Latest Posts:

Mostrando las entradas con la etiqueta experimentos. Mostrar todas las entradas
Mostrando las entradas con la etiqueta experimentos. Mostrar todas las entradas

3 de septiembre de 2013

Experimentos: Cómo convertir una webcam en un microscopio

¿Cómo funciona?



Una webcam es una cámara digital compacta con un software que toma una imagen fija con intervalos preestablecidos.

La cámara digital de la webcam captura la luz a través de un pequeño lente con un sensor de imagen CMOS o CCD.

El sensor convierte la imagen en un formato digital que se transmite a la computadora a través de un cable USB.

El lente de la cámara está diseñado para tener una visión de gran angular y enfocarla en el pequeño sensor.

Pero si le da la vuelta al lente, el proceso se invierte y las pequeñas imágenes se amplían.

De esta manera una webcam básica puede ser capaz de lograr una ampliación de 200X.

Lente

Es muy probable que en alguna de las gavetas de su casa haya una webcam (una cámara de internet) abandonada que no usa desde hace tiempo. Ahora, con la ayuda del científico Mark Miodownik, podrá transformarla en un microscopio de alta potencia. 

Al conectarla al computador, usted podrá guardar y compartir fácilmente las imágenes que capture.
Estas son las instrucciones, paso a paso, para que pueda hacerlo usted mismo.

Lo que necesita:

Una vieja webcam
Pétalos, hebras de cabello, granos de arena, etc
Un destonillador pequeño
Cortadores de plástico o tijeras pequeñas
Cartón grueso
Tres tornillos largos
Seis tuercas que encajen en los tornillos
Lámina de vidrio o acrílico
Cinta aislante
Una linterna

Cómo hacerlo en BBC Ciencia

31 de agosto de 2013

Alfredo Moser: El hombre que le dio la luz a aquellos que no la tenían...



Al mecánico brasileño se le ocurrió el sistema de iluminación en 2002. 


La invención de Alfredo Moser está iluminando al mundo. En 2002, a este mecánico brasileño "se le prendió el bombillo" y se le ocurrió una manera de iluminar su casa durante el día sin electricidad, usando únicamente botellas de plástico llenas de agua y un poquito de cloro.

En los últimos dos años, su idea llegó a diferentes partes del mundo. Y se tiene previsto que su sistema se implemente en un millón de hogares a principios de 2014.

¿Cómo funciona? Por refracción de luz solar, explica Moser, al tiempo que llena una botella plástica de dos litros. "Hay que añadir dos tapas de cloro para evitar que el agua se ponga verde (con algas). Mientras más limpia esté la botella, mejor", añade, en conversación con la BBC.

Envolviendo su cara en un trapo, abre un hueco en una de las tejas del techo con un taladro y, de abajo hacia arriba, mete la botella en el orificio recién hecho. "Fijas la botella con resina de poliéster. No hay goteras, ni siquiera cuando llueve, no cae ni una gota".

"Un ingeniero vino y midió la intensidad de la luz. Depende de cuan fuertes sean los rayos de sol, pero equivale mas o menos a 40 o 60 vatios", comenta.

Y se hizo la luz


Las lámparas de Alfredo Moser en el techo de su casa

La idea de Moser se utiliza en unos 15 países.


La inspiración para la "lámpara Moser" le llegó en 2002, durante uno de los frecuentes apagones que ocurren en el país.

"Los únicos lugares que tenían electricidad eran las fábricas, no las casas de la gente", dice refiriéndose a la ciudad en la que vive, Uberaba, en el sur de Brasil.

Moser y sus amigos empezaron a preguntarse qué podrían hacer en caso de que se presentara una emergencia como, por ejemplo, que un avión pequeño sufriera un accidente y perdiera altitud, imaginando que no tuvieran fósforos.

Su jefe en aquel momento sugirió utilizar una botella de plástico vacía, llenarla de agua y utilizarla como un lente para que los rayos de sol cayeran sobre grama seca. El fuego resultante podría servir para dar aviso a los equipos de rescate.

La idea se le quedó a Moser en la cabeza, y empezó a hacer pruebas, llenando botellas y haciendo círculos de luz refractada. Poco tiempo después, su invento estaba terminado.

"No hice ningún dibujo con su diseño", cuenta el brasileño. "Es una luz divina. Dios nos dio el Sol a todos, así que la luz es para todos. Quien quiera (usar su sistema de iluminación), ahorra dinero. No vas a electrocutarte con esto y no te cuesta ni un centavo".

El placer de ayudar


Espacios en los que se usa la "lámpara Moser"

Las lámparas hechas con botellas no necesitan electricidad para iluminar espacios durante el día. 

Moser instaló lámparas hechas de botellas en las casas de los vecinos y en el supermercado local.

Aunque se gana algunos dólares por la instalación de su invento, es evidente, por la sencilla casa en la que vive y el auto que conduce (de 1974), que su invención no lo ha hecho rico. Y esto lo llena de orgullo.

"Hubo un hombre que empezó a utilizar las botellas en su hogar y, en un mes, ahorró suficiente para pagar por las cosas básicas que necesitaba para su hijo, quien estaba a punto de nacer. ¿Puede creerlo?", dice.

Carmelinda, quien ha estado casada con Moser por 35 años, cuenta que su esposo siempre ha sido habilidoso haciendo cosas para el hogar, incluyendo camas y mesas de madera. Pero ella no es la única que admira la lámpara que inventó su marido.

Lea el artículo completo en:

BBC Ciencia

26 de agosto de 2013

Cómo congelar agua en un instante

Lente

Miodownik realiza experimentos sencillos que se pueden hacer en casa.

"Muchos años después, frente al pelotón de fusilamiento, el coronel Aureliano Buendía había de recordar aquella tarde remota en que su padre lo llevó a conocer el hielo".

Esa novela maravillosa, "Cien años de soledad", de Gabriel García Márquez, empieza hablando de esa otra maravilla: el hielo.
En Macondo, ese lugar imaginario donde tanto puede ocurrir, el agua no se había congelado.
Pero hay una técnica para "superenfriar" agua y generar hielo de instantáneamente, con el cual crear esculturas heladas, en Macondo o cualquier lugar.

El científico Mark Miodownik le reveló a la BBC cómo realizar este simple experimento científico en casa.
 
Lo que necesita: 
 
Dos botellas de 1 litro de agua (la que mejor funciona es el agua desionizada para baterías de auto, pero se puede usar también agua filtrada)
Un termómetro (opcional)
Un tazón transparente para mezclar
Dos cubos
8 kg de cubitos de hielo
3 kg de sal de mesa
1 toalla

Cómo hacerlo en la web de BBC Ciencia

23 de agosto de 2013

Experimentos: Cómo hacer un líquido que es sólido

Tire una piedra al agua y, como la mayoría de los líquidos, salpicará por todas partes. Pero algunos fluidos, como la arena movediza, actúan de diferentes maneras dependiendo de la fuerza se les aplica.

Son conocidos como los fluidos no newtonianos y tienen unas propiedades muy inusuales.

Para que usted mismo lo compruebe, el científico Mark Miodownik le mostró a la BBC un experimento que se puede hacer en casa.
Siga estas simples instrucciones paso a paso:

Lo que necesita:

Un tazón grande
Una jarra medidora
Almidón de maíz (450g/16oz)
Agua (475g/16fl oz)
Cuchara
Una bolsa plástica transparente con cierre
Un huevo
Guantes de plástico desechables (opcional)
¡Asegúrese de ponerse un delantal para no ensuciarse!

