Latest Posts:

Mostrando las entradas con la etiqueta moleculas. Mostrar todas las entradas
Mostrando las entradas con la etiqueta moleculas. Mostrar todas las entradas

24 de mayo de 2010

Una nueva molécula para regenar huesos

Lunes, 24 de mayo de 2010

Una nueva molécula para regenar huesos


Investigadores de la Universidad Rey Juan Carlos I (URJC) de Madrid han desarrollado una nueva generación de biomatariales que simulan la picadura de un escorpión y que podrían servir para la regeneración de tejido cardiaco y óseo.

Se trata de familias de compuestos con un centro activo de magnesio o zinc, que se unen a moléculas de forma similar a la picadura de uno de estos artrópodos, para formar lo que se denomina un "catalizador".

Estas nuevas especies activas son capaces de generar en grandes cantidades materiales biológicamente compatibles con el cuerpo humano, como es el poliácido láctico, a través de un proceso de polimerización.

Es decir, son capaces de unir la misma molécula millones de veces por minuto de forma controlada, "como si de máquinas de coser se tratasen enlazando pequeños trozos de tela de forma frenética", explicaron los investigadores en un comunicado.

Entre las aplicaciones más importantes destacan las médicas, ya que estos biomateriales poliméricos pueden utilizarse en ingeniería de tejidos cardíacos (en la elaboración de 'bypass'), transporte de medicamentos (en la elaboración del material que recubre las cápsulas) y como dispositivos de fijación interna biodegradables y reabsorbibles.

En este sentido, este nuevo biomaterial podría ayudan a reparar fracturas de huesos pequeños de pies y manos, y de articulaciones como muñecas y tobillos. "Estas fijaciones ortopédicas se asimilan de forma natural por el cuerpo humano, donde los polímeros se metabolizan progresivamente transfiriendo su masa al hueso roto para facilitar su regeneración", señalan desde la URJC.

Fuente:

Europa Press

25 de abril de 2010

Hubble: 20 años en el espacio


Domingo, 25 de abril de 2010

Hubble: 20 años en el espacio
(y sus cinco descubrimientos más importantes)

Un día 24 de abril como hoy pero de hace 20 años la NASA lanzaba al espacio uno de los telescopios que más alegrías ha dado a la comunidad científica: el Hubble. 20 años lleva ya este telescopio escudriñando el Universo concienzudamente, labor gracias a la cual hemos podido admirar con todo lujo de detalles desde planetas hasta estrellas pasando por galaxias o nebulosas, y conseguido conocer más en profundidad el espacio y lo que en él pasa.

Debido a su 20 aniversario todo el mundo está felicitando al Hubble de diferentes maneras (Google le ha dedicado el doodle de hoy por ejemplo) y en esta, aunque ya le felicitamos hace unos días, no íbamos a ser menos y volvemos a repetir felicitación hoy con este segundo post. Concretamente lo haré recordando sus 5 descubrimientos más importantes, así que sin más dilación os dejo con lo interesante.

Agujeros negros supermasivos

Por el año 1915 el genial Albert Einstein predijo mediante fórmulas matemáticas la existencia de agujeros negros, pero nadie había sido capaz de obtener confirmación, hasta el año 94. En dicho año nuestro protagonista detectó algo que tenía una masa equivalente a 3.000 soles en la galaxia M87: “ese algo” era un agujero negro supermasivo. El Hubble había conseguido la primera prueba de la historia que confirmaba lo apuntado por Einstein.

Pero los descubrimientos del Hubble relacionados con agujeros negros continuaron. En el 96 un grupo de científicos de la NASA llegó a una importante conclusión gracias a imágenes del Hubble: casi todas las grandes galaxias del universo están “coronadas” por un agujero negro supermasivo en su centro (también la nuestra, por cierto).


Precisando la edad del Universo

En la década de 1920 el astrónomo Edwin Hubble descubrió que el Universo se expande y formuló la conocida “constante de Hubble” que describe la velocidad de expansión del Universo y su edad. Fue todo un hito que años después “pulió” el Hubble (bautizado así justamente en honor a Edwin) al permitir a los científicos con sus imágenes precisar en mucho lo formulado hacía años atrás por Edwin Hubble. La conclusión final fue que nuestro universo tiene una edad de 13.500 millones de años.

Evidencias de la energía oscura

Había algo que los científicos ansiaban desde hacía mucho tiempo y no era otra cosa que poder observar lo que pasaba en el espacio profundo, lo que se consiguió finalmente con el Hubble.

Dichas observaciones supusieron un auténtico botín. Gracias a ellas se encontraron evidencias que respaldaban lo que Einstein había predicho también años atrás: el universo está lleno de una forma de energía, conocida como energía oscura, que es la causante de que las galaxias se separen unas de otras constantemente (o dicho de otra manera, es la fuerza que hace que el Universo se expanda).

Así nace un planeta

Otro de los grandes momentos del Hubble llegó por el año 2005 cuando captó la primera fase que da lugar a un planeta, concretamente tomó imágenes de como un disco de polvo y gas alrededor de una estrella recién nacida se hacía cada vez más denso, lo que permite que la materia se agrupe para dar finalmente lugar a un nuevo planeta.


Y dio con la primera molécula orgánica en un exoplaneta

Al Hubble no se le escapa nada, ni lo más pequeño. Tanto es así que en el 2008, por primera vez, dio con una molécula orgánica en la atmósfera de un exoplaneta del tamaño de Júpiter, el HD 189733b. El descubrimiento fue muy importante ya supuso un paso adelante en el objetivo de conseguir identificar moléculas prebióticas en las atmósferas de planetas situados en “zonas habitables” alrededor de otras estrellas.

Vía: NASAHubbleSite | Imágenes: HubbleSite

Tomado de:

Alt 1040

22 de marzo de 2010

¿Para qué sirve un Sincrotrón?

Lunes, 22 de marzo de 2010

¿Para qué sirve un Sincrotrón?

El acelerador de partículas que hoy se inaugura en Barcelona funciona como un grandioso microscopio para observar la estructura de la materia.

¿Para qué sirve un Sincrotrón?

Imagen de las imponentes instalaciones científicas de Cerdanyola de Vallés / ABC

El nuevo Sincrotrón Alba, un acelerador de partículas capaz de observar estructuras moleculares como si fuera un grandioso microscopio, ha sido inaugurado esta tarde en el parque tecnológico de Cerdanyola de Vallés (Barcelona) por el presidente del Gobierno, José Luis Rodríguez Zapatero y la ministra de Ciencia e Innovación, Cristina Garmendia. Se trata de una impresionante infraestructura en forma de hélice plateada que ha costado más de 200 millones de euros. Algunos ya la denominan la «Fórmula 1» de la ciencia. Pero, ¿para qué sirve? Más modesto y con funciones diferentes a las de su hermano mayor, el LHC de Ginebra, que pretende recrear en laboratorio los momentos que sucedieron al Big Bang y desentrañar los orígenes del Universo, el Sincrotrón producirá un haz de luz microscópico de gran intensidad para conocer las estructuras moleculares de la materia, como si creáramos un puzzle con millones de piezas diminutas que pudiéramos identificar una a una. Su trabajo tendrá las más diversas aplicaciones, desde la genética y la paleontología, a la química y la industria farmacéutica.

