otro modo, claro está, se atraerían el uno al otro y acabarían juntos. Observa de lo que partimos: un desequilibrio de cargas.


Corriente 1


Supón que ahora dejamos libre, justo en medio de las dos partículas, un segundo protón. En este caso no lo “clavamos”, sino que lo dejamos moverse libremente. De acuerdo con la Ley del buen Coulomb, ese protón empezará a moverse, alejándose del protón fijo y acercándose al electrón: estamos haciendo que este protón se mueva empleando la fuerza de Coulomb a través de un desequilibrio de cargas. Y podemos controlar hacia dónde se mueve — si el electrón fijo se encuentra al norte del protón fijo, nuestro protón libre irá hacia el norte, y si el electrón está hacia el este, sucederá lo propio.

Pero también podemos controlar cómo de rápido lo hace: si en vez de tener un protón y un electrón fijos tenemos dos protones y dos electrones fijos en cada sitio –es decir, el desequilibrio de cargas es mayor–, el protón sufrirá una mayor fuerza de repulsión por parte de los protones, y de atracción por parte de los electrones, con lo que su movimiento será más violento que antes.

Dos maneras básicas de crear corrientes eléctricas
El desequilibrio entre cargas eléctricas de uno y otro tipo es una de las dos maneras más comunes mediante las que los seres humanos ponemos cargas en movimiento y producimos corrientes eléctricas: es lo que sucede, como veremos más adelante en el Bloque, con las pilas de nuestros aparatos eléctricos. Sin embargo, es más común todavía emplear una segunda manera de hacer que las cargas se muevan: utilizar el campo magnético para crear la corriente eléctrica, como se hace en la mayor parte de las centrales eléctricas. De este segundo modo de producir corriente, sin embargo, hablaremos cuando hayamos estudiado el campo magnético.

Corriente eléctrica

Dado que el movimiento de cargas desempeña un papel fundamental en nuestra sociedad –tanto en ciencia como en tecnología–, es muy conveniente definirlo cuidadosamente y cuantificarlo de algún modo. El fenómeno en sí del movimiento de cargas eléctricas recibe un nombre arcaico, inventado cuando conocíamos bastante menos que ahora acerca de la naturaleza de la carga eléctrica y su comportamiento. Algunos pensaban entonces que la carga eléctrica era una especie de fluido invisible que se encontraba dentro de los cuerpos, y que esta sustancia podía fluir de unos cuerpos a otros. Ese flujo, como el de un río, era una especie de corriente, pero no de agua, sino de electricidad: una corriente eléctrica.

Una vez definido el fenómeno, hace falta una magnitud que lo cuantifique y una unidad para medirla. En el caso de la corriente eléctrica, esa magnitud recibe el nombre de intensidad de corriente. A menudo se utiliza “corriente eléctrica” para referirse a la magnitud, y no al fenómeno, pero esto crea a veces malentendidos que se resuelven fácilmente distinguiendo ambos términos. De modo que, a lo largo de esta serie –si no se me escapa alguna vez, claro– emplearemos el término corriente para referirnos al fenómeno físico del movimiento de cargas, e intensidad de corriente (o simplemente intensidad) para la magnitud que cuantifica el movimiento.

Aquí tienes una definición lo más llana posible de lo que es la intensidad de corriente:
La intensidad de corriente a través de una superficie es la cantidad de carga que la atraviesa por unidad de tiempo.
Como puedes ver, se trata de una definición que no tiene mucho sentido para un solo protón, o electrón, que se mueva. Recuerda que es un concepto antiguo, que no funciona demasiado bien para describir las cosas a escala microscópica sino a gran escala, con continuos movimientos de cargas a través de algo. De ahí que, cuando se trabaja –como hicimos nosotros en nuestro experimento mental unos párrafos más arriba– con unas pocas cargas sueltas, se suelan utilizar para describir su movimiento cosas como su velocidad o aceleración, mientras que, cuando se trabaja con muchas partículas cargadas moviéndose (como sucede, como veremos más adelante, en un cable eléctrico) sea muy útil emplear el concepto de intensidad de corriente.