Para saber cómo hacerlo visite BBC Ciencia

21 de agosto de 2013

Educación Primaria: Actividades sobre el Calentamiento Global

Traducido por: Maria Chueca


Imagen cortesía de PSI
Sue Johnson del Instituto de Educación de la Universidad de Londres, Reino Unido, presenta el proyecto “Los botánicos investigan” y propone tres actividades para los niños de primaria. Compara las concentraciones de dióxido de carbono entre el aire que se exhala y el aire que se inhala, visualiza tu propio gasto de oxígeno o evalúa la importancia que tiene la conservación de las especies vegetales frente al desarrollo económico.
El Proyecto: "Los botánicos investigan: en la escuela y en el jardín botánico"

El proyecto “Los botánicos investigan” promovió la colaboración entre jardines botánicos y escuelas de primaria entre 2005 y 2007. Desde países como Austria, Bulgaria, Italia y Reino Unido, tanto maestros, jefes de departamento, representantes de dirección así como guías de jardines botánicos han estado trabajando juntos para desarrollar un recurso pedagógico centrado en la investigación. 

La virtud principal de este material educativo está en que consigue que los niños trabajen como científicos, les anima a utilizar su razonamiento y pensamiento científico, maximiza las discusiones en grupo y hace que generen sus propias preguntas e ideas. Gracias a su propia observación y a que son ellos mismos quienes han creado sus experimentos o modelos, los alumnos han alcanzado una comprensión más profunda sobre las plantas y han sido capaces de explicar mejor sus ideas y de dar argumentos más efectivos al defender sus trabajos. 

La página web ‘The Plant Scientists Investigate’ w1 se divide en cuatro materias: extinción y conservación, arte, alimentos y experimentos sobre el crecimiento de las plantas. Los recursos didácticos están listos para usar y han sido diseñados teniendo en cuenta los vacíos de conocimiento detectados en los profesores desde el principio del proyecto. Cada actividad se puede enseñar de forma aislada o bien combinada con otras, el contenido se adapta fácilmente a un amplio rango de edades. Todo el material se puede descargar de la página web.

1. Dióxido de carbono en el aire exhalado

Sumario

Lo niños ya deben saber que el aire que exhalan contiene menos oxígeno que el aire puro. Con este experimento pueden comprobar que hay más dioxido de carbono en el aire exhalado que en el inhalado usando un indicador cromático.

Objetivo

Entender que el aire que las personas exhalan contiene más dioxido de carbono (y menos oxígeno) que el aire que inhalan.

Tiempo

1 h 20 min

Material por grupo
  • 2 vasos de precipitados
  • 2 cañitas
  • 1 bomba de bicicleta
  • Tubo de ensayo con hidróxido potásico disuelto (10% KOH)
  • Tubo de ensayo con indicador de color
  • Pipeta
  • Fotocopias de las Hojas de Actividad 1 y 2w2
  • Película en la página web ‘The Plant Scientist Investigate’ w3 (opcional)
Técnicas
  • Trabajo de precisión al usar la pipeta y los productos químicos
  • Observación
Palabras clave
  • Aire exhalado
  • Dióxido de carbono
  • Oxígeno
  • Aire inhalado
Materias transversales

Matemáticas

Secuencia de la actividad didáctica
  1. Dividir a los niños en grupos y distribuir la Hoja de Actividades 1w2. Para visualizar la composición del aire los alumnos colorearán los distintos componentes del aire en la hoja de actividad (ver notas del profesor). Al aire exhalado le falta el 5% del oxígeno que contiene el aire inhalado. Pregunta a los niños qué consideran ellos que reemplaza al oxígeno que falta. Pregúntales cómo creen que pueden comprobar sus ideas. Los científicos pueden usar aparatos altamente especializados en sus laboratorios para comprobarlo, pero nosotros también podemos investigar la composición del aire usando instrumentos básicos.

Composición del aire exhalado. Clicar la imagen para ver en detalle
Imagen cortesía de PSI
  1. Explica a los niños que el siguiente experimento puede servir para comprobar si el aire que exhalamos contiene más dioxido de carbono. Un indicador de color nos mostrará si la concentración de dioxido de carbono en el líquido aumenta.

  2. Distribuye los materiales necesarios (excepto los productos químicos y las bombas).

  3. Si esta es la primera vez que los alumnos utilizan la pipeta, enséñales a practicar pipeteando agua y dejándola caer gota a gota.

  4. Revisa las medidas de seguridad y salud apropiadas con los niños. Es muy importante que trabajen con cuidado y precisión ya que están utilizando productos químicos. Si queda algo de líquido en la pipeta debe ser vaciado en un vaso pequeño (o tubo). Sólo entonces se podrán distribuir los productos químicos.

  5. Pide a los niños que sigan las instrucciones de la hoja de actividad sobre cómo usar el indicador de color.

  6. Antes de que lleven a cabo el experimento, los niños deben discutir sobre qué es lo que quieren descubrir, es decir, investigar si el contenido de dioxido de carbono en el aire exhalado es diferente al del aire inhalado. La solución rosa (fenoftaleína) cambia de color cuando entra en contacto con el dióxido de carbono.

  7. Los alumnos deben realizar la primera parte del experimento. Discutir sobre qué ha pasado y por qué ha pasado.

  8. Pide a los alumnos que piensen en cómo conseguir introducir aire puro en el segundo vaso. Hazles trabajar en parejas, que saquen sus conclusiones y después las expongan en el grupo para decidir entre todos qué hacer. Distribuye la Hoja de Actividad 2w2 y las bombas de aire. Los alumnos deben bombear aire puro en el segundo vaso. Nota: el color no va a cambiar (o debe cambiar solo ligeramente).

  9. Discute con los alumnos sobre cuál es el fin del experimento. Se puede demostrar que hay más dioxido de carbono en el aire exhalado que en el aire inhalado.

  10. Completa el dibujo con el aire puro.

  11. Pide a los niños que resuman dos cosas que han descubierto durante el experimento.
Notas para el professor
En la página web ‘Plantscafe’ w3 se puede encontrar una película mostrando cómo se lleva a cabo esta actividad. 

El aire puro contiene 78% de nitrógeno, 21% de oxígeno y 1% de otros gases (incluyendo dioxido de carbono y otros). El oxígeno es necesario para cualquier proceso de combustión, desde la quema de una vela hasta el procesado de alimentos a nivel celular.

Seguridad y Salud

La disolución de KOH al 10% es corrosiva, evitar todo contacto con la piel y los ojos. Los niños deben usar guantes o esta parte específica debe ser realizada exclusivamente por el profesor. Se debe respetar la regulación vigente sobre control de materias peligrosas. Tras el experimento las disoluciones utilizadas se pueden verter por el desagüe.


Cambio de color del indicador
Imagen cortesía de PSI
Para la preparación y la metodología experimental ver las Hojas de Actividad 1 y 2w2.

Explicación

El KOH produce una disolución ligeramente alcalina que se vuelve rosa por acción del indicador. El dióxido de carbono exhalado se vuelve ácido en el agua por lo que la disolución se torna ácida (cambia el valor de pH). La disolución rosa pierde su color cuando se introduce el aire exhalado.

2. Mi propio consumo de oxígeno

Sumario

En esta actividad los niños comprobarán qué cantidad de espacio verde es necesaria para producir el oxígeno que consume una persona en un día.

Objetivos
  • Establecer la relación que hay entre la cantidad de oxígeno que necesitamos diariamente y el volumen de plantas necesario para producir este oxígeno.

