Latest Posts:

Mostrando las entradas con la etiqueta espacio. Mostrar todas las entradas
Mostrando las entradas con la etiqueta espacio. Mostrar todas las entradas

17 de enero de 2013

KOI 172.02: El planeta gemelo a la Tierra


koi11111

La misión Kepler de la NASA ha encontrado el que hasta el momento sería, el exoplaneta más parecido a la Tierra jamás visto: KOI 172.02, que se encuentra a una distancia aproximada de 140 años luz y tendría un radio un 50% mayor que el de nuestro planeta, indicando que su tamaño es considerablemente más grande.

Aparte de eso, el año en KOI 172.02 es más corto, pues da una vuelta a su sol en 242 días, mientras que por otro lado su aceleración de gravedad es de 14,7 m/seg, lo que se expresa en una gravedad mucho más fuerte que la de nuestro planeta, donde dicha cifra es de 9,8m/seg.

Lo más interesante es que la temperatura del lugar podría ser parecida a la nuestra, si bien un poco más fría, pero permitiendo de todas formas la presencia de agua en su superficie, convirtiéndolo en primera prioridad para apuntar las búsquedas de vida extraterrestre de ahora en adelante.

Link: Twin Earth Discovered, KOI 172.02, Most Earth-Like Planet Yet Found (Planetsave)

Fuente:

FayerWayer

16 de enero de 2013

¿Cómo se ve la contaminación en Beijing desde el espacio?


(CC) NASA

Los habitantes de la capital de la República Popular China, Beijing, llevan varios días con uno de los peores períodos de contaminación ambiental de los últimos años, el que ha crecido a niveles altamente tóxicos debido al frío invierno sin viento que potencia la ya habitual contaminación debido a los automóviles, fábricas y plantas de carbón.

Mientras que en la mayoría de los países el índice de calidad del aire se considera ‘bueno’ cuando hay menos de 100 microgramos de material particulado por metro cúbico, y escalando hasta llegar a niveles críticos cuando se superan los 300 microgramos por metro cúbico, la embajada norteamericana en Beijing midió este fin de semana 900 microgramos por metro cúbico.

Ante ésto, la NASA lanzó una serie de fotografías que muestran las horribles condiciones atmosféricas de la capital de China, donde se puede apreciar la radical diferencia en la calidad del aire con dos fotografías tomadas el 3 y el 14 de enero del presente año, donde además se puede mover una barra para comparar la densa nube gris que cubre Beijing.

Link: Air Quality Suffering in China (NASA)

Fuente: 

FayerWayer

10 de enero de 2013

La sonda WMAP determina cómo nació el Universo


La sonda WMAP de la NASA ha dado una explicación de cómo nació el Universo. Según el equipo científico, se ha determinado con gran precisión la edad Universo, la densidad de los átomos, la época donde las primeras estrellas comenzaron a brillar y la densidad del resto de materia no atómica.

WMAP

La sonda, lanzada por la NASA en el 2001 y retirada hace dos años, ha dado sus primeras conclusiones finales. Al parecer, con un grado de precisión sobre algunos aspectos del Universo cerca de 68.000 más precisos que cualquier modelo anterior.

El trabajo principal de la sonda ha sido el de tomar una "radiografía" completa del cosmos observando el resplandor del Universo caliente y llegando a un momento en el que tan sólo tenía 375.000 años de edad (actualmente contaría con 13.700 millones de años).

El resultado final es una imagen del universo en sus comienzos, una aproximación que permite con un alto grado de precisión explicar lo que aconteció en el pasado. De entre las conclusiones, los investigadores hablan de datos que vienen a refrendar la teoría del Big Bang o la teoría de la "inflación", aquella que predica que el Universo tuvo un período dramático inicial de expansión llegando a un crecimiento de más de un billón de billones de veces en menos de un billón de una billonésima parte de segundo. De estas expansiones nacerían las galaxias en el tiempo.