La idea de un “fluido eléctrico” que se mueve se percibe en la propia definición. Si te fijas, es muy parecida a la del caudal de agua en un río: en vez del volumen de agua que fluye por unidad de tiempo, se mide la cantidad de carga que fluye por unidad de tiempo. El concepto es, de hecho, muy similar: si la intensidad de corriente es pequeña, hay poca carga atravesando la superficie por unidad de tiempo. Si es grande, hay mucha carga atravesando la superficie por unidad de tiempo.

Normalmente se asigna a la intensidad de corriente eléctrica, además de un valor, una dirección y sentido, como hacemos con la velocidad del viento, por ejemplo. Sin embargo, con la velocidad del viento no hay problema: su dirección y sentido es la del aire que se mueve. ¡Pero la corriente eléctrica puede ser un movimiento de cargas positivas, o negativas, o de ambas a la vez! Hace falta establecer un convenio –y podría haber varios, todos arbitrarios, como nos ha sucedido antes en este bloque–. El que se eligió históricamente, y que seguimos usando hoy en día, es el siguiente:
La dirección y sentido de la intensidad de corriente son los del movimiento de las cargas positivas, y contrario al de las cargas negativas.
Con este convenio, si se mueven, por ejemplo, protones hacia la derecha, la intensidad de corriente va hacia la derecha:


Intensidad de corriente con protones


Si se trata, por el contrario, de electrones que se muevan hacia la izquierda, la intensidad de corriente va también hacia la derecha:


Intensidad de corriente con electrones


Este convenio puede parecer peor que otro en principio más simple, como el de que la intensidad de corriente tuviera el sentido de movimiento de las cargas, cualquiera que fuera su tipo… pero tiene ventajas en el cálculo que lo hacen muy útil, aunque a veces cree confusión o incluso induzca a error –aunque, como en este Bloque aún no usaremos fórmulas, por ahora tendrás que creerme–.

Fuente:

Lea el artículo completo en:

El Tamiz

23 de abril de 2013

Electricidad II: Ley de Coulomb

En el primer artículo del bloque introductorio sobre electricidad hablamos acerca del concepto de carga eléctrica y sus unidades. Hoy continuaremos profundizando en este asunto; como siempre en este nivel básico, tratando de centrarnos en los conceptos y no en las fórmulas. Hablaremos en primer lugar de la Ley de Coulomb, y luego de sus consecuencias perceptibles en nuestra vida cotidiana, especialmente los dos tipos fundamentales de electrización.

Como recordarás, terminamos aquel artículo preguntándonos cuánto es un culombio. Dimos una definición oficial, derivada de otras, que no era demasiado informativa, y después otra más fundamental, basada en un número concreto y arbitrario de protones o electrones. Sin embargo, para comprender de verdad si un culombio es mucha carga o poca, hace falta compararlo con algo que podamos percibir: con lo que define la carga de verdad, es decir, la fuerza electromagnética.

Esta fuerza puede percibirse en la Naturaleza de dos formas determinadas: como fuerza eléctrica y como fuerza magnética, aunque ambas tengan el mismo origen último. Ahora mismo no nos interesa la fuerza magnética, de la que hablaremos en un bloque diferente: nos centraremos en la versión eléctrica de la interacción electromagnética, descrita en su forma más simple y asequible por el genial Charles-Augustin de Coulomb en su famosa Ley.

La Ley de Coulomb

En el siguiente bloque atacaremos la Ley de Coulomb numéricamente, pero por ahora lo que más me interesa es dejar claro su concepto. Esta ley es una de las dos conexiones (en términos de 1785, por supuesto) entre la carga y su fuerza correspondiente: en este caso, entre la carga eléctrica y la fuerza electromagnética. Expresada con mis palabras, de forma algo más extensa a como lo hizo el buen Coulomb,
Las cargas del mismo signo se repelen; las cargas de signo contrario se atraen. La fuerza con la que lo hacen es tanto mayor cuanto mayores son las cargas, y tanto menor cuanto más lejos están una de la otra, y depende además del medio que separa ambas cargas.
Como cualquier otra ley física, no tiene demostración: se trata de algo que hemos observado que es así, y punto. Si en algún momento se verifica, mediante experimentos, que esta ley no siempre se cumple, o que hay algo más fundamental por debajo de ella y que es simplemente una consecuencia de otra cosa, la descartaríamos, o la dejaríamos como un caso particular de una Ley más amplia. Hasta ahora, todos los experimentos realizados con cargas han cumplido la Ley de Coulomb, con lo que la mantenemos.