  • Entender que todas las plantas verdes producen oxígeno.

  • Entender la importancia de los bosques y las algas marinas para mantener el balance de gases en la atmósfera.
Tiempo

30 min

Material
  • Cuerda
  • Palos de Madera
Palabras clave
  • Plantas
  • Humanos
  • Oxígeno
  • Dióxido de carbono
  • Bosques
  • Algas marinas
  • Atmósfera
Materias transversales

Matemáticas

Secuencia didáctica
  1. Dirígete con los alumnos a un prado o a un área verde. Pregúntales si tienen alguna idea sobre cuánto oxígeno consumimos cada día.

  2. Explica que según algunos estudios los humanos consumimos 360 litros de oxígeno al día.

  3. Repasa lo que los alumnos saben sobre cómo producen oxígeno las plantas (qué necesita una planta para realizar la fotosíntesis). Haz hincapié en el hecho de que todas las plantas verdes producen oxígeno.

  4. Los niños deben estimar qué superficie de hierba es necesaria para producir el oxígeno que necesita una persona para vivir un día entero. Hazles delimitar el área estimada usando una cuerda. 

Niños rodeando el área del jardín de la escuela suficiente para producir el oxígeno que necesita para respirar un día entero una persona
Imagen cortesía de PSI
  1. Explícales que un area de aproximadamente 3m2 es suficiente para cubrir la demanda de oxígeno diaria de una persona. Haz a cada grupo encuadrar este área de hierba y así verán la superficie verde que necesita cada alumno para su respiración diaria.

  2. ¿Cuál es el área total necesaria para que toda la clase o toda la escuela tenga suficiente oxígeno?

  3. Comenta los siguientes puntos:
    • Hay muchas personas y animales que viven en ciudades en las que hay muy poco o casi nada de espacio verde, ¿cómo pueden respirar?
    • ¿Qué pasa en invierno cuando muchos árboles pierden sus hojas?
    • ¿Cómo podemos respirar de noche si es necesaria la luz para producir oxígeno?
    • Las selvas tropicales y las algas marinas producen y liberan oxígeno suficiente para mantener el equilibrio de gases en la atmósfera. Las selvas tropicales y las algas marinas son los pulmones de la tierra. ¿Qué pasaría si los bosques y las algas murieran a causa de la contaminación?
3. ¿Una nueva pista de esquí?

Sumario

Esta actividad enfrenta a los niños a una situación real en que el desarrollo económico y la conservación del medio ambiente entran en conflicto. En un lugar de los Alpes los alumnos hacen el papel de los habitantes de una estación de esquí en la que nuevos planes para abrir una pista de esquí amenazan un area rica en biodiversidad. En este juego de rol los alumnos desarrollarán la habilidad de discutir problemas complejos, examinar pros y contras y tomar decisiones (al hacerlo aprenden cómo a menudo es necesario llegar a un acuerdo).

Objetivos
  • Resolver problemas complejos y ayudar a los alumnos a aceptar que a menudo es necesario alcanzar un acuerdo.

  • Entender que la extinción de especies es un problema relacionado con la actividad humana pero que también podemos ayudar a conservar y proteger las especies amenazadas.
Tiempo

2 h

Habilidades
  • Razonamiento
  • Resolución de problemas
  • Argumentación
  • Técnicas de comunicación
Material
  • Material para el juego de rol (descargable onlinew4)
  • Tarjetas de personaje (descargables onlinew4)
  • Etiquetas adhesivas
  • Bolígrafos de colores
  • Fotocopia de la Hoja de Actividad 3w5
  • Papel (tamaño DIN A2)
Palabras clave
  • Biodiversidad
  • Impacto de la actividad humana
  • Gestión del territorio
Actividad transversal
  • Educación personal, social y de la salud
  • Ciudadanía
  • Cultura general, lenguaje especializado, eslóganes (géneros de escritura)
  • Arte
Secuencia didáctica

¿Una nueva pista de esquí?


The role-play game, with children making posters to support their opinions about the ski-run development
Imagen cortesía de PSI
Se trata de un juego de rol basado en los personajes de una sociedad: el alcalde, los gestores del hotel, los botánicos, el constructor de la pista de esquí, los guardas forestales y los ingenieros forestales. El tema trata sobre el desarrollo económico en las zonas rurales y la construcción de una nueva pista de esquí. Toda la historia, las tarjetas de personajes y las instrucciones para jugar se pueden descargar del sitio web Plantscafew3.
  1. Al menos un día antes de la actividad reparte a cada alumno una tarjeta con la descripción de su rol para que puedan empezar a identificarse con el personaje. Reparte los roles de acuerdo con el nivel de habilidad necesario para cada uno de ellos.

  2. Cada alumno debe escribir el nombre de su personaje en una etiqueta adhesiva y llevarlo encima durante el juego.

  3. Se sentarán en un semicírculo representando una asamblea pública real.

  4. El alcalde convoca la reunión en la que todos los participantes deben exponer su caso a favor o en contra de la apertura de la pista de esquí. El alcalde debe garantizar el orden y debe dejar hablar a todos los representantes.

  5. Debido a que los temas debatidos son muy complejos, el alcalde decide convocar un referendum en el que cada personaje tiene un voto.

  6. Antes de las votaciones, cada grupo debe preparar sus materiales de campaña promocional, por ejemplo posters, para conseguir que los ciudadanos voten por su causa. Los posters o panfletos deben ser distribuidos y los representantes deben tener tiempo para leerlos.

  7. Se hace una votación secreta.

  8. El alcalde hace público el resultado de las votaciones. En caso de empate el alcalde tiene el voto decisivo.

  9. El resultado debe ser comentado por todos.

  10. Los alumnos deben completar la Hoja de Actividad 3w5 para resumir sus opiniones.
Referencias en la web

w1 – Todos los materiales educativos de ‘Los botánicos investigan’ se pueden descargar desde: www.plantscafe.net
w2 - Las hojas de actividad necesarias para la actividad ‘Dióxido de carbono en el aire exhalado’ se pueden descargar desde:
w3 – La película sobre la actividad ‘Dióxido de carbono en el aire exhalado’ se puede descargar desde: www.plantscafe.net/en/experiments/gallery.php?module=enex02
w4 – Para la actividad ‘¿Una nueva pista de esquí?’ la historia completa, los personajes y las instrucciones para el juego se pueden descargar desde: www.plantscafe.net/en/conservation/gallery.php?module=enco10
w5 - La hoja de actividad necesaria para la actividad ‘¿Una nueva pista de esquí?’ se puede descargar desde:
Referencias
Otros artículos de Science in School relacionados con el cambio climático (sobretodo para la escuela secundaria) son:
Benestad R (2007) ¿Qué sabemos sobre el clima? Evidencias sobre el cambio climático. Science in School 7. www.scienceinschool.org/2007/issue7/climate/spanish
Benestad R (2008) ¿Qué sabemos del clima? Investigando los efectos antropogénicos del calentamiento global. Science in School 8. www.scienceinschool.org/2008/issue8/climate/spanish
Grigorov I (2006) Bringing global climate change to the classroom. Science in School 3: 56-59. www.scienceinschool.org/2006/issue3/euroceans
Sedwick C (2008) ¿Qué mató al mamut lanudo? Science in School 9. www.scienceinschool.org/2008/issue9/woollymammoth/spanish
Shallcross D, Harrison T (2008) Modelizado del Cambio Climático en el aula. Science in School 9. www.scienceinschool.org/2008/issue9/climate/spanish
Shallcross D, Harrison T (2008) Practical demonstrations to augment climate change lessons. Science in School 10: 46-50. www.scienceinschool.org/2008/issue10/climate
Para tener una lista completa de artículos aparecidos en Science in School sobre el cambio climático, ver: www.scienceinschool.org/climatechange
Los principales responsables del proyecto Los botánicos Investigan fueron:
  • Suzanne Kapelari, Institute of Botany, University Innsbruck, Austria
  • Sue Johnson, Institute of Education, London University, UK
  • Costantino Bonomi, Natural History Museum Trento, Italy
  • Gail Bromley, Royal Botanic Gardens Kew, London, UK
  • Krassimir Kossev, University Botanic Gardens Sofia, Bulgaria
  • FUENTE: Science in the School