El Alba es un sincrotrón de última hornada, al mismo nivel que sus gemelos de Diamond (Reino Unido) o Soleis (Francia). De una tecnología muy avanzada, su director científico, Salvador

Ferrer, asegura que supone «una herramienta básica en un país industrializado, tanto como los rayos X en un hospital». Funciona de la siguiente forma: los electrones se mueven a través de un cañón y se aceleran con campos eléctricos, primero en un acelerador lineal y después en otro circular. Como si fuera un tiovio, los electrones alcanzan la energía máxima de 3.000 millones de electrovoltios a una velocidad próxima a la de la luz (99,99). A partir de ahí se introducen en un anillo de almacenamiento, un tubo circular de unos 270 metros de perímetro donde se mantienen dando vueltas de forma constante.

¿Para qué sirve un Sincrotrón?

Cuerpo central del Sincrotrón / EFE

La estructura de la materia
La luz generada, con una intensidad de onda que va desde los infrarrojos a los rayos X, se deriva hacia las direntes estaciones de trabajo donde se realizan las investigaciones. Así pueden obtener imágenes «radiográficas» (de una milésima por una milésima de milímetro de sección) y observar, por ejemplo, cristales o fósiles de ese tamaño.

La instalación permitirá conocer en profundidad la estructura de la materia, como los cristales de proteínas y macromoléculas, líneas de trabajo, por ejemplo, del último Premio Nobel de Química, y avanzar en campos científicos muy variados. Así, se podrán ver las células en tres dimensiones, analizar las estructuras moleculares de un fósil, conocer la contaminación del suelo o del aire de una forma hasta ahora imposible, etc. También tendrá aplicaciones «sorprendentes y desconocidas» en el ámbito de la pintura y la industria cosmética.

Fuente:

ABC.es

25 de febrero de 2010

Logran evolución artificial en un tubo de laboratorio


Jueves, 25 de febrero de 2010

Logran evolución artificial en un tubo de laboratorio

¿Puede la vida surgir de una combibación caótico de las moléculas básicas? La respuesta está muy cerca después de una serie de ingeniosos experimentos que han mostrado la evolución de manera artificial en moléculas.


16 de febrero de 2010

¿Cómo funciona un horno microondas?


Miércoles, 17 de febrero de 2010

¿Cómo funciona un horno microondas?

Siempre tiendo a hacer las asociaciones más peregrinas, unas veces son tan extravagantes que los que me rodean me miran como si fuera de otro planeta, pero otras esas asociaciones me permiten encontrar caminos que posibilitan el entendimiento de las cosas que explico. Le voy a poner un ejemplo: Una tarde estaba viendo, con mis hijas, un partido de tenis por la televisión. En un momento dado, el realizador ofreció una panorámica del público y todos pudimos ver cómo las cabezas oscilaban al unísono a un lado y a otro, siguiendo el movimiento de la pelota. Pregunté en voz alta: si entre el público hubiera una persona ciega ¿cómo podríamos localizarla? No tardaron en dar con la respuesta. Exacto, sería la única persona que no movería la cabeza. Y entonces sucedió, se me ocurrió la idea de que algo similar pasa en el horno de microondas. Por supuesto, la asociación no fue fortuita, minutos antes mi hija Maryan me había hecho esta pregunta:

Yo quiero saber cómo funciona un horno de microondas, porque … eso de que metas ahí la comida y en un plis plas se caliente… y que, además, tu no te quemes con el recipiente al sacarla, parece cosa de magia.



Horno de microondas


Cuando introducimos un alimento en un horno de microondas, estamos poniendo en su interior un conjunto enorme de moléculas de muy diverso tipo, la mayoría son de agua, pero cualquier alimento tiene, además, azúcares, proteínas, grasas, ácidos nucléicos, etc. No obstante, como he dicho, sea el alimento que sea, la mayor parte de sus moléculas serán agua –nosotros, para no ir más lejos, somos agua en un 70 por ciento más o menos.

Bien, pues una molécula de agua en el horno de microondas viene a ser como el espectador que mira un partido de tenis. Me explico.

El alma de un horno de microondas es un aparato que se conoce con el nombre de magnetrón. No se asusten, no es ningún arma letal. Realmente es un emisor de ondas de radio pero de una frecuencia mucho más elevada que las emisoras que usted puede sintonizar con su receptor. El magnetrón emite a 2.450 megaherzios mientras una emisora normal de FM suele rondar los 100 Mhz. ¿Y por qué esa frecuencia tan rara? Pues porque es la frecuencia que sintonizan las moléculas de agua.

Una molécula de agua está formada por tres átomos solamente, dos de hidrógeno y uno de oxígeno, pero, curiosamente, no están dispuestos de forma simétrica. En su aspecto, una molécula de agua se asemeja a la cabeza de Mickey Mouse, el oxígeno que es más grande sería la cabeza propiamente dicha y los hidrógenos, las orejas. Esa distribución hace que la molécula esté un tanto desequilibrada eléctricamente, la zona donde están colocados los hidrógenos tiene una carga eléctrica positiva y el lado opuesto, gobernado por el oxígeno, tiene carga negativa. Forma lo que se conoce como un dipolo eléctrico. Si acercamos una carga eléctrica positiva a una molécula de agua, ésta se orientará de tal forma que ofrezca la carga contraria – ya saben, cargas opuestas se atraen.

Las microondas hacen exactamente eso, están formadas por un campo eléctrico oscilante que atrae a las moléculas de agua en una dirección obligándola a orientarse, pero un momento después cambia de sentido y la obliga a girar y orientarse en sentido opuesto. Ese fue el comportamiento que me recordaron a los espectadores del partido de tenis, como ellos giran una y otra vez la cabeza siguiendo el movimiento de la pelota, la molécula de agua m gira su cabeza de Mikey Mouse. Pero hay una gran diferencia: las microondas oscilan tan rápido que obligan al agua a oscilar nada menos que 4.900 millones de veces cada segundo. Pero la mayoría de las otras moléculas, amigos, ni se inmutan; son como los espectadores ciegos en el partido de tenis, incapaces de seguir el movimiento de la pelota.