Si analizamos la Ley con un poco de calma, no debería resultar demasiado sorprendente. Dos protones se repelen entre sí; dos núcleos de oxígeno, cada uno con ocho protones, se repelen mucho más intensamente. Y, si los alejamos mucho uno del otro, se repelen con menos intensidad. Si ponemos esas cargas en el aire, la fuerza que sufren no es la misma que si están en el agua o dentro de un metal. Cuánto vale esa fuerza exactamente es algo que discutiremos en el siguiente bloque; por ahora, lo importante es que te quedes con la copla de quiénes se repelen y quiénes se atraen, y que la fuerza aumenta con la cantidad de carga y disminuye con la distancia. La influencia de la sustancia que haya entre las cargas tampoco será algo que tratemos en detalle por ahora, porque no es lo importante.

Con esta Ley, podemos responder a la cuestión de ¿cuánto es un culombio? “hacia atrás”. Es decir: Si tuvieras algo con una carga de 1 C en una mano, y un objeto idéntico, con una carga de 1 C, en la otra mano, y tuvieras los brazos extendidos ante ti y separados un metro, ¿qué fuerza notarías? ¿serías capaz de resistir la repulsión y mantener los objetos quietos, o no? ¿podrías ser capaz de vencer esa fuerza y forzar a los objetos a acercarse el uno al otro?

Por ahora, tendrás que creerme en el cálculo, porque no será hasta el siguiente bloque que haremos números con la Ley de Coulomb. Y el resultado tal vez resulte difícil de creer: cada uno de los objetos repelería al contrario con una fuerza de 9 000 000 000 newtons. Dado que tampoco hemos dedicado ningún bloque a la dinámica hasta ahora, permite que “traduzca” esto a términos que nuestra cabeza comprende bien. Para levantar 1 kg en la Tierra hacen falta más o menos 10 newtons. Para levantar un coche de 1 000 kg, por tanto, hacen falta 10 000 newtons. Dicho de otro modo, cada mano que sujeta la carga de un culombio, para mantenerla ahí, quieta, tendría que hacer la misma fuerza que se necesitaría para levantar 900 000 coches. ¡Toma castaña!

Vamos, que la respuesta a “¿cuánto es un culombio”? es: “una verdadera barbaridad”. No sólo no serías capaz de mantener esos dos objetos quietos, si no los soltases a tiempo te arrancarían los brazos de cuajo. La razón, de la que hablaremos más en detalle en el Bloque II, es que la fuerza electromagnética es de una intensidad terrorífica.

De hecho, si has entendido la verdadera magnitud de un culombio, puedes utilizar las células grises para sacar conclusiones sobre las situaciones en las que te das cuenta de que has notado cargas eléctricas: por intenso que te pareciese entonces el fenómeno eléctrico que fuera, tiene que haberse tratado de desequilibrios de carga absolutamente minúsculos.

Por cierto, ¿por qué digo “te das cuenta de que has notado” y no simplemente “has notado”? ¡Porque estás notando la fuerza de Coulomb constantemente! Otra cosa es que no te parezca que haya electricidad por ningún lado cuando coges una piedra o caminas por el suelo, pero un ejemplo relativamente sencillo debería hacerte ver lo contrario:

Los dedos de mi mano están compuestos de átomos. Lo mismo sucede con las teclas con las que estoy escribiendo este texto. Cuando mi dedo está lejos de la tecla (“lejos” = “a una distancia mucho mayor que el tamaño del átomo”), la posición exacta de los electrones y protones en los átomos es irrelevante: mis átomos ven a los de la tecla “negros”, es decir, con cargas superpuestas, y los de la tecla ven a los de mi mano exactamente igual. ¿Qué noto entonces? Absolutamente nada.