20 de agosto de 2013

Cambio climático: Un sencillo experimentos para entender el Efecto Invernadero

Seguramente has escuchado que los gases de efecto invernadero están calentando la Tierra y que debido a ellos se están derritiendo los glaciares, dejando sin casa a animales como el oso polar; que se están secando ríos en todo el mundo en los que habitan cientos de especies de peces y anfibios; que las selvas y bosques se están convirtiendo en zonas áridas.

El efecto invernadero que actualmente se presenta en la atmósfera y que ha alcanzado niveles preocupantes se genera debido a que las industrias, los automóviles y aviones, la quema de bosques, selvas y pastizales y otras actividades liberan gases de efecto invernadero a la atmósfera, siendo el más común de estos el bióxido de carbono.  Estos gases se quedan en la atmósfera, rodeando al planeta, como si fueran un anillo alrededor de este, impidiendo la salida del calor.  Por eso se está calentando la Tierra.  ¿Alguna vez te has metido a un coche que estuvo durante mucho tiempo en el sol con las ventanas cerradas?  ¿Cómo se siente?  Aunque este ejemplo es exagerado, sucede algo similar.

Para entender el efecto invernadero podemos llevar a cabo un sencillo experimento.  Solo necesitas dos macetas pequeñas, con dos plantas iguales y una bolsa de plástico del súper en la que quepa una de estas macetas.

1.  Riega las plantas y colócalas en un lugar con mucho sol dentro o fuera de tu casa
2.  Mete la planta adentro de la bolsa de plástico, de manera que no se aplaste pero que quede cerrada.
3.  Deja las plantas 3 días
4.  Al cabo del tercer día retira la bolsa de plástico de la maceta y compara las dos plantas.  ¿Cuál se ve más seca?  ¿Qué ha pasado con las hojas? ¿Qué planta se ve más sana?

Con tus acciones diarias puedes contribuir a solucionar el problema del calentamiento de la Tierra.  Juega con tus hermanos y amigos en lugar de ver televisión y así gastarás menos electricidad; ahorra agua cerrando la llave mientras te enjabonas; come más frutas y verduras y menos galletas y botanas empaquetadas, ya que fueron producidas en fábricas y sus envolturas generan basura.  Además, es mucho más sano.

Este video de "Conocer Ciencia" te explica el procerso paso a paso:



¡Comparte estas ideas con tu familia, vecinos y compañeros de clase y actuemos para tener un planeta más sano!

Fuente:

CNN

YouTube

14 de agosto de 2013

¿Es usted un súper degustador? Descúbralo con este sencillo experimento...

"¡Esto está delicioso, tienes que probarlo!". Compartir el placer que da comerse algo rico es, para muchos, duplicarlo. Pero al hacerlo, estamos asumiendo que a todos nos sabe igual la comida.

En realidad, cuando se trata de sabor, hay tres tipos de personas: los no degustadores, los degustadores promedio y los superdegustadores.
¿Está usted en el último grupo, ese de aquellos que tienen una capacidad superior al resto de captar sensorialmente el alimento, debido a que poseen una mayor cantidad de papilas gustativas?

El científico Mark Miodownik le mostró a la BBC un experimento que se puede hacer en casa para saberlo.

Lo que necesita

Una botella de colorante de comida azul
Hisopos/copitos de algodón/cotonitos/cotoncitos/bastoncitos
Pinzas de cejas
Pegatinas redondas, de esas que se usan para reforzar el orificio que se hace con una perforadora de papel
Lupa
Gráfico de degustador (abajo)
Un trapo húmedo o pañuelos de papel

Lea el artículo completo en:

BBC Ciencia


18 de abril de 2013

También se puede aprender a mentir...

Científicos de la Universidad de Northwestern (EE UU) demostraron en un estudio reciente que se puede aprender a decir una mentira de tal modo que parezca idéntica a la verdad.

Normalmente, las personas tardan más tiempo y comenten más errores cuando cuentan una mentira que cuando dicen la verdad. Esto sucede, en esencia, porque en su cabeza están manejando dos respuestas que se contradicen entre sí, y tratando de suprimir la opción más honesta. Sin embargo, con la práctica adecuada las diferencias reconocibles pueden desaparecer. Xiaoqing Hu y sus colegas pusieron a prueba un sistema de "entrenamiento de mentirosos" en el que una serie de sujetos aprendían a aumentar la velocidad de respuesta cuando el contenido de sus palabras era incierto. Tras practicar y repetir en sus mentes varias la mentira, comprobaron que a partir de cierto punto los individuos no cometían errores al contarla, y respondían a idéntica velocidad mintiendo que cuando lo que decían era cierto.

El nuevo hallazgo debería ser tenido en cuenta por la policía cuando se comete un delito. "En la vida real, suele transcurrir un tiempo entre que se produce un crimen y se interroga a los sospechosos, suficiente para preparar y practicar mentiras", advierte Hu. 


Fuente:

Muy Interesante

4 de abril de 2013

Un adolescente inventa un panel solar hecho con cabello humano


Su idea nació de la necesidad de crear una propuesta nueva y barata para proveer de electricidad a una de las zonas más pobres de Nepal. Milan Karki de 18 años de edad, dio a conocer un elemento alternativo para la elaboración de las placas solares, el cual es simplemente un cabello humano.

El experimento fue realizado por Karki como un simple proyecto de ciencia; sin embargo, podría convertirse en la materia prima de los placas solares, sustituyendo al silicio, el cual es sumamente costoso y ha impedido que las paneles sean accesibles para varias personas de todo el mundo.

La placa solar elaborada con cabello humano provee alrededor de 18 watts de energía y tiene un costo promedio de 38 dólares cada una. El joven nepalí aseguró que de lograrse vender en masa y comercializarse, el precio se reduciría hasta en un 50 por ciento, haciendo de este un producto más sustentable.

Gracias a la melanina que contiene el cabello, es posible hacer funcionar la placa de Milan, quien aprovechó la sensibilidad a la luz de este pigmento, así como su propiedad de conductor para hacer trabajar su invento. La placa solar tiene la capacidad de proveer de energía a cualquier teléfono celular, así como alumbrar durante toda la noche una casa.

Fuente:

Diario Ecología

17 de marzo de 2013

Mecánica de Fluidos (última parte): Presión atmosférica

Mecánica de Fluidos - Quinta  Parte


En el capítulo anterior de [Mecánica de fluidos I] estudiamos el principio fundamental de la hidrostática y su conclusión anti-intuitiva de que el volumen de fluido no influye sobre la presión, sino que sólo lo hacen su profundidad y densidad. Como espero que recuerdes, hablamos también de Blaise Pascal y sus experimentos para demostrar este principio, y terminamos con algunos números concretos al aplicar el principio a cosas como el océano o la atmósfera.