Así pues, tenemos un número elevadísimo de moléculas de agua que están oscilando a uno y otro lado muy rápidamente, mezcladas con otras moléculas que no lo hacen. Ahora bien, el movimiento es calor. Cuando decimos que una sustancia está caliente es porque sus moléculas se están moviendo, cuanto más se mueven, más caliente está, cuanto menos se mueven, está más fría. En el alimento que hemos situado dentro del microondas, el movimiento de las moléculas de agua se traduce en calor, un calor que se transmite al resto de las moléculas porque, en su alocado frenesí, chocan contra ellas, calentando así toda la comida. El recipiente, en cambio, suele ser de vidrio o plástico, sustancias que no contienen agua en su interior y, por lo tanto, todas sus moléculas son espectadoras ciegas, las microondas no las calientan y sólo por el contacto con la comida caliente, adquieren algo más de temperatura. Por esa razón, podemos sacar el recipiente del microondas sin quemarnos

Así es cómo, gracias al agua que contienen, calienta los alimentos un horno de microondas.

Fuente:

Cienciaes.com

20 de enero de 2010

¿Qué fue primero en el Origen de la Vida?


Miércoles, 20 de enero de 2010

¿Qué fue primero en el Origen de la Vida?

Alexander Oparin (1894-1980)

(Uglic, Jaroslav, 1894 - Moscú, 1980) Bioquímico soviético, pionero en el desarrollo de teorías bioquímicas sobre del origen de la vida. Estudió en Moscú, donde posteriormente sería profesor de fitofisiología y bioquímica. En 1935, junto con Bakh, fundó y organizó el Instituto Bioquímico de la Academia de Ciencias de la URSS, que dirigiría desde 1946 hasta su muerte. Sus estudios sobre el origen de la vida plantean, en síntesis, que el proceso que condujo a la aparición de seres vivos se explica mediante la transformación de las proteínas simples en agregados orgánicos por afinidad funcional.

Oparin subrayó el hecho de que en los primeros momentos de la historia de la Tierra, la atmósfera no contenía oxígeno (que fue generado después, gracias a la fotosíntesis vegetal). Antes de la aparición de la vida podían haber existido substancias orgánicas simples en una especie de caldo primitivo. Añadió que los primeros organismos fueron, probablemente, heterótrofos, esto es, que utilizaban como alimento sustancias orgánicas y no poseían la capacidad, como los autótrofos actuales, de nutrirse de sustancias inorgánicas. Para Oparin, las características clave de la vida son su organización e integración, y los procesos que conducen a tal vida deberían ser susceptibles de especulación razonable y de experimentación.

Sus teorías se enfrentaron inicialmente a una fuerte oposición, pero con el paso del tiempo han recibido respaldo experimental y han sido aceptadas como hipótesis legítimas por la comunidad científica. Así, muchas de sus ideas fueron corroboradas en 1952 por los experimentos de S.L. Miller. El carácter pionero de sus obras sobre este tema supuso un estímulo fundamental en las investigaciones. Su ibra cumbre es "El Origen de la Vida"

"El Origen de la Vida"

Extracto:
¿Qué es la vida? ¿Cuál es su origen? ¿Cómo han surgido los seres vivos que nos rodean? La respuesta a estas preguntas entraña uno de los problemas más grandes y difíciles de explicar que tienen planteado las ciencias naturales. De ahí que, consciente o inconscientemente, todos los hombres, no importa cuál sea el nivel de su desarrollo, se plantean estas mismas preguntas y, mal o bien, de una u otra forma, les dan una respuesta. He aquí, pues, que sin responder a estas preguntas no puede haber ninguna concepción del mundo, ni aun la más primitiva.

El problema que plantea el conocimiento del origen de la vida, viene desde tiempos inmemoriales preocupando al pensamiento humano. No existe sistema filosófico ni pensador de merecido renombre que no hayan dado a este problema la mayor atención. En las diferentes épocas y distintos niveles del desarrollo cultural, al problema del origen de la vida se le aplicaban soluciones diversas, pero siempre se ha originado en torno a él una encarnizada lucha ideológica entre los dos campos filosóficos irreconciliables: materialismo e idealismo.

De ahí que, al observar la naturaleza que nos rodea, tratamos de dividirla en mundo de los seres vivos y mundo inanimado, o lo que es lo mismo, inorgánico. Sabido es que el mundo de los seres vivos está representado por una enorme variedad de especies animales y vegetales. Pero, no obstante y a pesar de esa variedad, todos los seres vivos, a partir del hombre hasta el más insignificante microbio, tiene algo de común algo que los hace afines pero que, a la vez, distingue hasta a la bacteria más elemental de los objetos del mundo inorgánico. Ese algo es lo que llamamos vida, en el sentido más simple y elemental de esta palabra. Pero, ¿qué es la vida? ¿Es de naturaleza material, como todo el resto del mundo, o su esencia se halla en un principio espiritual sin acceso al conocimiento con base en la experiencia.

Si la vida es de naturaleza material, estudiando las leyes que la rigen podemos y debemos hacer lo posible por modificar o transformar conscientemente y en el sentido anhelado a los seres vivos. Ahora bien, si todo lo que sabemos vivo ha sido creado por un principio espiritual, cuya esencia no nos es dable conocer, deberemos limitarnos a contemplar pasivamente la naturaleza viva, incapaces ante fenómenos que se estiman no accesibles a nuestros conocimientos, a los cuales se atribuye un origen sobrenatural.

Lea "El Origen de la Vida" en
versión completa.

Una investigación publicada en "Proceedings of the National Academy of Sciences" refuta la teoría de que el origen de la vida se originó como un sistema de moléculas autocatalítico capaz de experimentar evolución darwiniana sin la necesidad de ARN o ADN y de su replicación. El estudio, en que ha participado Mauro Santos, investigador del Departamento de Genética y Microlobiología de la UAB, ha demostrado, analizando lo que algunos investigadores han denominado "genomas compuestos", que estas redes químicas no se pueden considerar unidades evolutivas, porque pierden propiedades esenciales para evolucionar cuando alcanzan una medida crítica y una mayor complejidad.

La NASA (National Aeronautics and Space Administration) define la vida como un "sistema químico autosostenible capaz de evolución darwiniana". Las teorías científicas sobre el origen de la vida giran alrededor de dos ideas principales: la que prima la genética -con la replicación de ADN o ARN como condición esencial para que haya evolución darwiniana- y la que dice que primero fue el metabolismo. Ambas situaciones han de haber empezado obviamente a partir de moléculas orgánicas simples formadas por procesos prebióticos, tal y como demostró el experimento de Miller y Urey (consiguieron crear moléculas orgánicas a partir de sustancias inorgánicas). El punto de desacuerdo entre las dos teorías es que la replicación de moléculas como el ARN o el ADN es un proceso demasiado complejo y requiere una conjunción correcta de los monómeros dentro de los polímeros para producir las cadenas de moléculas resultantes de la replicación.