Por último, los investigadores han destacado que WMAP ha dado la posibilidad de ajustar la fecha en la que comenzaron a brillar las primeras estrellas, una época que se remontaría a 400 millones de años de vida del Universo.

Fuente:

ALT1040

10 de diciembre de 2012

El neutrino está de cumpleaños

 
neutrino electrónico de ParticleZoo

Neutrino electrónico de ParticleZoo

Durante la década de 1920 la física vivía años dorados: Hubble descubrió que nuestra galaxia era sólo una de miles, se descubrió la expansión del universo, la teoría de la relatividad era verificada experimentalmente, y grandes genios del siglo XX incluyendo a Bohr, Born, Heisenberg, Schrödinger, Dirac y Planck develaron uno de los grandes misterios de la naturaleza desarrollando la física cuántica. Experimentos alrededor del mundo confirmaban uno tras otro cómo esta nueva y extraña descripción del mundo subatómico funcionaba a la perfección. 


Sin embargo, a fines de esa década la física de partículas todavía en pañales enfrentaba una importante crisis. La radioactividad ya tenía un par de décadas y su descubrimiento le había significado el Premio Nobel a Henry Becquerel, Pierre y Marie Curie en 1903, sin embargo había un detalle que tenía a los teóricos de la época sin dormir tranquilos. El llamado decaimiento beta ocurre cuando un núcleo atómico espontáneamente se transforma en otro emitiendo un electrón. Los físicos notaron que el nuevo núcleo atómico tenía un protón más que el original por lo que la carga eléctrica se conserva (protón y electrón tienen cargas de igual magnitud pero signo opuesto). Esto es muy importante ya que las leyes de la física funcionan en base a principios de conservación. Otra cantidad importante que debe conservarse es la energía. Todos hemos aprendido desde niños que la energía no se crea ni se destruye, sólo se transforma. Y justamente aquí estaba el problema con el decaimiento beta, ya que los cálculos mostraban que si la energía se conserva entonces el electrón siempre sería emitido con la misma energía E_0; sin embargo todos los experimentos mostraban que al decaer el núcleo atómico, el electrón salía emitido con cualquier valor entre cero y E_0. Tanto era desconcierto de los teóricos que el mismo Niels Bohr consideró que sería necesario abandonar el principio de conservación de la energía.

El nacimiento del neutrino

Desde siempre, las conferencias de física han servido no sólo como una reunión para debatir acerca de recientes descubrimientos y resultados sino que principalmente para discutir nuevas ideas (esto en realidad justamente por eso vamos a conferencias). Así ocurrían las famosas discusiones entre Einstein y Bohr sobre física cuántica durante las Conferencias Solvay, cuya versión en 1927 permitió reunir a las lumbreras de la física teórica y experimental de la época en esta famosa imagen:

Solvay_conference_1927_crop

Cuarto de derecha a izquierda de pie aparece Wolfgang Pauli, distraído junto a Werner Heisenberg, parece estar enfocado en uno de sus rivales públicos Paul Ehrenfest (tercero de izquierda a derecha), con quien protagonizaron varias peleas verbales públicas. Era sabido que uno asistía a las charlas del otro sólo para fastidiarlo.

Pauli tenía 30 años en 1930 cuando no pudo asistir a una conferencia en Tubingen (Alemania) en la que se debatiría el problema del decaimiento beta.


Pauli en su cumpleaños 1945

Pauli celebra su 45° cumpleaños en medio de una charla en Princeton (1945)

Pauli tuvo una idea que resolvería el problema y salvaría al principio de conservación de la energía de una forma elegante pero radical. Pauli propuso que en el decaimiento beta de un núcleo atómico no sólo se crea un protón y un electrón, sino que también se emitiría una tercera partícula que compartiría su energía con el electrón, de esta manera el electrón sería emitido a veces con mucha energía, otras veces con poca energía. Con esta hipotética partícula Pauli reconciliaría la teoría con los experimentos. Dado que la carga eléctrica ya era conservada, esta nueva partícula debería ser neutra por lo que Pauli la bautizó como “neutrón” (aunque lo que hoy llamamos neutrón fue descubierto en 1932 y no es el “neutrón de Pauli”). Como no pudo asistir a la conferencia, Pauli escribió el 4 de diciembre de 1930 una de las más famosas cartas en la historia de la física, dirigida a los participantes de la conferencia.