Hoy seguiremos precisamente hablando acerca del aire y la presión que ejerce sobre todo lo que hay en su interior –como nosotros mismos–, y volveremos a disfrutar del genio de Blaise Pascal. No será un artículo denso en conceptos, sino que intentaremos relacionar lo que hemos estudiado hasta ahora con un fluido concreto y especialmente con la presión que ejerce, de paso que recorremos brevemente la historia de nuestro conocimiento sobre esa presión, la presión atmosférica. Además, para terminar haremos juntos –si lo tienes a bien– uno de mis experimentos favoritos relacionados con la presión.

Como dijimos en el artículo anterior, al aplicar la ecuación fundamental de la hidrostática a la capa de aire que corresponde a un edificio de diez pisos el resultado no es demasiado impresionante: unos 360 pascales. La razón era, por supuesto, que la densidad del aire es muy pequeña, de algo más de un kilo por cada metro cúbico. Pero ¿qué sucede si aplicamos el principio a toda la atmósfera?

Lo primero que sucede, desgraciadamente, es que la ecuación que obtuvimos en el artículo anterior no sirve: como recordarás, allí hicimos la suposición de que tanto la gravedad como la densidad del fluido eran uniformes. Esto es muy aproximadamente cierto para el desnivel que corresponde a un edificio de diez pisos pero, claro está, no lo es para el espesor de la atmósfera entera. Es posible calcular la presión de un modo más complicado teniendo en cuenta la variación de la densidad del aire con la altitud (la gravedad varía bastante poco pero también es posible tener en cuenta esa variación), pero es que ni siquiera hace falta eso. No hay más que recordar los ejemplos de los vasos comunicantes de la entrega anterior para poder inventar un sistema con el que medir la presión de la atmósfera entera con la misma ecuación de antes.

Mejor dicho, no hace falta más que recordar eso… y tener el ingenio necesario para poner en práctica el sistema, algo que consiguió un italiano, discípulo de Galileo Galilei: Evangelista Torricelli.


El experimento de Torricelli

Torricelli fue conquistado por la forma de hacer ciencia de Galileo cuando leyó su magnífico Discorsi e dimostrazioni matematiche intorno à due nuove scienze (Discursos y demostraciones matemáticas en torno a dos nuevas ciencias), del que hemos hablado largo y tendido en el pasado. Aunque Torricelli sólo convivió con su maestro durante unos meses, la filosofía galileana lo marcó profundamente, sobre todo la contribución más importante de Galileo a la ciencia moderna: la idea de que el Universo está escrito en el lenguaje de las matemáticas. Así, Torricelli no sólo fue un gran científico sino también un excelente matemático, y aplicó su conocimiento en un campo al otro constantemente para resolver problemas.

Uno de estos problemas era un misterio que traía locos a los científicos del siglo XVII. En la época empezaban a construirse las primeras bombas de vacío, que usando válvulas extraían aire de un recipiente, consiguiendo así elevar agua. El funcionamiento de la elevación del agua usando estas bombas, de acuerdo con la física de la época, tenía todo el sentido del mundo: desde los antiguos griegos –en particular Parménides y, sobre todo, Aristóteles– existía el concepto del horror vacui. La Naturaleza aborrece el vacío, luego si tratamos de crear uno, los fluidos se moverán para rellenar ese vacío de modo que no exista. Al retirar el aire que hay sobre un líquido, por ejemplo, obligamos al líquido a subir para rellenar ese vacío, que no puede existir más que un instante antes de que la Naturaleza –por razones que nadie acertaba a explicar– acabe con tal espanto.

Sí, todo esto tenía sentido excepto por el misterio que he mencionado antes. Los ingenieros del Gran Duque de la Toscana, a principios del siglo XVII, se encontraron con que la Naturaleza aborrece el vacío sólo hasta cierto punto. Cuando construían bombas para elevar agua los aparatos funcionaban estupendamente bien, pero sólo para elevar el agua hasta unos diez metros. Cualquier intento para elevar el agua más allá no tenía absolutamente ningún efecto: el agua iba subiendo según se retiraba el aire del tubo sobre su superficie, hasta que alcanzaba diez metros de altura. Y entonces se paraba. No había nada que se pudiera hacer para que siguiera subiendo.

Y esa altura de diez metros para la columna de agua no dependía de nada: ni de la potencia o calidad de la bomba, ni del grosor del tubo (¡incluso un tubo finísimo con muy poca agua dentro sólo la subía diez metros!), ni de ninguna otra cosa. ¿Por qué? ¿Por qué la Naturaleza no aborrecía el vacío que quedaba sobre el agua? ¿O es que no había tal vacío?

De acuerdo con el divino Galileo Galilei, la razón era la siguiente. El vacío ejercía una fuerza de succión sobre el agua, pero esa fuerza tenía un límite: si se intentaba elevar demasiada agua, era como si se intentase levantar un enorme peso con un hilo no demasiado resistente, que terminaba rompiéndose y no podía continuar levantando el peso. Cuanto más perfecto fuera el vacío, mayor sería la fuerza de succión ejercida por el horror vacui.

Dos italianos, Gasparo Betti y Rafael Magiotti, decidieron entonces realizar un experimento para medir esa máxima fuerza de succión realizada por el vacío. Para ello no usaron una bomba –que nunca puede extraer todo el aire de un recipiente, y menos aún las de 1640–, sino algo de una elegancia y una sencillez que me admira.

Magiotti y Berti tomaron un tubo de plomo muy largo completamente lleno de agua y cerrado por ambos extremos (en el superior había una parte de vidrio para ver el interior); lo pusieron vertical y sumergieron el extremo inferior en una gran tinaja de agua, y luego quitaron la tapa inferior del tubo –la que estaba bajo el agua–. Puedes imaginar lo que sucedió: el agua descendió por el tubo hasta que el desnivel entre la superficie del agua de la tinaja y la superficie del agua dentro del tubo había unos diez metros.

Experimento de Berti y Magiotti
 

Grabado del experimento de Magiotti y Berti en Florencia.

Pero ¿qué sustancia ocupaba el espacio sobre la superficie del agua dentro del tubo? El extremo superior estaba cerrado, de modo que no podía entrar aire, y no se habían observado burbujas de aire subir por el tubo, de manera que nada había entrado tampoco por el extremo inferior. La conclusión de Berti y Magiotti fue clara: en la parte superior del tubo no había nada. Era el vacío, que sostenía, tirando hacia arriba, el agua que había por debajo. Esto era controvertido, claro, ya que como hemos dicho mucha gente pensaba que el vacío no podía existir. Los partidarios de la física aristotélica sostenían que la parte superior no estaba realmente vacía, sino rellena de vapor de agua, aunque fuese con una densidad bastante pequeña.

Sin embargo, otro italiano no estaba de acuerdo con Galileo, Magiotti y Berti: el propio discípulo de Galileo, Evangelista Torricelli. Para Torricelli no era necesario recurrir al horror vacui para explicar lo que estaba pasando: según él, quien elevaba el agua era el peso de la atmósfera. No era que el vacío tirase hacia arriba del agua del tubo, sino que el aire la empujaba desde abajo. Esto era una locura aún mayor para los aristotélicos: ¡pero si el aire no pesa!