No hay todavía una explicación química plausible sobre cómo pudieron ocurrir aquellos procesos y, además, los defensores de que primero se produjo el metabolismo argumentan que los caminos evolutivos requeridos deben haber necesitado un metabolismo primordial. Este metabolismo es imaginado como una red química que comporta un alto grado de catálisis mutua entre sus componentes para permitir eventualmente la adaptación y la evolución sin la replicación de moléculas.

En la primera mitad del siglo pasado, Alexander Oparin estableció la hipótesis de "Primero el metabolismo" para explicar el origen de la vida, reforzando el papel primario de la célula como pequeñas gotas de coacervado (precursoras evolutivas de las primeras células procariotas). Él no hizo referencia a las moléculas de DNA y RNA porque a la sazón no estaba clara la idea del papel fundamental que estas moléculas jugaban en los organismos vivos, pero asentó sólidamente la idea de una auto-replicación como una propiedad colectiva de conjuntos moleculares.

Más recientemente se ha demostrado que un conjunto de componentes químicos almacena información sobre su composición que puede ser duplicada y transmitida a sus descendientes, lo que ha llevado a denominarlos "genomas compuestos" o composomas. En otras palabras, la herencia no requiere información para ser almacenada en el ARN o en las moléculas de ADN. Estos "genomas compuestos" aparentemente cumplen las condiciones requeridas para ser considerados como unidades de evolución, lo que sugiere una vía desde las dinámicas pre-darwinianas hacia una mínima protocélula.

Los investigadores de este estudio han mostrado, sin embargo, que estos sistemas son incapaces de sufrir una evolución darwiniana. Por primera vez, han realizado un análisis riguroso sobre la supuesta evolución de estas redes moleculares, usando una combinación de simulaciones numéricas y analíticas y aproximaciones al análisis de redes. Su estudio muestra que las dinámicas de la población de los conjuntos moleculares que se dividen cuando llegan a una medida crítica no evolucionan porque en el proceso se pierden algunas propiedades que son esenciales para la evolución darwiniana.

Los científicos concluyen que esta limitación fundamental de los "genomas compuestos" induce a ser cautelosos respecto a las teorías que sitúan primero el metabolismo en el origen de la vida, a pesar de que los antiguos sistemas metabólicos podrían haber proporcionado un hábitat estable para la evolución posterior de polímeros primitivos como el ARN.

Se pueden considerar diferentes escenarios de la Tierra prebiótica, manifiestan, pero la propiedad básica de la vida como un sistema capaz de experimentar evolución darwiniana empezó cuando la información genética se consiguió almacenar y transmitir tal y como sucede en los polímeros de nucleótidos (ARN y ADN).

Artículo de referencia: Vasas, V., E. Szathmáry and M. Santos. “Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life”. Proceedings of the National Academy of Sciences of the USA PNAS. Published online before print January 4, 2010.

Para descargar el artículo en pdf clica aquí

Imagen cedida por Doron Lancet. Ilustra lo que sería un "genoma compuesto". Diferentes moléculas (en colores varios) se incorporan al glóbulo o vesícula, la cual se dividiría al alcanzar un tamaño crítico.

Fuente:

Universidad Autónoma de Barcelona

17 de diciembre de 2009

Cada 15 cigarrillos, una mutación en el fumador


Jueves, 17 de diciembre de 2009

Cada 15 cigarrillos, una mutación en el fumador

Se completaron los genomas del cáncer de piel y cáncer de pulmón

"Como arqueólogos moleculares, estos investigadores han excavado a través de capas de información genética para descubrir el historial de la enfermedad de estos pacientes" Profesor Carlos Caldas.

Investigadores del Instituto Wellcome Trust Sanger en Cambridge (Reino Unido) han decodificado el genoma completo de dos de los cánceres más comunes y letales - el de piel y el de pulmón- un paso que afirman podría ser revolucionario para el tratamiento de esta enfermedad.

Las huellas del tabaco y de la luz ultravioleta, en forma de miles de mutaciones, se han encontrado claramente en los primeros genomas completos del cáncer de pulmón y del cáncer de piel, respectivamente, que se acaban de presentar. El número de mutaciones encontradas en el cáncer de pulmón indica que el fumador adquiere una mutación cada 15 cigarrillos fumados, aproximadamente.

División de una célula de melanoma maligno.- PAUL J SMITH/RACHEL ERRINGTON/WELLCOME IMAGES

Todos los cánceres están causados por mutaciones en el ADN de las células que se vuelven cancerosas, mutaciones que se van adquiriendo a lo largo de la vida. Los estudios, que publica la revista Nature, revelan por primera vez prácticamente todas las mutaciones correspondientes a cada uno de los dos cánceres estudiados, así como los esfuerzos del organismo para reparar las mutaciones y evitar la progresión hacia el cáncer sintomático. Para ello se han utilizado técnicas de secuenciación masivamente paralelas y se han comparado los genomas de tejidos cancerosos con los de tejidos sanos.

En el genoma del cáncer de pulmón estudiado, correspondiente a una célula de la metástasis en la médula ósea de un varón de 55 años, se han hallado más de 22.000 mutaciones, mientras que en el del melanoma maligno, procedente de un varón de 43 años, el número de mutaciones es de más de 33.000.

"Estos son los dos cánceres más importantes en el mundo desarrollado cuya causa principal conocemos", explica Mike Stratton, del Proyecto Genoma del Cáncer del Instituto Sanger de Wellcome Trust , institución que ha dirigido ambos estudios. "Para el cáncer de pulmón, es el humo del cigarrillo y para el melanoma maligno es la exposición a la luz del sol. Con las secuencias genómicas obtenidas hemos podido explorar profundamente el pasado de cada tumor, y descubrir con notable claridad las huellas de estos mutágenos ambientales, que se depositaron años antes de que el tumor fuera visible".

"También podemos", añade este científico, "ver los intentos desesperados de nuestro genoma para defenderse del daño causado por los 60 compuestos químicos mutágenos del humo del cigarrillo o por la radiación ultravioleta. Nuestras células luchan desesperadamente para reparar el daño, pero frecuentemente pierden la batalla".



Células de cáncer de pulmón al microscopio.- ANNE WESTON, LRI, CRUK/WELLCOME IMAGES

La acumulación de mutaciones no da lugar automáticamente a un cáncer, y todavía falta saber cuáles son las decisivas. "En la muestra del melanoma podemos ver una gran firma de la luz del sol", dice Andy Futreal, del mismo equipo. "Sin embargo, en ambas muestras, como hemos producido catálogos prácticamente completos, podemos ver otros procesos más misteriosos que actúan sobre el ADN. En algún sitio entre las mutaciones que hemos encontrado están las que hacen que las células se conviertan en cancerosas. Hallarlas será nuestro desafío para los próximos años".