Pero, si acerco mi dedo a la tecla hasta que la distancia sea suficientemente pequeña como para notar las posiciones relativas de cada partícula que compone los átomos (traducción a nuestro lenguaje cotidiano: si “toco la tecla”), mis átomos y los de la mesa se ven como son: un núcleo verde rodeado de una nube roja de electrones. Y, de acuerdo con la Ley de Coulomb, cuanto más cerca están las cargas, con más intensidad se atraen o repelen. Pensemos con un poco de cuidado sobre lo que sucede entonces.

Mis núcleos verdes se repelen con los núcleos verdes de la mesa, y se atraen con los electrones rojos de la mesa; y mis electrones se repelen con los electrones rojos de la mesa, y se atraen con los núcleos verdes de la mesa. Dado que las cargas totales rojas y verdes son las mismas, ¿quién gana? Gana, y con diferencia, la repulsión entre mis electrones rojos y los electrones rojos de la mesa, dado que son los que están más cerca unos de otros.



Es más: si me empeño en seguir acercando mi dedo a la tecla, la repulsión será mayor y mayor. Tanto que, estrictamente hablando, nunca puedo llegar a tocar “realmente”, por ejemplo, una mesa, porque la fuerza de repulsión se hace muchísimo mayor que la que puedo ejercer yo con mis patéticos deditos. Desde luego, todos nos entendemos, pero en este sentido físico, “tocar” significa “acercar una cosa a otra lo suficiente como para notar la fuerza de repulsión entre las nubes electrónicas de ambas cosas”.

De hecho, cuando me empeño en acercarme a la tecla, llega un momento en el que la fuerza con la que nos repelemos es mayor que la fuerza elástica del muelle que la mantiene en su sitio, y entonces, empujo la tecla. Sólo que es un empujón indirecto, como el de un imán que se acerca a otro hasta empujarlo sin realmente tocarlo. La cuestión es que la distancia entre una y otra es tan pequeña que me es imposible verla; y “noto que la toco”, sólo que lo que estoy notando realmente con los nervios de mi piel es esa fuerza de repulsión.

Lo mismo sucede cuando estoy de pie sobre el suelo: realmente, no estoy tocando el suelo “de verdad”, estoy levitando sobre él, pero a una distancia comparable al tamaño de un átomo, claro, o la fuerza de repulsión no vencería a las otras entre protones y electrones de uno y otro lado. De modo que la fuerza de Coulomb es lo suficientemente intensa como para sostenerme sobre el suelo (y mucho más); y, si no existiera, dada la cantidad de espacio vacío entre átomos y dentro de cada átomo, atravesaría el suelo y seguiría cayendo hacia el centro de la Tierra, porque nada me sujetaría. Pero yo no soy lo único que la fuerza de Coulomb sostiene: la propia Tierra no se colapsa sobre sí misma por su propia atracción gravitatoria porque los átomos de las capas más profundas se repelen, a través de las nubes electrónicas rojas de unos y otros, a las capas superiores del planeta.

Colapso gravitatorio y enanas blancas

La fuerza eléctrica, como hemos visto, es de una intensidad tremenda, y basta para “sostener” la Tierra, de modo que su propia gravedad no la haga colapsarse sobre sí misma. Dicho de cierto modo, la fuerza de repulsión entre nubes electrónicas “sostiene el peso de la Tierra”. Pero ¿y si la Tierra fuera mucho más masiva? ¿Llegaría un momento en el que la fuerza de Coulomb no pudiera sostener tal presión gravitatoria?

La respuesta es que sí: aunque intensa, la fuerza eléctrica tiene un límite, y si se acumula suficiente masa sin que nada más sostenga su propio peso, se produce un colapso cataclísmico. Pero, para que eso suceda, hace falta una cantidad de masa mucho mayor que la de la Tierra: la masa de una estrella.
Lo que sucede cuando una estrella no es capaz de sostener su propia masa mediante la Ley de Coulomb y la presión de la radiación producida por la fusión en su interior es algo de lo que hemos hablado en La vida privada de las estrellas y, en particular, en Las enanas blancas.

Aunque por ahora no entraremos más en esto, las fuerzas de atracción entre cargas positivas y negativas desempeñan otros papeles fundamentales, y sin ellas no habría química ni estarías leyendo este artículo. Pero mi objetivo era simplemente hacerte ver que sí, efectivamente, sí que notas la fuerza de Coulomb y el hecho de que las cosas tienen carga todo el tiempo. Es imposible escapar de ella, ya que estamos compuestos de enormes cantidades de carga de ambos tipos (dentro de un momento veremos cuánta).