Para poder experimentar de manera más simple que Berti y Magiotti, Torricelli realizó un experimento muy similar con un líquido mucho más pesado que el agua: el mercurio. Dado que el mercurio es trece veces más denso que el agua, una columna de mercurio que pese lo mismo que otra de agua tiene una altura trece veces menor. Como sus predecesores, Torricelli llenó el tubo con el líquido –mercurio en este caso–, introdujo el extremo inferior en una tinaja llena de ese líquido y luego dejó libre ese extremo inferior. El mercurio descendió por el tubo, dejando un hueco en la parte superior, y el italiano observó lo que esperaba: que la columna de mercurio medía trece veces menos sobre la superficie libre del líquido de lo que había medido la de agua en el experimento anterior. Por si tienes curiosidad, la columna medida por Torricelli tenía unos 76 cm de altura, algo mucho más manejable que diez metros de tubo.

Experimento de Torricelli

La explicación de Torricelli –que era la buena, por cierto, aunque él no pudiera aún demostrarlo– era la siguiente: el mercurio del tubo sufre una fuerza hacia abajo, su propio peso, y otra hacia arriba, que es el peso del aire que empuja la superficie de mercurio en la tinaja, como se ve en la figura. Así, la columna de mercurio actúa como una especie de balanza: cuando el peso de la columna es igual que el del aire de fuera, todo se equilibra. Si echásemos algo más de mercurio –como sucede al principio del experimento, cuando hay más de 76 cm de mercurio–, el mercurio del tubo pesa más que el aire de fuera, con lo que desciende hasta que su peso iguala el del aire, y entonces se detiene.

Como puedes imaginar, la mayor parte de los filósofos naturales de la época se llevaron las manos a la cabeza: en primer lugar, ¿qué era esto de que el aire pesaba, y que no hacía falta recurrir al horror vacui para explicar que el mercurio del tubo no se cayera? Y en segundo lugar, ¿cómo osaba Torricelli contradecir a su maestro, ya fallecido, el gran Galileo Galilei? Y el problema era, claro está, que tan válida era una explicación como la otra –aire que empujaba desde abajo o vacío que tiraba desde arriba–. ¿Quién podría deshacer el entuerto?

El experimento de Pascal

Pues el auténtico héroe de este bloque de artículos, claro: Blaise Pascal, tan ingenioso como dado a la farándula y el experimento público. Pascal tenía una intuición física fuera de lo común y en cuanto escuchó hablar del experimento de Torricelli se puso de su parte: la explicación de Torricelli le parecía más probable que la del vacío. Y Pascal –en mi humilde opinión, claro– era un experimentador más ingenioso que Torricelli. En poco tiempo ideó dos experimentos con los que desafiar a los aristotélicos.

En primer lugar, para desmontar la idea de que la parte superior del tubo de Torricelli (como el de Berti y compañía antes que él) no estaba vacía, sino llena de vapor como decían los aristotélicos, Pascal hizo algo digno del mejor empirista: desafió a los otros a predecir lo que sucedería con un experimento diferente. Si se llenaba el largo tubo y el recipiente con vino en vez de agua, ¿mediría la columna más o menos que antes? La densidad del vino es muy parecida a la del agua, de modo que eso no iba a modificar demasiado el resultado.

De acuerdo con la física aristotélica, el vino es una bebida más espirituosa que el agua: libera una gran cantidad de vapores. Por lo tanto, los aristotélicos se apresuraron a predecir que, dado que habría mucho más vapor en la parte superior del tubo, la columna de vino debía ser bastante más baja que la de agua. Pascal anunció la fecha y lugar del experimento en 1646 en Rouen e invitó a verlo a todo el que quisiera. Acudieron medio millar de personas, algo extraordinario para la época.

Y la columna de vino midió diez metros.

No contento con eso, Pascal impulsó el experimento realmente esclarecedor, el que convirtió la doctrina Torricelli en la triunfadora y nos llevó por fin a comprender el comportamiento de la presión atmosférica. Digo impulsó y no realizó porque no lo hizo él mismo: escribió una carta a su cuñado, Florin Perier, que vivía cerca del Puy de Dome, una montaña francesa. Pascal pidió a Perier que tomase un artilugio de Torricelli (recipiente, tubo, mercurio, etc.) y realizase el mismo experimento en la base de la montaña, en la cima y en puntos intermedios. Una vez más, el genio de Pascal consistió en diseñar un experimento cuyo resultado desmontase una u otra hipótesis sin lugar a dudas.

Si los aristotélicos tenían razón, la columna de mercurio mediría siempre lo mismo. Si tenía razón Galileo, la columna de mercurio también mediría siempre lo mismo, ya que el vacío era el mismo en la base, en la cima o en cualquier otro sitio, y por tanto su “poder succionador” también. Sin embargo, si tenían razón Torricelli y el propio Pascal, la columna mediría menos según se ascendía la ladera de la montaña, ya que cada vez habría menos aire sobre ella, de modo que el peso de la atmósfera sobre la superficie libre de mercurio sería cada vez menor.

Para sorpresa de casi todo el mundo –no para ti, espero–, la columna de mercurio no sólo descendió según Perier subía por la ladera de la montaña, sino que lo hizo de manera proporcional al ascenso. Pascal había propinado el toque de gracia a la concepción aristotélica del vacío. ¿No merece el bueno de Blaise que los pascales se llamen así en su honor, sin quitar méritos a Torricelli?

Lo que el italiano había construido para sus experimentos fue uno de los primeros barómetros, es decir, instrumentos para medir la presión de la atmósfera. Al usar uno a diferentes altitudes, como hizo el cuñado de Pascal, es posible comprobar la variación de presión con la altitud sobre el nivel del mar. Sin embargo, para asimilar mejor la situación, más que pensar en subir por la ladera de la montaña, es más conveniente utilizar una imagen diferente.

Tú, estimado lector, eres un pez abisal de la atmósfera.

Te encuentras ahora mismo en el fondo de un océano de una profundidad apabullante, muchos kilómetros por debajo de la superficie: muchísimo más profundo que la fosa oceánica más profunda. Para conseguir salir a la superficie (que sería, en este caso, el espacio interplanetario) tendrías que “nadar” hacia arriba una distancia mucho mayor que cualquier pez abisal del océano de agua.

Las diferencias entre ambos océanos (el de agua y el de aire) son fundamentalmente tres. Por una parte, evidentemente, el aire es muchísimo menos denso que el agua. Por otra, el agua tiene una densidad prácticamente constante según te sumerges en el océano, pero el aire no: al ser un gas, su densidad depende mucho de la presión. El aire cerca del suelo, donde estamos nosotros, está comprimido por el peso de todo el aire sobre él, de modo que su densidad (como vimos, alrededor de 1,2 kg/m3) es la más alta de toda la atmósfera, al estar “apretujado” por el aire de capas superiores.

Aunque Perier, el cuñado de Pascal, midió una disminución en la presión proporcional a los metros de ascenso, esto sólo sucede mientras la densidad del aire es uniforme. Si subes lo suficiente, la menor presión supone una menor densidad del aire sobre tu cabeza, de modo que la presión disminuye a su vez más lentamente. 

Esto significa que, igual que la densidad atmosférica es máxima cerca del suelo por la presión de las capas superiores, lo mismo pasa para su descenso: es más brusco cerca del suelo pero se suaviza según subes.

Variación de la presión con la altitud
 

Variación de la presión con la altitud (dominio público).