"A los casi 10 años de la primera secuencia completa del genoma humano todavía estamos obteniendo beneficio de ella, y nos queda mucho por hacer para comprender los escenarios modificados que significan los genomas del cáncer", señala Peter Campbell, director del estudio del cáncer de pulmón. "El conocimiento que extraigamos en los próximos años tendrá efecto sobre los tratamientos y cuando identifiquemos todos los genes del cáncer podremos desarrollar nuevos medicamentos que tengan como diana los genes mutados y saber qué pacientes se beneficiarán de estos nuevos tratamientos".

"Éste es el primer vistazo del futuro de la medicina del cáncer, no sólo en el laboratorio sino en la aplicación clínica", asegura por su parte Mark Walport, director de Wellcome Trust, la gran institución benéfica británica.

Un consorcio internacional

Dado el gran tamaño del genoma humano y que existen más de 100 tipos diferentes de tumores, así como el gran coste de la secuenciación de los genomas, se ha creado el Consorcio Internacional para la Investigación del Genoma del Cáncer (ICGC), sobre el modelo del proyecto Genoma Humano, para coordinar la secuenciación de los genomas en el mundo. España participa en el consorcio y trabajará en una primera fase en el genoma de la leucemia.

El cáncer de pulmón causa alrededor de un millón de fallecimientos anuales en todo el mundo. El melanoma maligno significa sólo un 3% del número total de casos de cáncer de piel pero causa tres de cada cuatro fallecimientos por esta causa.

Fuentes:

El País Ciencia


BBC Ciencia

8 de octubre de 2009

Confirman que la evolución es irreversible

Jueves, 08 de octubre de 2009

Confirman que la evolución es irreversible

Un estudio molecular descubre que los cambios genéticos no se invierten nunca

La reversibilidad de los procesos evolutivos ha fascinado durante mucho tiempo a los biólogos. Ahora, investigadores de la Universidad de Oregón, en Estados Unidos, han estudiado estos procesos a nivel molecular, utilizando una combinación de técnicas como la resucitación de antiguas proteínas. Así, han descubierto que aquellos cambios que se dan una vez en los genes de un ancestro no se invertirán nunca. Esta constatación sugiere que, a lo largo del tiempo, se habrían dado una serie de mutaciones restrictivas que evitaron innumerables trayectorias alternativas en la selección natural y que, por tanto, la contingencia histórica juega un importante papel en la evolución. Por Yaiza Martínez.


Joe Thornton. Fuente: Universidad de Oregón.
Un equipo de investigación de la Universidad de Oregón, en Estados Unidos, ha constatado en laboratorio y, por primera vez, a nivel molecular, que la evolución no puede ser un proceso reversible. 

Según sus descubrimientos, aquellos cambios que se dan una vez en los genes de un ancestro no se invertirán nunca. 

La reversibilidad de los procesos evolutivos ha fascinado durante mucho tiempo a los biólogos, explican los investigadores en un artículo aparecido en la revista 
Nature, sin embargo la mayoría de las investigaciones realizadas al respecto hasta la fecha no han sido determinantes, por la falta de un método del todo fiable de estudio de genes ancestrales. 

Para superar este escollo, los investigadores de la Universidad de Oregón analizaron la cuestión a nivel molecular, utilizando una combinación de técnicas: reconstrucción informática de secuencias de genes ancestrales, ADN de síntesis, ingeniería de proteínas y 
cristalografía de rayos X

Con todas ellas, consiguieron “resucitar” un gen para una hormona-receptor, idéntico al de un ancestro vertebrado que existió hace más de 400 millones de años. 

Mutaciones sin marcha atrás 

Así, los científicos descubrieron que, en un rápido periodo de tiempo, se produjeron cinco mutaciones aleatorias en el gen reproducido, y que estas mutaciones a su vez provocaron modificaciones en la estructura de la proteína que dicho gen sintetizaba. El resultado fue que esta proteína pasó a ser incompatible con la forma original de la hormona-receptor. 

Según se explica en un 
comunicado de la Universidad de Oregón, la proteína estudiada fue la denominada receptor glucocorticoide (GR), que sujeta a la hormona cortisona y regula la respuesta al estrés, la inmunidad, el metabolismo y el comportamiento, en humanos y en otros vertebrados. 

Según declara 
Joe Thornton, uno de los autores del estudio y profesor del Centro de Ecología y de Biología Evolutiva de dicha Universidad, esta “fascinante investigación pone de relieve el valor del estudio de los procesos evolutivos”. 

Los especialistas afirman que demostrar cómo las estructuras moleculares son reajustadas o sincronizadas refinadamente por los procesos evolutivos, tendrá un gran impacto en las ciencias básicas y en las ciencias aplicadas, incluyendo el sector del diseño de medicamentos para proteínas específicas. 

Estudio anterior 

En un trabajo anterior, Thornton y sus colaboradores demostraron que la primera proteína GR había evolucionado, hace más de 400 millones de años, de una proteína ancestral también relacionada con una hormona: la 
aldosterona. Entonces, los científicos identificaron siete mutaciones antiguas que ocasionaron que el receptor evolucionara, relacionándose posteriormente con la hormona cortisona. 

Una vez identificada estas siete mutaciones, los científicos quisieron averiguar si éstas eran reversibles, y “resucitaron” la proteína GR para intentar revertir en ella los cambios, mediante la manipulación de su secuencia de ADN. Los investigadores esperaban llegar así a la anterior versión de la proteína, pero en lugar de eso sólo consiguieron una proteína completamente “muerta”, no funcional. 

Para identificar las mutaciones, los investigadores trabajaron con cristales de las proteínas antiguas resucitadas, y los metieron en el acelerador masivo de partículas del 
Advanced Photon Source de Chicago. 

Allí, utilizando potentes rayos X determinaron la estructura atómica de la proteína, antes y después de los cambios. Así, descubrieron que las mutaciones de la versión posterior de la GR no podían coincidir con la arquitectura de la proteína inicial.

Foto: Jeancliclac
Evolución accidental 

Esto supone, según Thornton, que “incluso si una función ancestral de repente volviera a ser óptima, no existiría forma alguna de que la selección natural devolviera a la proteína directamente a su forma ancestral”. 

Por otro lado, la irreversibilidad evolutiva de la GR sugiere que las moléculas que dirigen nuestra biología en la actualidad no son fruto de un proceso determinante sino, más bien, de una serie de mutaciones restrictivas que evitaron innumerables trayectorias alternativas que la selección natural también podría haber seguido. 

Es decir que “si lo observado en la evolución de la GR fuera un fenómeno general, entonces la biología actual sería sólo una de las muchas posibilidades evolutivas”, explica Thornton. 

En definitiva, que la contingencia histórica ha jugado un importante papel en la evolución de la proteína, concluyen los científicos en Nature, como también podría haberlo jugado en el resto de los niveles a los que ha afectado la evolución. 