Pero, a veces, notamos las cargas eléctricas y la Ley de Coulomb de un modo que no podemos ignorar. Uno de los fenómenos en los que las cargas se muestran sin tapujos, y se pone de manifiesto la inmensidad de un culombio, es la electrización.

Electrización

“Electrización” es un nombre, en mi opinión, desafortunado, como tantos otros en este Bloque. Electrizar un cuerpo significa conseguir de algún modo desequilibrar las cargas de un cuerpo (quitando cargas de un tipo o añadiendo cargas del contrario). El nombre, como digo, no me parece muy bueno, porque suena como si antes no hubiera “electricidad” en el cuerpo y se la estuviéramos dando, pero no es así — lo único que hacemos es crear un minúsculo desequilibrio entre las cargas de ambos tipos en el cuerpo.

Es así como casi todos entramos en contacto con la electricidad de un modo obvio. Los fenómenos resultantes de la electrización de los cuerpos reciben el nombre colectivo de “electricidad estática”, un nombre que tampoco me gusta lo más mínimo. Seguro que sabes de lo que estoy hablando: frotas un peine de plástico contra tu pelo y, si lo acercas a un trocito de papel, notas la fuerza de Coulomb.

La manera en la que solemos conseguir esto es mediante la triboelectricidad, o electricidad por frotamiento. ¡Otro nombre malísimo! Dicho mal y pronto, cuando se ponen en contacto dos objetos, mediante adhesión, golpes o frotamiento, en determinadas circunstancias, uno de ellos puede “robar” electrones al otro, de modo que uno se queda con un exceso de electrones y el otro con un defecto de electrones, es decir, ambos quedan cargados (en el sentido de que tienen un desequilibrio entre los dos tipos de cargas). De ahí que el nombre no sea bueno: se puede lograr esta electrización por contacto frotando los cuerpos, pero hay otros medios. Si alguna vez has botado un balón de baloncesto y luego has sentido un chispazo al tocar otra cosa, sabes a lo que me refiero.

El caso más típico es el cepillarse el pelo con un cepillo o peine de plástico: a veces, el cepillo se lleva algunos electrones del pelo, con lo que el cepillo o el peine queda cargado negativamente y el pelo positivamente, y ambos se atraen (quién roba electrones a quién depende, en último término, de la naturaleza de los dos materiales a escala atómica y de sus “hambres de electrones” relativas). Estoy convencido de que has notado esto. Dicho en términos de nuestras cargas de colores, el cepillo se ha llevado un poco de carga roja del pelo:

Triboelectricidad

Tanto el pelo como el cepillo quedan cargados, y se atraen. Esto es precisamente lo primero que te pedí que hicieras en el Experimento 1 del artículo anterior (si no lo hiciste, no pasa nada, puedes seguir entendiendo esto sin problemas aunque no lo hayas visto tú mismo): que frotases un cepillo o peine de plástico contra tu pelo. Ahora entiendes la primera de las dos cosas importantes que sucedieron durante el experimento — el cepillo “robó” algunos electrones a tu pelo.

Pero para entender qué es lo que sucedió después (que, al acercar el peine al agua, el chorro de agua se curva y se acerca al peine de plástico) hace falta comprender el segundo método fundamental de electrizar una sustancia. Es posible desequilibrar las cargas de un cuerpo sin tocarlo; es decir, es posible inducir, indirectamente, un desequilibrio de cargas en un cuerpo, utilizando la maravillosa Ley de Coulomb. El resultado no es que el cuerpo tenga más cargas positivas que negativas ni viceversa, de forma total, sino que la distribución de cargas sea diferente a la de antes, de modo que una parte del cuerpo quede cargada negativamente y la contraria positivamente. Esta electrización sin contacto, indirecta, se denomina inducción electrostática, y es lo que hiciste tú al acercar el cepillo de plástico al agua del grifo.