Si comprendes esto, también comprenderás la tercera diferencia con el océano: el agua tiene una superficie bien definida, una separación entre agua y aire. Sin embargo, dado que la densidad disminuye más despacio cuanto más pequeña es, no hay una superficie definida, sino que el aire se va difuminando y volviendo más y más tenue, pero nunca se alcanza un límite claro donde termina la atmósfera. Desde luego, pasado un cierto punto hay tan poco aire a tu alrededor que puedes decir que has abandonado la atmósfera, pero no es fácil decir dónde. Si quieres leer algo más sobre la transición espacio-atmósfera, puedes hacerlo en el tercer artículo dedicado a la Tierra dentro de El Sistema Solar.

El experimento de Berti y Magiotti, más que el del propio Torricelli, sirve para que te hagas una idea de cuánta presión ejerce todo ese aire: el mismo que una columna de agua de unos diez metros de profundidad. Dicho de otro modo, hay la misma diferencia de presión entre la cima de la atmósfera y tu cabeza que la que sentirías si buceas a diez metros de profundidad bajo la superficie de un lago. Si alguna vez has llegado al fondo de una piscina de tres o cuatro metros, serás consciente de que esto no es ninguna tontería — es una presión considerable.

De hecho, con lo que sabes ya puedes calcular cuánta presión es: diez metros de agua suponen una presión de 1000 kg/m3 (la densidad del agua) por 10 m/s2 (la gravedad en la superficie terrestre) por 10 m (la profundidad de la columna de agua), es decir, unos 100 000 Pa (100 kPa). Para poner esto en perspectiva de otro modo, la fuerza sobre la superficie de todo tu cuerpo es equivalente al peso de un coche de una tonelada. ¡Y los aristotélicos decían que el aire no pesa!


Pascales, atmósferas, bares, mmHg y milibares

Por desgracia (en mi opinión, por supuesto), a lo largo de los años han ido proliferando unidades alternativas a la presión, diferentes de los pascales, y por razones históricas seguimos usando un batiburrillo de ellas aún hoy en día. Aunque no me gusten ni un pelo, este bloque y en particular este artículo no estarían completos si no te diera una idea de cuáles son y cuál es su equivalencia con los pascales — dicho esto, si alguna vez utilizas cualquiera de ellas espero que imagines mis ojos desaprobadores mirándote. Sí, mirándote con desaprobación.

Dado que los primeros barómetros fueron de mercurio, à la Torricelli, a veces se mide la presión simplemente como la altura de una columna de mercurio en milímetros: mmHg. Por ejemplo, el italiano midió una altura de unos 76 cm para su columna de mercurio, con lo que usando estas unidades podríamos decir que la presión en ese caso era de 760 milímetros de mercurio, es decir, 760 mmHg. La relación, de hecho, es más o menos esa: 760 mmHg equivalen aproximadamente a 100 kPa.

Puesto que la presión atmosférica en el suelo es un valor importante, también se empezó a utilizar como unidad en sí misma. Así, una atmósfera se definió como la presión atmosférica media en París. Por si tienes curiosidad, se consideró que ese valor es de unos 101 325 Pa.

Sin embargo, dado que ese número es absurdamente difícil de recordar mientras que, al mismo tiempo, es arbitrario, pronto se empezó a utilizar otra unidad de presión que básicamente es la presión atmosférica pero redondeada: 100 000 Pa. A ese valor se le dio el nombre de bar, del griego peso. Dicho de otro modo, un bar no es más que cien kilopascales.

Pero, ¡ah!, dado que las variaciones de presión entre unos lugares y otros, unos días y otros o unas altitudes y otras son mucho más pequeñas que un bar, pronto empezaron a usarse submúltiplos del bar, sobre todo los milibares, la milésima parte de un bar: mbar, que se siguen usando mucho en meteorología, desgraciadamente. Por tanto, un milibar no es más que cien pascales.

Ya que estamos haciendo números, aunque a mayor altitud la cosa varíe por las razones que he explicado antes, cerca del suelo es posible utilizar sin más la fórmula fundamental de la hidrostática para estimar cuánto disminuye la presión según subes: cada metro de aire supone unos 12 Pa (1,2·10·1). Dicho de otro modo, cada ochenta metros disminuyen la presión 1 kPa. Mil pascales pueden parecer mucho, pero claro, esto significa que si estás al nivel del mar y subes ochenta metros la presión pasa de 100 kPa a 99 kPa, es decir, es tan sólo un 1% de variación que no se nota mucho.

Hablando de notar, ¿por qué no notamos esta enorme presión? Como hemos dicho antes, la presión atmosférica equivale a la de irse al fondo de una piscina de 10 metros de profundidad. Sin embargo, como bien comprobaron Torricelli o Pascal, no era evidente en absoluto que la atmósfera pesara sobre nuestras cabezas. ¿Por qué tardamos tanto tiempo en notarla?

La respuesta es que sí vemos signos de la presión atmosférica todo el tiempo pero, como siempre sucede con la presión, sólo se notan las diferencias de presión, no las presiones absolutas. Para entender esto lo mejor es ir a un ejemplo concreto, el ejemplo en el que todos hemos experimentado la diferencia de presión: el del tímpano.

Ahora mismo, según lees estas líneas, tu tímpano está sometido a dos fuerzas encontradas: el aire del interior presiona hacia fuera, y el del exterior presiona sobre el tímpano hacia dentro. Sin embargo, en ambos casos la presión es la misma (depende de donde estés, pero supongamos que 100 kPa). Por lo tanto, tu tímpano no sufre una presión neta hacia ninguno de los dos lados y no notas nada.

Si buceas al fondo de una piscina de 3 metros de profundidad, sin embargo, la cosa cambia. Dentro de ti la presión sigue siendo la misma de antes, pero fuera ha aumentado en unos 30 kPa, luego es ahora de 130 kPa. Por lo tanto, el tímpano sufre una presión neta hacia dentro de 30 kPa que sí notas, y puede llegar incluso a producir dolor. Para compensarla, como seguro que sabes, no hay más que taparse la nariz y expulsar aire desde los pulmones, es decir, aumentar la presión en el interior, de modo que sea de unos 130 kPa dentro y también fuera y no se note la diferencia.

Algo parecido pasa cuando subes lo suficiente en la atmósfera, pero entonces es al revés: la presión fuera disminuye por debajo de 100 kPa, de modo que el tímpano sufre una presión neta hacia fuera. Eso suele doler nada o muy poco, pero el tímpano está tenso y no puede vibrar igual de bien que antes, de modo que los oídos “se taponan”. Naturalmente no están taponados, simplemente “hinchados”, y no hay más que esperar a que, poco a poco, la densidad y presión del aire en tu interior disminuyan hasta igualarse con la de fuera para que desaparezca el efecto.

Sin embargo, utilizas la presión atmosférica muy a menudo sin darte cuenta. No voy a aburrirte con ejemplos, pero sí quiero hablar de tres que son lo suficientemente comunes e interesantes como para detenernos en ellos.

En primer lugar, el aspirador. Un aspirador no funciona porque haya nada dentro de él que “tire” del aire hacia dentro. No, como bien decía Torricelli, las fuerzas de succión son aparentes, pero no reales. Lo que sucede es exactamente lo contrario: un ventilador empuja el aire fuera del aspirador (suele haber una rejilla en el cuerpo principal de la máquina), de modo que el aire del tubo tiene, por un extremo, más aire (el de la habitación a 100 kPa), y por el otro extremo nada, ya que el ventilador ha empujado el aire hacia fuera.