Depende de la historia 

La investigación de Thornton y sus colaboradores a nivel molecular podría explicar los resultados de otro reciente estudio realizado por el Instituto Gulbenkian de la Ciencia de Portugal, en colaboración con la Universidad de Nueva York y con la Universidad de California, en el que también se constató la irreversibilidad de la evolución, en este caso a nivel macroscópico. 

En enero de este mismo año, la revista 
Nature Genetics publicaba los resultados obtenidos en pruebas de laboratorio en las que se recreó la selección natural, con distintos escenarios de evolución para la mosca de la fruta (la Drosofila melanogaster). 

Las moscas sometidas al experimento procedían de un grupo original que había sido extraído de su ambiente natural en 1975. Durante dos décadas, los descendientes de este primer grupo crecieron en el laboratorio sometidos a distintos estímulos y presiones ambientales que afectaron sus genes. Posteriormente, las moscas fueron devueltas al ambiente original de sus antepasados. 

A lo largo de 50 generaciones de moscas en este último entorno, los investigadores observaron si se "revertía" la evolución en los individuos que habían vuelto al hábitat de sus ancestros, en el caso del cromosoma 3. Así, constataron que las moscas presentaron algunos cambios regresivos, pero sólo parcialmente. 

Según los científicos, la evolución inversa se detuvo cuando las moscas lograron la adaptación al entorno ancestral. A nivel genético, la convergencia con el estado original sólo llegó a una media del 50%: sólo la mitad de las frecuencias genéticas se invirtieron hasta alcanzar las frecuencias genéticas ancestrales. 

Para estos investigadores, la conclusión fue similar a la alcanzada por Thornton y su equipo: la evolución dependería de la historia –sería accidental-, también a nivel genético.

Fuente:

15 de septiembre de 2009

Evolución molecular


Miércoles, 16 de septiembre de 2009

Evolución molecular

La complejidad irreducible reducida

Pero antes conozcamos principios básicos del "Diseño Inteligente", la teoría que pretende demostrar que un Diseñador Inteligente (o sea Dios) creó la Naturaleza:

El Diseño Inteligente

"La Teoría del Diseño Inteligente" dice que las causas inteligentes son necesarias para explicar la compleja información de las ricas estructuras de la biología y que estas causas son empíricamente detectables.

Ciertas características biológicas desafían la explicación Darwiniana de "coincidencias fortuitas". Ellas parecen haber sido diseñadas. Puesto que el diseño lógicamente necesita de un diseñador inteligente, la aparición del diseño es citado como evidencia para la existencia de un Diseñador.

Hay tres argumentos primarios en la Teoría del Diseño Inteligente: (1) complejidad irreducible, (2) complejidad especifica, y (3) el principio antrópico..

La complejidad irreducible

(1) La complejidad irreducible es definida como un solo sistema, el cual está compuesto por varias partes interactivas bien integradas que contribuyen a la función básica, en donde el retiro de cualquiera de las partes causa que el sistema deje de funcionar con efectividad. En otras palabras, la vida es comparada con partes interconectadas que descansan una en la otra a fin de resultar útil. La mutación fortuita puede contribuir al desarrollo de una parte nueva, pero no puede contribuir para el desarrollo concurrente de las múltiples partes necesarias para el funcionamiento del sistema.

Por ejemplo, el ojo humano es obviamente un sistema muy útil. Sin el globo ocular (el cual es en sí mismo un complejo sistema irreducible), el nervio óptico, y la corteza visual; una mutación fortuita del ojo, sería en realidad contraproducente para la supervivencia de una especie, y por lo tanto sería eliminada a través del proceso de la selección natural. Un ojo no es un sistema útil, a menos que todas sus partes estén presentes y funcionando apropiadamente al mismo tiempo.

Bien, ahora, leyendo Ciencia Kanija me entero que la complejidad irreducible ¡ha siso reducida!, es decir se ha encontrado una explicación al cómo evolucionaron nuestras células (y las máquinas moleculares que las conforman) . Disfrútenlo:

Un equipo internacional de investigadores dice que ha descubierto un diseño para una comprensión general de la evolución de la “maquinaria” de nuestras células, proporcionando más pruebas a nivel molecular, que apoyan uno de los principios clave de la Teoría de la Evolución de Darwin.

Una explicación no Darwiniana, procedente de los creyentes en el Diseño Inteligente, propone que estas complejas máquinas eran de una “complejidad irreducible”. En otras palabras, son tan claramente complejas y completas que no podrían haber evolucionado sino que deben haber sido diseñadas por una entidad inteligente.

“Nuestras células, y las células de todos los organismos, están compuestas de máquinas moleculares. Estas máquinas están compuestas de partes, cada una de las cuales contribuye a una función parcial o elemento estructural de la máquina. Cómo unas máquinas de múltiples componentes tan sofisticadas pudo evolucionar ha sido algo bastante misterioso y muy controvertido”, dijo el profesor de la Universidad Monash Trevor Lithgow. “Nuestra investigación demuestra que estas máquinas, aunque completas y complejas, fueron el resultado de la evolución. Las máquinas “núcleo” simples se establecieron en los primero eucariotas basándose en las proteínas pre-existentes que habían proporcionado anteriormente funciones distintivas simples. Por tanto se mantienen como una prueba de que la Teoría de la Evolución de Darwin accede al nivel molecular”.

Como sistema modelo, la investigación se centró en una máquina molecular específica, el complejo TIM, el cual transporta proteínas a las mitocondrias. Las mitocondrias son un compartimento de las células humanas que sirven como “centrales” de producción de energía. En una primera etapa de la evolución, las mitocondrias se derivaron a partir de las bacterias que vivían en las primeras células eucariotas.

“Nuestras células literalmente son quimeras de una célula “nodriza” y estas bacterias intracelulares. Las bacterias no tienen complejos TIM – para comprender de dónde procede el complejo TIM simplemente aplicamos el razonamiento científico aplicado y observamos a las bacterias modernas similares a los organismos que dieron lugar a las mitocondrias”, dijo Lithgow.

El grupo estudió la bacteria Caulobacter crescentus y encontró proteínas bacterianas relacionadas con los componentes del complejo TIM mitocondrial. Demostraron entonces que estas proteínas bacterianas no se encuentran como parte de máquinas de transporte de proteínas.

“François Jacob describió la evolución como un mecánico, adosando proteínas de una función para generar máquinas más complejas capaces de nuevas funciones”, dijo Lithgow. “Nuestro trabajo describe un ejemplo perfecto de la propuesta de Jacob, y demuestra que la Teoría de la Evolución de Darwin explica maravillosamente cómo pueden llegar a existir las máquinas moleculares”.

¡Gernial! Un punto más para Charles Darwin...

Fuente:

Ciencia Kanija

2 de septiembre de 2009

Construye tus lentes 3D

Como ya anunciamos en el post anterior Sony acaba de anunciar el lanzamiento, para finales de año, de un televisor en 3D. Si quieres experimentar la magia del 3D pedes construir tú mismo estas gafas en 3D (tercera domensión). ¡Manos a la obra!