“Estimados y radiactivos damas y caballeros…” escribió, agregando un toque de humor a esta informal manera de expresar una nueva y genial idea. “He encontrado una medida desesperada para salvar la ley de conservación de la energía suponiendo que en el núcleo existen partículas sin carga eléctrica a los que llamaré neutrones. Las observaciones del decaimiento beta tienen sentido si además del electrón, un neutrón es emitido de tal manera que la suma de sus energías es constante” (E_0). Es interesante ver cómo una idea que salvó uno de los principios fundamentales de la física nunca fue publicado. Pauli explica que “por ahora no me atrevo a publicar los detalles de esta idea, les confío a ustedes mi querida gente radiactiva la pregunta de cuán probable sería encontrar evidencia experimental de tal neutrón”. Con estas palabras Pauli literalmente inventó una nueva partícula como una medida desesperada a la posibilidad de abandonar un principio tan fundamental (conservación de la energía). Pauli incluye en su carta detalles sobre las propiedad que “su neutrón” debería tener y concluye diciendo “Debo admitir que mi solución puede parecer casi imposible ya que si existiera ya deberíamos haber visto estos neutrones. Pero si no nos arriesgamos no avanzaremos. Querida gente radiactiva, examinen y juzguen”.

Pauli

“Certificado de nacimiento del neutrino”: Carta de Pauli a los participantes en la conferencia en Tubigen

En 1934, otro de los grandes físicos de la época, el italiano Enrico Fermi, postuló una teoría completa sobre los decaimientos radiactivos que hoy conocemos como interacción débil. Fermi incorporó la idea de Pauli en su teoría, sin embargo en 1932 James Chadwick había descubierto el neutrón, por lo que el “neutrón de Pauli” (todavía hipotético) necesitaba otro nombre. Según los cálculos de Pauli, “su neutrón” debería tener una masa una 100 veces menor a la de un protón, dado que el neutrón descubierto por Chadwick era un poco más pesado que el protón Fermi exclamó “este neutrón es muy pesado, el neutrón de Pauli es más liviano, más pequeño, debereríamos llamarle el pequeño neutro”. Así es como el neutrón de Pauli pasó a llamarse neutrino, que en italiano significa “el pequeño neutro”.

Búsqueda del neutrino

Cowan Reines

Cowan y Reines con su detector de neutrinos

Los años pasaban y no aparecía evidencia del neutrino. Pauli llegó a expresar “he hecho algo terrible, algo que ningún teórico debería hacer: he inventado una partícula que no puede ser observada”. Sin embargo los físicos experimentales son muy ingeniosos y basados en la teoría de Fermi sabían que grandes cantidades de neutrinos serían creados en reacciones nucleares. El Sol produciría neutrinos en grandes cantidades pero debido a la gran distancia sería muy difícil detectarlos. En 1945 Frederick Reines trabajaba bajo la supervisión de Richard Feynman en Los Alamos como parte del Proyecto Manhattan, el cual concluye con la creación de la primera bomba nuclear. Más que una terrible arma, Reines vio una copiosa fuente de neutrinos en la Tierra. Durante la guerra fría las dos potencias nucleares testeaban sus armas y Reines planeaba instalar un detector de neutrinos para intentar probar su existencia, sin embargo el detector debía estar tan cerca que la explosión destruiría el detector. En 1952 Reines junto a Clyde Cowan deciden usar una “fuente pacífica de neutrinos” por lo que instalan su detector junto a un reactor nuclear en Hanford, en el estado de Washington. La teoría de Fermi también mostraba lo difícil que sería detectar un neutrino ya que rara vez interactúan con la materia. Usualmente se dice que “atrapar un neutrino es como intentar atrapar una bala con una malla para mariposas”. Esta propiedad fantasmal del neutrino de casi no interactuar la convierte en una partícula muy elusiva. Reines y Cowan denominaron a su búsqueda del neutrino “proyecto Polstergeist”. Luego de meses recolectando datos deciden instalar su detector en una planta nuclear con mayor potencia, esta vez en Savannah River en Carolina del Sur. Mejorando sus mediciones, en 1956 luego de más de dos décadas como una partícula hipotética, Reines y Cowan demuestran que la “solución desesperada” de Pauli es la correcta y que el neutrino existe. El 15 de junio de 1956 Reines y Cowan le enviaron un telegrama a Pauli contándole la noticia. Reines recibió el Premio Nobel en 1995 por este decubrimiento (Cowan murió en 1974).