Es evidente que lo que pasa al acercar el peine al agua no es trata de un fenómeno triboeléctrico, porque el peine nunca toca el agua, de modo que no ha podido “robarle electrones”. Si la materia realmente no tuviera carga alguna, lo que viste al hacer el experimento nunca podría suceder. La clave de la cuestión es que tanto el cepillo como el agua son una superposición de verde y rojo; en el caso del agua, una superposición completa (el agua es “negra”), en el caso del cepillo, con un poco más de rojo que de verde, porque robó electrones a tu pelo, con lo que tiene un ligero exceso de electrones, de carga roja. ¿Qué pasa al acercar el cepillo al agua? Que la Ley de Coulomb hace su aparición una vez más, y se produce la inducción electrostática.

La situación, en gráficos de rojo y verde, es básicamente la siguiente (los dibujos, por si no lo habéis notado, son míos, no de Geli, así que la calidad es… bueno, la que es):

Inducción electrostática 1

Pero recuerda: el agua en el dibujo no es negra porque no tenga ninguna carga; es negra porque es la superposición de rojo y verde. Y esos rojo y verde sufren sendas fuerzas al acercar el cepillo… la carga roja es repelida, la carga verde atraída… y entonces se rompe la superposición completa, porque las cargas se mueven dentro del agua: no mucho, como veremos más adelante, simplemente un poquito:

Inducción electrostática 2

El agua se ha electrizado, es decir, se hace ahora evidente que existen cargas en ella, aunque su carga total siga estando completamente equilibrada. Esta electrificación no es por contacto como antes, sino por un simple acercamiento: el agua se ha electrizado por inducción. Esta inducción, por cierto, no es la misma que la inducción de las ollas de inducción, a eso llegaremos más adelante en la serie. ¡Pero la cosa no acaba aquí!

Ahora entra en juego, otra vez, la influencia de la distancia en la Ley de Coulomb: sí, el rojo del cepillo repele al rojo del agua y atrae al verde del agua… pero el verde está más cerca. Como consecuencia, la atracción es más fuerte que la repulsión, y el agua se acerca al cepillo. Incluso la carga negativa se acerca, porque las fuerzas internas del agua son más intensas que las que ejerce el cepillo, con lo que la carga verde que se acerca “tira” del resto del agua, y todo el líquido se curva hacia el cepillo:

Inducción electrostática 3

La verdad es que verlo con tus propios ojos es mucho más revelador que leer mi descripción o ver los tristes diagramas, pero bueno.

Según el agua sigue fluyendo hacia abajo y se aleja del cepillo, claro, las fuerzas de atracción y repulsión van desapareciendo hasta que no se notan, con lo que el líquido vuelve a caer verticalmente como si el cepillo no estuviera ahí, mientras que el agua “nueva” que cae del grifo, al acercarse al cepillo cargado, sufre el mismo fenómeno. Pero, si has realizado este experimento y anteriormente entendiste la magnitud real de un culombio, creo que la conclusión debería ser clara: las cargas “desnudas” (sin ser solapadas por una carga igual de signo contrario) que percibimos en la vida cotidiana son minúsculas comparadas con un culombio. Si no fuera así, esa leve y sutil fuerza que sufre el agua te bañaría en una ducha infernal, mientras que el cepillo se rompería en pedazos por las fuerzas cataclísmicas que sufriría.

Dicho de otro modo: cuando frotas el cepillo contra tu pelo, el desequilibrio entre cargas es una nimiedad comparado con la carga total, positiva y negativa, que hay en tu cuerpo. Fíjate que ya hemos dicho –y creo que deberías estar convencido– que un culombio “desnudo” originaría una fuerza de Coulomb catastrófica, con lo que cualquier desequilibrio de carga que hayas visto seguramente ha sido mucho más pequeño. Pero, igual que un culombio es mucho mayor que las cargas “desnudas” que has visto, la carga total de cada tipo en tu cuerpo es muchísimo mayor que 1 C. Para que te hagas una idea, hay unos cuantos miles de millones de culombios (!) de carga negativa, y aproximadamente los mismos de positiva, en tu cuerpo. ¡Tela marinera!

Lea el artículo completo en:

El Tamiz

La Primera Parte AQUÍ: (Electricidad I - Carga Eléctrica)
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0