Latest Posts:

Mostrando las entradas con la etiqueta stanley miller. Mostrar todas las entradas
Mostrando las entradas con la etiqueta stanley miller. Mostrar todas las entradas

11 de enero de 2014

La chispa de la vida: El experimento de Miller, sesenta años después


Durante 2013 estamos celebrando el sexagésimo aniversario del annus mirabilis en el que se produjeron tres hitos científicos con los cuales se inició la era de la biología molecular. Como es ampliamente conocido, en 1953 J.D. Watson y F.H.C. Crick publicaron la estructura en doble hélice del ADN, en base a los datos experimentales que habían obtenido otros investigadores entre los que destaca la gran química y cristalógrafa R.E. Franklin. Además, ese mismo año se publicó por F. Sanger y E.O.P Thompson la primera secuencia de aminoácidos de una proteína, en concreto la insulina bovina. Y el tercer fruto de la excelente cosecha del 53, a pesar de no haber sido galardonado con el Premio Nobel como los dos anteriores, fue un experimento que pronto se convertiría en uno de los más famosos y revolucionarios de la historia: el “experimento de Miller”.

Pero, ¿quién fue ese científico al que todos asociamos con el dibujo de un extraño conjunto de matraces y tubos de vidrio que aparecía en nuestros libros de texto? La respuesta rápida sería: uno de los químicos más relevantes del siglo XX. Stanley L. Miller nació en 1930 en Oakland, California, y tras manifestar una vocación temprana por la ciencia se licenció en Química por la Universidad de Berkekey en 1951. En septiembre de ese mismo año comenzó su doctorado en la Universidad de Chicago, y durante varios meses estuvo buscando un director de tesis para iniciar su carrera investigadora.

Dado que en principio la ciencia experimental le parecía demasiado laboriosa, comenzó trabajando con el prestigioso físico teórico Edward Teller sobre los modelos de síntesis de elementos en las estrellas. Pero durante ese tiempo asistió a un seminario sobre el origen de la Tierra y la atmósfera primitiva de nuestro planeta, impartido por el Premio Nobel Harold C. Urey, y lo que escuchó le llevó a dar un giro a su vida profesional. Así, en septiembre de 1952 Miller decidió cambiar su tema de tesis, y tuvo la osadía de proponer a Urey la realización en su laboratorio de un experimento radicalmente distinto a todos los que se habían llevado a cabo hasta entonces.

Como el joven licenciado dijo al eminente geoquímico, si tal experimento era exitoso serviría para corroborar las hipótesis del propio Urey, que a su vez estaban basadas en la ideas de Aleksandr I. Oparin sobre el origen de la vida en una atmósfera compuesta por gases fuertemente reductores derivados del vulcanismo. El experimento propuesto consistía en mezclar los gases que se consideraban presentes en la atmósfera terrestre primitiva –metano, amoníaco, hidrógeno y vapor de agua–, y comprobar si al reaccionar entre sí podrían producir compuestos orgánicos fundamentales para la vida. Para ello se debía trabajar en ausencia de oxígeno, y lógicamente el experimento tenía que llevarse a cabo en condiciones abióticas, excluyendo la participación de cualquier agente o actividad biológica durante el proceso. Por tanto, era necesario esterilizar todo el material que se iba a utilizar. Además, se requería una fuente de energía que simulara los aportes energéticos que existieron en nuestro convulso planeta antes de la aparición de la vida. Pero el estudiante al que meses antes no parecían interesarle los experimentos estaba dispuesto incluso a fabricar todos los aparatos necesarios para probar su hipótesis.

 

El artículo completo en:

NAUKAS

25 de marzo de 2011

El olor a huevos podridos evoca el origen de la vida

Un nuevo estudio financiado por la NASA muestra cómo un producto químico que huele a huevos podridos - el sulfuro de hidrógeno - puede haber jugado un papel en la formación de la vida en la Tierra. Los autores del estudio decidieron volver a examinar los viejos tubos de prueba de experimentos clásicos realizados en la década de 1950 por Stanley Miller, un estudiante graduado en la Universidad de Chicago.

El equipo analizó muestras de una variante del experimento realizado en 1958 en la que Miller utilizó dióxido de carbono y gases de sulfuro de hidrógeno en la mezcla. Los resultados estuvieron "pérdidos" durante décadas ya que, por razones desconocidas, Miller nunca informó del análisis de resultados.

"Stanley nos confesó a varios de nosotros que odiaba trabajar con sulfuro de hidrógeno, ya que olía tan mal y tiende a hacer que se caiga enfermo", dijo Jeffrey Bada, de la Institución Scripps de Oceanografía de la Universidad de California en San Diego, quien era un estudiante graduado de Miller y es autor principal del nuevo estudio.

El equipo ha descubierto revisando los viejos tubos que el experimento creó aminoácidos que contienen azufre, la primera síntesis de un entorno de simulación prebiótica que, de acuerdo con los miembros del equipo, los produce a gran escala.