Luego de la confirmación de la existencia del neutrino, la siguiente meta fue detectar los neutrinos emitidos por el Sol así como los generados en la atmósfera por la colisión de rayos cósmicos con moléculas de aire. Esta nueva carrera causó nuevos misterios llamados “el problema de los neutrinos solares” y “el problema de los neutrinos atmosféricos”, lo que da para un post completo que espero publicar en el futuro.

En 1962 Leon Lederman (famoso por titular “La Partícula de Dios” a su libro sobre el bosón de Higgs), Melvin Schwartz y Jack Steinberger descubrieron que no sólo el neutrino es una partícula real, sino que hay dos tipos de neutrinos, lo que les dio el Premio Nobel en 1988. Recién en el año 2000 se confirmó que existe un tercer tipo de neutrino.

Neutrinos hoy

Hay muchas historias para contar sobre estos “pequeños neutros”, sin embargo en 2011 los neutrinos acapararon la atención de todo el mundo cuando el experimento OPERA anunció que sus neutrinos parecían viajar más rápido que la luz. Fue genial ver cómo los neutrinos se convertían en la partícula de moda, destronando al Higgs por unas semanas. Lamentablemente todo fue un error en la medición. Durante 2012 el Higgs ha recuperado su lugar en los medios, y todo parece indicar que podemos decir que el Higgs ha sido descubierto.

Hay mucho que no sabemos sobre los neutrinos lo que gatilla el interés en estudiarlos. Sin embargo existe otra razón más profunda: los neutrinos podrían responder la pregunta “¿por qué existimos?” ya que sus propiedades podrían haber permitido que hubiese más materia que antimateria luego del Big Bang lo que llevaría a la formación del univero en el que vivimos. Hay muchos otros motivos por los cuales estudiar a estos pequeñines (como se refirió a ellos Lederman en una conversación que tuvimos en 2011). 


Personalmente les he dedicado sólo los últimos 6 años de mi vida, pero espero seguir estudiándolos, una copia de la carta de Pauli adorna mi oficina como el “certificado de nacimiento” de mi partícula favorita. En mi investigación los uso como herramientas para comprender ciertas propiedades de la naturaleza ya que al ser tan pequeños son sensibles a los más pequeños defectos que el espaciotiempo pudiese manifestar (espero en el futuro contar más detalles).

Los neutrinos pudieron originar el universo en el que vivimos, son fantasmales,  65 mil millones de neutrinos provenientes del Sol atraviesan cada centímetro cuadrado de nuestro cuerpo cada segundo, llegan desde el cielo en el día y atraviesan la Tierra para aparecer desde el suelo en la noche, como una vez escribí estos pequeños neutros pueden ser bastante tenebrosos: “los neutrinos son partículas fantasmales observadas por primera vez gracias al proyecto Poltergeist, que durante la noche aparecen por debajo de tu cama”.