Materiales:

* Papel celofán o acetato de colores rojo y cyan si no hay azul
* Tijeras
* Cinta adhesiva o pegamento.

1.- Imprime la siguiente hoja y recorta por los contornos incluyendo el centro de los lentes.

(click en la imagen para agrandar)

2.- Recorta el celofán u acetato para que calcen con el tamaño de los lentes.

3.- Pega el papel de color rojo en el lado izquierdo de la parte central de los lentes, y en el lado derecho el de color cían o azul

4.- Pega las partes señaladas en lineas discontinuas previamente dobladas a la parte central de los lentes.

Y tenemos nuestros propios lentes 3D.

Algunas imágenes para probar su funcionamiento :

Fuente:

Punto.zip


Observe, con sus lentes especiales, una moléculas en 3D

1 de septiembre de 2009

Primera imagen de los átomos de una molécula



Martes, 01 de septiembre de 2009

Primera imagen de los átomos de una molécula

Científicos del centro de IBM en Zúrich logran visualizar la estructura química del pentaceno.

¿Qué es el Pentaceno?

Es un hidrocarbro aromático policíclico formado por la integración de cinco anillos de benceno.


Molécula del Benceno


Esta conjugación extendida juntoa su estructutra cristalina es responsable de sus propiedades como semiconductor orgánico.

Molécula de Pentaceno

Las notas viene vía El País (España) y BBC (Reino Unido)...


Primera imagen de una molécula

Los átomos que forman una molécula se han logrado visualizar bien por primera vez, a través de un Microscopio de Fuerzas Atómicas (AFM). Este logro de los científicos del laboratorio de IBM en Zúrich (Suiza) representa un hito en el ámbito de la nanotecnología y la electrónica molecular y un avance en el desarrollo y mejora de las prestaciones de los dispositivos electrónicos, explica la empresa. La molécula es el pentaceno (C22H14), consistente en cinco anillos de benceno enlazados formando una cadena aromática, que es candidato a ser utilizada en nuevos semiconductores orgánicos.

Estructura interna de una molécula de pentaceno, de 1,4 nanómetros de longitud. Abajo, modelo de la misma (los átomos grises son de carbono y los blancos de hidrógeno).

Este logro, que se ha publicado en la revista Science, sigue a otro experimento publicado en la misma revista hace dos meses en el que el equipo midió los estados de carga de los átomos con el mismo tipo de microscopio. Así se podrá investigar cómo se trasmite la carga a través de las moléculas o de redes moleculares. Además, los investigadores han conseguido descubrir que la fuerza repulsiva que les ha permitido obtener el contraste suficiente para la imagen procede del efecto cuántico denominado principio de exclusion de Pauli.

En los últimos años, se había conseguido definir nanoestructuras a escala atómica y ahora ha sido posible mostrar la estructura química de una molécula con una resolución atómica, viendo los átomos individuales, ha comentado el investigador Gerhard Meyer, según el cual se puede considerar este hecho similar a la capacidad de traspasar un tejido blando con rayos X para obtener una imagen nítida de los huesos.

Supone un avance significativo en el desarrollo de la electrónica molecular, ya que para aumentar las prestaciones de los dispositivos electrónicos, ordenadores o teléfonos móviles, y reducir su tamaño, es preciso trabajar sobre estructuras atómicas, utilizando herramientas que permitan ver y manipular la materia a dicha escala.

Fuente:

Diario El País


¿Cómo funciona un microscopio de fuerzas atómicas?


Equipo de investigadores de la IBM junto al AFM.

El equipo de científicos -que publica los detalles de su investigación en la revista Science- es el mismo grupo que en julio pasado logró por primera vez medir la carga eléctrica de un átomo único.

Enfoque fino

En ambos casos los investigadores de IBM Zurich utilizaron una versión del AFM que actúa como un pequeñísimo diapasón (la herramienta que se usa para afinar instrumentos musicales).

Con éste, uno de los dientes del diapasón pasa increíblemente cerca a la muestra y el otro un poco más lejos.

Cuando se hace vibrar al diapasón el diente más cercano experimenta un cambio minúsculo en la frecuencia de su vibración, simplemente porque se está acercando a la molécula.

Al comparar las frecuencias de los dos dientes se puede obtener una medición de la distancia desde del diente más cercano con lo cual se puede establecer de forma efectiva un "mapa" de la estructura molecular.

Esta medición requiere de una precisión extrema.

Para evitar los efectos de las moléculas de gas extraviadas y del sacudimiento general a escala atómica que experimentan los objetos a temperatura ambiente, todo el proceso debe mantenerse al alto vacío y a temperaturas extraordinariamente frías.

Sin embargo, como la punta de los dientes del AFM no están bien definidas y no son lo suficientemente agudas a la escala de átomos únicos, esto provocaba que las imágenes se vieran borrosas.

Los investigadores pensaron que podían evitar este efecto eligiendo deliberadamente una pequeña molécula única (de pentaceno) -formada por un átomo de carbono y uno de oxígeno- y formando una punta del AFM lo más aguda y mejor definida posible.

Con átomos periféricos

Su medición de la molécula de pentaceno utilizando esta punta de monóxido de carbono muestra los enlaces entre los átomos de carbono en cinco anillos unidos, e incluso releva enlaces a los átomos de hidrógeno en la periferia de la molécula.

Tal como explicó a la BBC Leo Gross, quien dirigió la investigación, el equipo planea ahora combinar su capacidad para medir cargas individuales con esta nueva técnica para representar moléculas con un nivel de detalle sin precedentes.

Esto, dice el científico, podrá ayudar en particular al campo de la electrónica molecular, que es un futuro potencial de la electrónica en el que las moléculas individuales actúan como interruptores y transistores.

Aunque el enfoque puede trazar los enlaces etéreos que conectan a los átomos, no puede distinguir entre átomos de diferente tipo.

El equipo intenta ahora usar la nueva técnica junto con otro método similar conocido como microscopía de efecto túnel (STM) -en el que un pequeño voltaje es aplicado a lo largo de la muestra- para determinar si los dos métodos combinados pueden mostrar la naturaleza de cada átomo en las imágenes del AFM.

Esto, dice Leo Gross, ayudaría a todo el campo de la química, en particular la química sintética que se utiliza en el diseño de fármacos.

Los resultados, agrega el científico, serán también de mucho interés para quienes estudian el mundo de la nanotecnología con instrumentos similares.

Fuente:

BBC - Ciencia & Tecnología

Lea también:

Ideas Geek

25 de enero de 2009

Inaugurarán en Lima laboratorio científico más avanzado de Latinoamérica

El lunes 26 de enero será inaugurado en el Perú el primer laboratorio de Manipulación y Visualización de Moléculas que cuenta con tecnología de primera y sería el laboratorio universitario más avanzado de Latinoamérica en su área.