Los resultados proporcionan pistas sobre los roles que las emanaciones volcánicas - que son una fuente natural de sulfuro de hidrógeno - pueden haber jugado en la producción de los primeros compuestos orgánicos en nuestro planeta, informa la NASA.

En la imagen se muestra la caja original que contiene las muestras archivadas por Stanley Miller en 1958. La etiqueta muestra la escritura original de Miller: p 114 se refiere a su cuaderno de notas.

Fuente:

Europa Press

20 de enero de 2010

¿Qué fue primero en el Origen de la Vida?


Miércoles, 20 de enero de 2010

¿Qué fue primero en el Origen de la Vida?

Alexander Oparin (1894-1980)

(Uglic, Jaroslav, 1894 - Moscú, 1980) Bioquímico soviético, pionero en el desarrollo de teorías bioquímicas sobre del origen de la vida. Estudió en Moscú, donde posteriormente sería profesor de fitofisiología y bioquímica. En 1935, junto con Bakh, fundó y organizó el Instituto Bioquímico de la Academia de Ciencias de la URSS, que dirigiría desde 1946 hasta su muerte. Sus estudios sobre el origen de la vida plantean, en síntesis, que el proceso que condujo a la aparición de seres vivos se explica mediante la transformación de las proteínas simples en agregados orgánicos por afinidad funcional.

Oparin subrayó el hecho de que en los primeros momentos de la historia de la Tierra, la atmósfera no contenía oxígeno (que fue generado después, gracias a la fotosíntesis vegetal). Antes de la aparición de la vida podían haber existido substancias orgánicas simples en una especie de caldo primitivo. Añadió que los primeros organismos fueron, probablemente, heterótrofos, esto es, que utilizaban como alimento sustancias orgánicas y no poseían la capacidad, como los autótrofos actuales, de nutrirse de sustancias inorgánicas. Para Oparin, las características clave de la vida son su organización e integración, y los procesos que conducen a tal vida deberían ser susceptibles de especulación razonable y de experimentación.

Sus teorías se enfrentaron inicialmente a una fuerte oposición, pero con el paso del tiempo han recibido respaldo experimental y han sido aceptadas como hipótesis legítimas por la comunidad científica. Así, muchas de sus ideas fueron corroboradas en 1952 por los experimentos de S.L. Miller. El carácter pionero de sus obras sobre este tema supuso un estímulo fundamental en las investigaciones. Su ibra cumbre es "El Origen de la Vida"

"El Origen de la Vida"

Extracto:
¿Qué es la vida? ¿Cuál es su origen? ¿Cómo han surgido los seres vivos que nos rodean? La respuesta a estas preguntas entraña uno de los problemas más grandes y difíciles de explicar que tienen planteado las ciencias naturales. De ahí que, consciente o inconscientemente, todos los hombres, no importa cuál sea el nivel de su desarrollo, se plantean estas mismas preguntas y, mal o bien, de una u otra forma, les dan una respuesta. He aquí, pues, que sin responder a estas preguntas no puede haber ninguna concepción del mundo, ni aun la más primitiva.

El problema que plantea el conocimiento del origen de la vida, viene desde tiempos inmemoriales preocupando al pensamiento humano. No existe sistema filosófico ni pensador de merecido renombre que no hayan dado a este problema la mayor atención. En las diferentes épocas y distintos niveles del desarrollo cultural, al problema del origen de la vida se le aplicaban soluciones diversas, pero siempre se ha originado en torno a él una encarnizada lucha ideológica entre los dos campos filosóficos irreconciliables: materialismo e idealismo.

De ahí que, al observar la naturaleza que nos rodea, tratamos de dividirla en mundo de los seres vivos y mundo inanimado, o lo que es lo mismo, inorgánico. Sabido es que el mundo de los seres vivos está representado por una enorme variedad de especies animales y vegetales. Pero, no obstante y a pesar de esa variedad, todos los seres vivos, a partir del hombre hasta el más insignificante microbio, tiene algo de común algo que los hace afines pero que, a la vez, distingue hasta a la bacteria más elemental de los objetos del mundo inorgánico. Ese algo es lo que llamamos vida, en el sentido más simple y elemental de esta palabra. Pero, ¿qué es la vida? ¿Es de naturaleza material, como todo el resto del mundo, o su esencia se halla en un principio espiritual sin acceso al conocimiento con base en la experiencia.

Si la vida es de naturaleza material, estudiando las leyes que la rigen podemos y debemos hacer lo posible por modificar o transformar conscientemente y en el sentido anhelado a los seres vivos. Ahora bien, si todo lo que sabemos vivo ha sido creado por un principio espiritual, cuya esencia no nos es dable conocer, deberemos limitarnos a contemplar pasivamente la naturaleza viva, incapaces ante fenómenos que se estiman no accesibles a nuestros conocimientos, a los cuales se atribuye un origen sobrenatural.