Fuente:

Conexión Causal

9 de diciembre de 2012

Un nuevo tipo de galaxia… y de color verde

Unos astrónomos descubren un objeto galáctico enteramente iluminado por la luz del entorno de un gigantesco agujero negro.




La galaxia de ‘judía verde’ J2240, en la constelación de Acuario. / CFHT/ESO/M. Schirmer

Una rara galaxia que brilla intensamente en color verde toda ella, iluminada por la luz residual del entorno del agujero negro que tiene en su centro, ha sorprendido a los. Es un nuevo tipo galáctico que han bautizado de judía verde -no confundir con las de guisante verde, que ya se conocían- y que da pistas sobre lo que sucede cuando el agujero negro se relaja. La galaxia en cuestión (denominada J2240) está a unos 3.700 millones de años luz en la constelación de Acuario. Los científicos, a la vista de esta gran rareza en el universo, han buscado otros ejemplares similares entre casi mil millones de galaxias registradas en la base de datos SDSS (Rastreo Digital del Cielo Sloan) y han dado con otras 16 del mismo tipo. Y son tan poco corrientes, que los científicos han calculado que cabe esperar la existencia de una sola en un cubo de 1.300 millones de años luz de lado en el universo, señalan los expertos del Observatorio Gemini.

En muchas galaxias que tienen agujeros negros gigantes la materia que va cayendo en ellos se acelera hasta tal punto que su intensa radiación hace que brille el gas del entorno. Pero normalmente ese brillo no alcanza más allá del 10% de la galaxia. En el caso de la judía verde, sin embargo, toda ella esta iluminada y en verde porque el gas encendido es oxígeno ionizado, que brilla en ese color.

Mischa Schirmer dice que se quedó atónito cuando vio la J2240 en una fotografía captada con el telescopio Franco-Canadiense de Hawai. Parecía efectivamente una galaxia, pero nunca había visto una así, verde brillante, cuenta en un comunicado del Observatorio Europeo Austral (ESO), cuyo conjunto de telescopios VLT, en Chile, permitió a este astrónomo y a sus colegas investigar el extraño objeto. También utilizaron el telescopio Gemini Sur y presentan su hallazgo en la revista Astriophysical Journal.

Los científicos han bautizado como judías verdes estas galaxias para distinguirlas de las de guisante, que se conocen desde 2007 y que son pequeñas galaxias con un intenso proceso de formación estelar en ellas, muy diferentes de las ahora descubiertas.

Los análisis de J2240 desveló a estos científicos otra rareza: El agujero negro en su centro parece mucho menos activo de lo que cabría esperar dado el gran tamaño y el brillo de la zona que ilumina, explica el ESO. La conclusión a la que han llegado es que, en realidad, el brillo verde que observan debe ser un eco, la radiación remanente, de cuando el agujero negro era mucho más activo. Con el tiempo, el brillo se irá perdiendo. Pero ofrece una oportunidad extraordinaria a los científicos para estudiar el proceso en el que se van apagando estos objetos tan activos, el cómo, el cuándo y el por qué.

“Estas regiones brillantes son como fantásticas sondas para intentar entender la física de las galaxias, es como introducir un termómetro en una galaxia que está muy, muy lejos”, dice Schirmer. “Normalmente no son ni muy grandes ni muy brillantes y solo se pueden observar bien en galaxias cercanas a nosotros, mientras que estas que se acaban de descubrir son tan grandes y brillantes que se pueden estudiar con gran detalle pese a su lejanía”, añade.

Fuente:

El País Ciencia

22 de noviembre de 2012

Un relato sobre la oscuridad en el espacio


El astronauta Dave Wolf durante su paseo espacial en el Endeavour en 2009 (NASA)

Cuando pensamos en la oscuridad en la Tierra imaginamos la noche más oscura, sin luna, pero aún así no nos hacemos una idea de lo que es una verdadera oscuridad. Para indagar en este asunto, los chicos de Radiolab (de la cadena de radio pública estadounidense NPR) llamaron al astronauta estadounidense Dave Wolf y le preguntaron por sus experiencias en el espacio. Wolf, que permaneció en activo durante muchos años y realizó decenas de paseos espaciales, les explica una curiosa historia.