Por lo tanto, la presión atmosférica de la habitación empuja el aire hacia el interior del tubo… donde es empujado de nuevo hacia fuera por el ventilador, con lo que el proceso nunca se detiene. Dicho de otro modo, el ventilador mantiene un diferencial de presión fuera-dentro que asegura el flujo de aire por el tubo. Y, dado que el aire arrastra consigo todas las pequeñas partículas, polvo y demás que hubiese en la habitación, es posible así acumularlas dentro del aspirador y usar la máquina para limpiar.

En segundo lugar, las ventosas. Cuando aprietas una ventosa contra un cristal, por ejemplo, en tu cabeza (o al menos en la mía) lo que sucede es que la fuerza de succión de la ventosa la mantiene pegada al cristal. Pero las fuerzas de succión son realmente fuerzas de empuje. Estoy convencido de que, a estas alturas, tú mismo puedes explicar lo que sucede: al apretar la ventosa obligas a salir al aire que había dentro. Por tanto, la superficie de la ventosa sufre la presión atmosférica hacia dentro, pero ninguna presión hacia fuera –pues hemos extraído el aire–. Es la atmósfera la que empuja la ventosa y la mantiene pegada a la superficie.
Si entiendes esto también comprenderás lo siguiente: cuanto más grande sea la ventosa mayor será la fuerza contra la superficie que la sostiene. Claro, al ser más grande también pesa más, pero un efecto es mucho más intenso que el otro. Una ventosa lo suficientemente grande sería imposible de despegar para una persona. Además, dado que es la presión de fuera la que mantiene la ventosa pegada, las ventosas no se quedan tan bien pegadas en unos lugares u otros — cuanto más subas por una montaña, menos presión sufre la ventosa y menos pegada está.

Finalmente, mi ejemplo favorito: la pajita. Cuando bebes cualquier refresco con una pajita, en tu cabeza –o al menos en la mía– eres tú quien hace subir la bebida por la pajita. Pues no, amigo, no: es la atmósfera quien la hace subir. Lo que tú haces es hinchar tus pulmones, disminuyendo la densidad y la presión en el interior. Por lo tanto, la presión exterior es mayor que la interior y la atmósfera empuja la superficie de la bebida en el vaso hacia abajo, haciéndola subir por la pajita.

Dicho de otro modo: si la pajita tuviera más de 10 metros, por más esfuerzos que hicieras, aunque lograses que la presión en tus pulmones fuera exactamente cero, la bebida nunca jamás alcanzaría tus labios. Y es que no eres tú quien tira de ella hacia arriba, sino la atmósfera la que la empuja desde abajo.

De hecho, la mejor manera de asimilar estos tres ejemplos –y los muchos otros que existen– de la acción de la presión atmosférica es pensar en lo siguiente: ¿qué pasaría en la Luna, donde no hay aire?

En la Luna, una aspiradora no haría absolutamente nada. Las ventosas caerían al suelo por mucho que apretases sobre ellas antes y, lo más anti-intuitivo de todo: la bebida no subiría ni un milímetro por la pajita, por muchos esfuerzos que hicieras. ¿O es que pensabas que eras tú quien la subía?

Variaciones locales de la presión atmosférica

Aunque la parte más interesante de este asunto tiene que ver con los movimientos de masas de aire y, por ahora, estamos restringiéndonos a situaciones de equilibrio, no puedo terminar este capítulo sin hablar muy brevemente de las variaciones locales de la presión atmosférica.

Puesto que el aire es un gas, como vimos al hablar de las diferencias entre fluidos, puede cambiar su densidad –y por lo tanto su presión– por causas diversas. Esto significa que la presión atmosférica en cualquier parte no depende sólo de la altitud, sino también de muchas otras cosas, como la temperatura.

Por ejemplo, si el Sol calienta mucho el suelo en una zona determinada, el aire sobre él también se calienta, expandiéndose y, por tanto, disminuyendo su densidad y su presión. Así, esa zona tiene una presión atmosférica más baja que las circundantes, y más baja que antes — es una zona de bajas presiones o borrasca. Como suele suceder que este aire menos denso asciende, se enfría y –si tiene suficiente humedad– produce nubes y lluvia, las borrascas suelen estar asociadas al mal tiempo. Recuerda, por cierto, que esto es un brevísimo ejemplo y hay otras causas que pueden producir un descenso de la presión además del calentamiento producido por el Sol.

Lo contrario sucede si en una zona determinada la presión es más alta de lo normal: puede ser porque haya llegado allí una masa de aire más frío y denso que antes, por ejemplo. La zona de altas presiones se denomina anticiclón, y dado que el aire está frío y es denso, desciende y se calienta, provocando la evaporación del agua: por eso en los anticiclones no suele haber nubes y suelen asociarse al buen tiempo.

Borrasca y anticiclón
 

Borrasca (izquierda) y anticiclón (derecha) (dominio público).

Tanto en un caso como en el otro hay, como digo, movimientos de masas de aire, que a su vez tienen peculiaridades curiosas, pero a ellos llegaremos en su momento, cuando hayamos estudiado los fluidos que no están en equilibrio. Por ahora simplemente quería hablar de los dos nombres –anticiclón y borrasca– y del porqué de las asociaciones con el buen o mal tiempo.

Ideas clave

Aunque éste ha sido una especie de “intermedio” sin demasiada presión –ja, ja– sí deberías tener bien claras las siguientes ideas:
  • La presión de la atmósfera al nivel del mar es de unos 100 kPa, el equivalente a diez metros de agua.
  • Normalmente no notamos la presión atmosférica porque sólo percibimos diferencias de presión dentro-fuera, no presiones absolutas.
  • Sí es posible percibir la presión atmosférica en fenómenos como ventosas, aspiradores o pajitas, al crear esas diferencias de presión a propósito.
  • Cuando una región tiene una presión mayor que las que la rodean se denomina anticiclón, y al contrario, borrasca.

Hasta la próxima…

El experimento de hoy es de los que más emoción despiertan en niños y adolescentes –doy fe de ello–. Creo que es por el atractivo de los fenómenos violentos. Deja clarísimo no sólo la existencia de la presión atmosférica, sino también el hecho de que no es moco de pavo.


Experimento 2 – Implosión

Material necesario: Una lata de refresco vacía, un fogón o similar, agua, un recipiente grande, unas pinzas.

Instrucciones: Llena el fondo de la lata de refresco con un poco de agua (un dedo o dos es suficiente). Nuestro objetivo es hacer que el agua hierva, llenando el interior de la lata de vapor de agua que expulsará a su vez el aire que había dentro. Para ello, tomando la lata con unas pinzas para no quemarte, ponla al fuego hasta que esté completamente llena de vapor de agua (cuando lleve hirviendo un minuto o dos será evidente que está llena de vapor).

Mientras, ten preparado junto al fogón un recipiente grande con agua fría, que usaremos para enfriar la lata. Aquí viene la parte “estresante” del experimento: debes poner la lata boca abajo en contacto con el agua fría, como si fueras a volcarla en el agua pero introduciendo parte de la lata dentro para que se enfríe. Hay que hacerlo rápido para que no se enfríe poco a poco por el camino al retirarla del fuego.

Al entrar en contacto con el agua fría y disminuir bruscamente su temperatura, el vapor de agua se condensa y “llueve” dentro de la lata, cae al agua y, como la boca de la lata está bajo el agua porque la lata está boca abajo, dentro de la lata se hace un vacío bastante razonable (porque no puede entrar aire por ninguna parte). Este vacío repentino hace que el aire de fuera… bueno, mejor lo ves tú mismo. Si es con niños cerca, mejor: no volverán a decirte que el aire no pesa.

Fuente:

El Tamiz
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0