La ceremonia se realizará al mediodía en los Laboratorios de Investigación y Desarrollo de la Universidad Peruana Cayetano Heredia, en el distrito de San Martín de Porres.

El laboratorio tendrá como director al doctor Daniel Guerra, en coordinación con el reconocido científico peruano de la Universidad de California, en Berkeley, Carlos Bustamante.










Esta moderna área de investigación estará dotada de microscopios de pinzas ópticas y fuerza atómica de última generación, capaces de formar imágenes y estudiar en tiempo real fuerzas y desplazamientos en ADN y proteínas con resolución nanoscópica.

Este nuevo tipo de investigación científica comienza a explorar aplicaciones en ciencias de materiales, biomedicina y otras ramas en las que el Perú podrá tener una posición de líder internacional.

El equipo de investigadores de esta unidad estará conformado por un grupo interdisciplinario de estudiantes de pre y postgrado de Cayetano Heredia y otras universidades.

El equipamiento se realizó gracias al financiamiento de la Universidad de California-Berkeley, la Fundación Cobián, el Rectorado y la Facultad de Ciencias de la UPCH, con la finalidad de replicar los ambientes de estudio de universidades del primer mundo.

Algunos de los proyectos en los que ya están trabajando los integrantes del laboratorio son la interacción de la ARN polimerasa de bacterias (E.coli) con diferentes promotores para la regulación de la expresión genética.

Fuentes:

Diario La República - Perú

UPCH

29 de marzo de 2008

Crean el primer ordenador molecular capaz de procesar en paralelo.

Puede adoptar 4,3 mil millones de combinaciones posibles, aunque algunas de ellas inestables.


Investigadores japoneses han conseguido crear el ordenador más pequeño del mundo, formado por sólo 17 moléculas. Es la primera máquina molecular que puede procesar en paralelo: es capaz de tomar 4^16 estados diferentes, es decir, cerca de 4,3 mil millones de combinaciones posibles, aunque al menos en principio algunas de ellas serían demasiado inestables. Con una arquitectura similar a la de la red neuronal del cerebro humano, sus creadores se proponen convertir la máquina actual en una esfera tridimensional de 1.024 moléculas, capaz de ejecutar 1.024 instrucciones a la vez, alcanzando en teoría un total de 4^1.024 combinaciones posibles.

Por Yaiza Martínez.


Estructura del funcionamiento en paralelo del ordenador molecular. (MSBN)

Un equipo de investigadores del Instituto Nacional de Ciencias de los Materiales de la Universidad de Tsukuba, en Japón, ha conseguido crear el ordenador más pequeño del mundo, formado por sólo 17 moléculas.

El invento es en realidad una máquina molecular que puede realizar procesamientos en paralelo, es decir, ejecutar de manera simultánea varias órdenes. Esta máquina multi- tareas se auto-ensambló sobre una superficie de oro a partir de 17 moléculas de una sustancia química utilizada en nanotecnología, denominada duroquinona.

Tal y como explica CosmicLog, este ordenador sería un nuevo logro de la nanotecnología, campo de las ciencias aplicadas que se dedica al control y manipulación de la materia a nivel de átomos y moléculas. MSBN ha elaborado un interesante video explicativo.

Procesamiento en paralelo

Dieciséis de las moléculas forman un anillo alrededor de una molécula central, que es la unidad de control de la máquina. Para introducir una orden, se hace “titilar” eléctricamente dicha molécula central utilizando para ello un microscopio de efecto túnel.

Este microscopio permite no sólo visualizar superficies a escala del átomo, sino también manipularlas gracias a una finísima aguja capaz de actuar a nivel atómico, incorporada a su estructura. Una vez activada, la molécula central envía sus órdenes al resto de las moléculas periféricas al mismo tiempo, según explica al respecto The Thelegraph. Este nano ordenador es entonces capaz de tomar 4^16 estados diferentes, es decir, cerca de 4,3 mil millones de combinaciones posibles, aunque al menos en principio algunas de ellas serían demasiado inestables.

En la publicación especializada Proceedings of the National Academy of Sciences, los científicos creadores de la máquina, Anirban Bandyopadhyay y Somobrata Acharya, del International Center for Young Scientists de Japón, explican que cada una de las moléculas es en realidad una máquina lógica.

La comunicación en paralelo que puede desarrollar esta máquina lógica representa un avance conceptual significativo en comparación con los procesadores más rápidos existentes en la actualidad, que ejecutan sólo una instrucción cada vez.

Imitando al cerebro

Según declaraciones de los científicos para la CosmicLog, la arquitectura de este micro-ordenador sería similar a la de la red neuronal del cerebro humano, ya que el ensamblado de la máquina se hizo imitando la manera en que las células gliales funcionan para hacer circular las órdenes por el sistema nervioso.

Este tipo de comunicación de “uno a muchos” resulta esencial para el cerebro, y los científicos computacionales han señalado durante décadas que, de poderse aplicar a la computación, podría revolucionar la manera en que las máquinas puedan llegar a “pensar”.

Esta ordenador molecular abre importantes posibilidades para los tratamientos médicos. Por ejemplo, en el futuro, según sus creadores, no se necesitará cirugía para curar los tumores cerebrales. Simplemente, se inyectará en el organismo sangre que contenga las máquinas moleculares, y éstas acudirán al lugar concreto para tratarlo.

Es decir, nanochips que contengan los ordenadores nanométricos llegarán al sitio donde “noten” que un tumor está activo, y allí comenzarán a producir moléculas de quimioterapia a pequeña escala. Cuando el tumor haya sido curado, las máquinas podrán auto-desconectarse.

Cuestiones pendientes y futuro

Sin embargo, aún queda mucho trabajo por hacer hasta que esto sea posible. Quedan pendientes cuestiones como, por ejemplo, el tamaño del microscopio de efecto túnel, que no resultaría práctico para conocer los resultados de un nano ordenador o para cosechar las sustancias químicas producidas por las nano-fábricas.

Por tanto, habría que desarrollar otros métodos de control, como lectores ópticos para nano-ordenadores. De cualquier forma, Bandyopadhyay afirma que seguirán avanzando y que, en un futuro próximo, planean transformar la rueda bidimensional de 16 moléculas en una esfera tridimensional formada por 1024 moléculas. Ésta será capaz de ejecutar 1.024 instrucciones a la vez, alcanzando en teoría un total de 4^1024 combinaciones posibles.

La nanotecnología es una ciencia que va avanzando cada día y que promete importantes logros. Sus futuras aplicaciones no sólo se desarrollarán en el sector de la medicina, sino que prometen abarcar desde el almacenamiento, la producción y la conversión de energía o la producción agrícola, hasta la generación de armamento y sistemas de defensa en el sector militar.

Tendencias 21
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0