"La oscuridad es un tema interesante en el espacio porque no hay otro lugar donde el contraste entre luz y oscuridad sea más extremo", asegura Wolf. De vez en cuando, el trasbordador, o la estación espacial, proyectan una sombra sobre el propio astronauta al tapar el sol, y la oscuridad es tan grande que apenas pueden ver su propio cuerpo. "Es más negro que cualquier negro", indica Wolf, "porque en el espacio la sombra no tiene luz en ella, no hay luz reflejada en el polvo del aire ni de las nubes alrededor. Y puedes entrar en una sombra tan profunda, tan negra, que tu brazo puede aparecer y desaparecer en delante de tus ojos".

Wolf realizó su primer paseo espacial en el exterior de la estación MIR junto al cosmonauta ruso Anatoly Solovyev. En aquella ocasión, relata, salieron al exterior de la estación, amarrados a la nave con los cables umbilicales. "Estaba oscuro fuera", recuerda. "Y oscuro en el espacio significa que estás en el lado oscuro del planeta, en la sombra de la Tierra, y sin luz externa de la nave está realmente oscuro. Estábamos sobre el océano y esto significa básicamente que no ves la Tierra. Cuando hay una noche sin luna, no ves la Tierra".

"Flotaba amablemente", explica Wolf en Radiolab, "diciéndome no hay problema, éste soy yo, la nave y la oscuridad. Y, de repente... esa luz cegadora". Lo que estaba viendo era el amanecer, pero a la velocidad a la que viaja la estación MIR el sol sale y lo ilumina todo en unos segundos. De hecho, los astronautas viven una salida de sol cada 90 minutos y 16 noches y 16 días en el plazo de 24 horas. Pero lo más impresionante es la sensación de vértigo que le invadió en el momento en que pudo ver dónde se encontraba:

"De repente podía ver más de 300 kilómetros hacia abajo y ver que me estaba moviendo a 8 kilómetros por segundo", recuerda Wolf. Bajo él pasaban los desiertos, los lagos y las montañas a una velocidad endiablada. "Decidí centrarme en mis guantes porque de repente tuve esa sensación de altura y velocidad". De alguna manera, explica el presentador de NPR, es como si creyeras que estás tranquilamente en la tierra y alguien encendiera la luz y comprobaras que estás en lo más alto de una escalera de 400 kilómetros.

Además de este momento, Wolf recuerda el problema que tuvieron después de terminar su tarea: no podían regresar al interior de la estación y tuvieron que soltarse de los cables y realizar una maniobra casi suicida para volver a entrar. También relata cómo su amigo ruso le hizo un regalo la última noche y ambos se colocaron flotando en el exterior de la nave, sujetos por los cables y mirando hacia el espacio, para ver del universo pasar delante de sus ojos.

Tomado de:

Fogonazos

14 de noviembre de 2012

Un mapa en 3D para explorar la historia del Universo


Ilustración representando la energía oscura Imagen: SPL
  • La gravedad actúa en vastas distancias pero no explica todo lo que ven los astrónomos
  • Así como los planetas del
    sistema solar están en equilibro en órbita alrededor del Sol, mantenida en equilibrio por la gravedad necesaria, del mismo modo
    todos los cuerpos celestes también deberían cumplir ese mismo balance
  • Pero a simple vista el movimiento de las galaxias no se explica con la cantidad de materia observable, por lo que se supone que las galaxias deben contener materia no visible
  • Esa hipotética materia que no emite suficiente radiación electromagnética para ser detectada con los medios actuales, pero cuaya existencia puede deducirse por los efectos gravitaciones en la materia visible, es lo que se denomina materia oscura, que no debe confundirse con la energía oscura
  • La expansión del Universo se está acelerando y la energía oscura es la misteriosa fuerza que explicaría esa aceleración
  • La teoría actual señala que el 73% del Universo estaría constituido por energía oscura, el 23% por materia oscura y sólo el 4% por la materia que conocemos