Lea "El Origen de la Vida" en
versión completa.

Una investigación publicada en "Proceedings of the National Academy of Sciences" refuta la teoría de que el origen de la vida se originó como un sistema de moléculas autocatalítico capaz de experimentar evolución darwiniana sin la necesidad de ARN o ADN y de su replicación. El estudio, en que ha participado Mauro Santos, investigador del Departamento de Genética y Microlobiología de la UAB, ha demostrado, analizando lo que algunos investigadores han denominado "genomas compuestos", que estas redes químicas no se pueden considerar unidades evolutivas, porque pierden propiedades esenciales para evolucionar cuando alcanzan una medida crítica y una mayor complejidad.

La NASA (National Aeronautics and Space Administration) define la vida como un "sistema químico autosostenible capaz de evolución darwiniana". Las teorías científicas sobre el origen de la vida giran alrededor de dos ideas principales: la que prima la genética -con la replicación de ADN o ARN como condición esencial para que haya evolución darwiniana- y la que dice que primero fue el metabolismo. Ambas situaciones han de haber empezado obviamente a partir de moléculas orgánicas simples formadas por procesos prebióticos, tal y como demostró el experimento de Miller y Urey (consiguieron crear moléculas orgánicas a partir de sustancias inorgánicas). El punto de desacuerdo entre las dos teorías es que la replicación de moléculas como el ARN o el ADN es un proceso demasiado complejo y requiere una conjunción correcta de los monómeros dentro de los polímeros para producir las cadenas de moléculas resultantes de la replicación.

No hay todavía una explicación química plausible sobre cómo pudieron ocurrir aquellos procesos y, además, los defensores de que primero se produjo el metabolismo argumentan que los caminos evolutivos requeridos deben haber necesitado un metabolismo primordial. Este metabolismo es imaginado como una red química que comporta un alto grado de catálisis mutua entre sus componentes para permitir eventualmente la adaptación y la evolución sin la replicación de moléculas.

En la primera mitad del siglo pasado, Alexander Oparin estableció la hipótesis de "Primero el metabolismo" para explicar el origen de la vida, reforzando el papel primario de la célula como pequeñas gotas de coacervado (precursoras evolutivas de las primeras células procariotas). Él no hizo referencia a las moléculas de DNA y RNA porque a la sazón no estaba clara la idea del papel fundamental que estas moléculas jugaban en los organismos vivos, pero asentó sólidamente la idea de una auto-replicación como una propiedad colectiva de conjuntos moleculares.

Más recientemente se ha demostrado que un conjunto de componentes químicos almacena información sobre su composición que puede ser duplicada y transmitida a sus descendientes, lo que ha llevado a denominarlos "genomas compuestos" o composomas. En otras palabras, la herencia no requiere información para ser almacenada en el ARN o en las moléculas de ADN. Estos "genomas compuestos" aparentemente cumplen las condiciones requeridas para ser considerados como unidades de evolución, lo que sugiere una vía desde las dinámicas pre-darwinianas hacia una mínima protocélula.

Los investigadores de este estudio han mostrado, sin embargo, que estos sistemas son incapaces de sufrir una evolución darwiniana. Por primera vez, han realizado un análisis riguroso sobre la supuesta evolución de estas redes moleculares, usando una combinación de simulaciones numéricas y analíticas y aproximaciones al análisis de redes. Su estudio muestra que las dinámicas de la población de los conjuntos moleculares que se dividen cuando llegan a una medida crítica no evolucionan porque en el proceso se pierden algunas propiedades que son esenciales para la evolución darwiniana.

Los científicos concluyen que esta limitación fundamental de los "genomas compuestos" induce a ser cautelosos respecto a las teorías que sitúan primero el metabolismo en el origen de la vida, a pesar de que los antiguos sistemas metabólicos podrían haber proporcionado un hábitat estable para la evolución posterior de polímeros primitivos como el ARN.

Se pueden considerar diferentes escenarios de la Tierra prebiótica, manifiestan, pero la propiedad básica de la vida como un sistema capaz de experimentar evolución darwiniana empezó cuando la información genética se consiguió almacenar y transmitir tal y como sucede en los polímeros de nucleótidos (ARN y ADN).

Artículo de referencia: Vasas, V., E. Szathmáry and M. Santos. “Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life”. Proceedings of the National Academy of Sciences of the USA PNAS. Published online before print January 4, 2010.

Para descargar el artículo en pdf clica aquí

Imagen cedida por Doron Lancet. Ilustra lo que sería un "genoma compuesto". Diferentes moléculas (en colores varios) se incorporan al glóbulo o vesícula, la cual se dividiría al alcanzar un tamaño crítico.

Fuente:

Universidad Autónoma de Barcelona
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0