Telescopio Sloan Foto SDSS

Las observaciones fueron realizadas con el telescopio Sloan, en Nuevo México. Foto: SDSS

Un equipo internacional de científicos usó una nueva técnica para investigar la misteriosa energía oscura y estudiar cómo era el Universo hace más de 10.000 millones de años.

Utilizando la luz emitida por cuásares, un tipo de galaxias muy distantes y brillantes, los científicos elaboraron un mapa en 3D de nubes de hidrógeno en el espacio.  
La distribución de esas nubes es a su vez un indicio de la influencia a través del tiempo de la energía oscura, como se denomina a la extraña fuerza que impulsa la aceleración en la expansión del Universo.

El estudio fue realizado por investigadores de la iniciativa internacional Sloan Digital Sky Survey III, Exploración Digital del Espacio Sloan o SDSS-III. Uno de los proyectos de la iniciativa, llamado BOSS, Baryon Oscillation Spectroscopic Survey, fue el responsable del mapa. 

Luz de cuásares atravesando nubes de hidrógeno Ilustración Zosia Rostomian, Lawrence Berkeley National Laboratory; Nic Ross, BOSS Lyman-alpha team, Berkeley Lab; Springel et al, Virgo Consortium y Max Planck Institute for Astrophysics

La luz de los cuásares (puntos rojos) es absorbida parcialmente al pasar por nubes de hidrógeno. Imagen: SDSS/BOSS

Aceleración

Los científicos utilizaron observaciones registradas por el telescopio Sloan Foundation Telescope, situado en el estado de Nuevo México, en Estados Unidos.

Los nuevos datos confirman ideas anteriores de que la energía oscura no tuvo un rol dominante en la edad temprana del Universo.

En esa etapa, el poder de la gravedad causó una desaceleración de la expansión cósmica y sólo posteriormente comenzó a actuar la energía oscura.

"Sabemos muy poco sobre la energía oscura, pero una de nuestras ideas es que constituye una propiedad del espacio mismo. Por lo tanto, cuanto más espacio exista, habrá más energía", explicó el Dr. Mathew Pieri, profesor de la Universidad de Portsmouth en Inglaterra e integrante de BOSS.

"La energía oscura sería entonces algo que aumenta a lo largo del tiempo. A medida que el Universo se expande hay más espacio y por tanto más energía y en cierto punto esa energía oscura pasa a ser dominante respecto a la gravedad, poniendo fin a la desaceleración e impulsando una aceleración".

Misterio

El descubrimiento de que todo en el Cosmos se está separando a un ritmo cada vez mayor fue uno de los grandes hallazgos del siglo XX. Pero los científicos continúan buscando explicar este fenómeno extraordinario.

Una de las técnicas utilizadas para intentar descifrar el misterio de la energía oscura es la de las llamadas oscilaciones acústicas de bariones.

Estas oscilaciones son ondas de presión o fluctuaciones en la densidad de la materia bariónica, causada por ondas acústicas durante los inicios del Universo. Los bariones son una familia de partículas subatómicas.

Las oscilaciones se perciben en la distribución de las galaxias, una observación que puede usarse para medir la geometría del cosmos.

Los investigadores del proyecto BOSS ya habían analizado esas oscilaciones para estudiar la distribución de galaxias a una distancia de seis mil millones de años luz. Pero a distancias mayores y por tanto más remotas en la historia del Universo las galaxias no son captadas claramente por el telescopio Sloan.

Es por ello que, para viajar aún más profundamente al pasado, los científicos usaron cuásares para hacer un mapa del cosmos.

Los cuásares son galaxias con un agujero negro masivo central que emiten grandes cantidades de radiación electromagnética, que el telescopio Sloan puede captar.

A medida que la luz de los cuásares viaja por el espacio hacia la Tierra pasa a través de nubes de hidrógeno. Y parte de la luz es absorbida según patrones que revelan variaciones en la densidad del gas.
Observando cerca de 50.000 cuásares cercanos, el equipo BOSS logró elaborar un mapa detallado en 3D de la distribución de nubes de hidrógeno hasta una distancia de 11 mil millones de años luz, apenas dos mil millones de años después del Big Bang.

"Montaña rusa"

El mapa permite a los científicos verificar el ritmo de expansión en diferentes épocas cosmológicas, con el fin de determinar si la gravedad y la energía oscura actúan como predicen las teorías.

"Estamos confirmando básicamente algo análogo a una especie de montaña rusa", dijo el Dr. Pieri.

"Luego del Big Bang la expansión del Universo estaba desacelerándose, pero hace unos 7.000 millones de años pusimos el pie en el pedal de aceleración".

El proyecto BOSS ha cumplido hasta ahora solo un tercio de los trabajos planeados. La meta en los próximos años es elaborar un mapa detallando la ubicación de un millón y medio de galaxias y más de 160.000 cuásares.

Fuente:

BBC Ciencia 


Contenido relacionado

Un planeta 'vagabundo'

Impresión artística del planeta errante. | ESO 

Impresión artística del planeta errante. | ESO
Un mundo errante vaga por el espacio. El insólito objeto cósmico, detectado por el Observatorio Austral Europeo (ESO, por sus siglas en inglés), flota libremente por el Universo sin estrella anfitriona. Este cuerpo es el mejor candidato descubierto hasta ahora que podría clasificarse como planeta errante y el objeto de este tipo más cercano al Sistema Solar, ya que se encuentra a una distancia de unos 100 años luz.
Los planetas errantes son objetos de masa planetaria que vagabundean por el espacio sin estar atados a ninguna estrella. Ya se han encontrado antes posibles ejemplos de este tipo de objetos, pero, al no conocer sus edades, los astrónomos no podían saber si se trataba de planetas o de enanas marrones — estrellas 'fallidas' que perdieron la masa necesaria para desencadenar las reacciones que hacen brillar a las estrellas.

Pero ahora los astrónomos han descubierto un objeto, denominado CFBDSIR2149, que parece formar parte de un grupo cercano de estrellas jóvenes conocido como Asociación estelar de AB Doradus. Los investigadores encontraron el objeto en unas observaciones realizadas con el telescopio CFHT (Canada France Hawaii Telescope) y han aprovechado las capacidades del VLT (Very Large Telescope) de ESO para examinar en profundidad sus propiedades.

El lazo entre el nuevo objeto y la asociación estelar es la clave que permitirá a los astrónomos deducir la edad del nuevo objeto descubierto. Si el objeto está asociado a este grupo en movimiento -y por tanto es un objeto joven— es posible deducir aún más cosas sobre él, incluyendo su temperatura, su masa, y de qué está compuesta su atmósfera. Se trata del primer objeto de masa planetaria aislado identificado en una asociación estelar, y su relación con este grupo lo convierte en el candidato a planeta errante más interesante de los identificados hasta el momento.

"Buscar planetas alrededor de sus estrellas es similar a estudiar una mosca sentada a un centímetro de un distante y potente faro de coche", afirma Philippe Delorme (Instituto de planetología y astrofísica de Grenoble), investigador principal del nuevo estudio. "Este objeto errante cercano nos da la oportunidad de estudiar la mosca con detalle sin la deslumbrante luz del faro estorbándonos".

Se cree que objetos como este se pueden crear de dos modos, ambos intrigantes: como planetas normales que han sido expulsados del sistema que los albergaba, o bien como objetos solitarios como las estrellas más pequeñas o enanas marrones.

Este tipo de planetas pueden ser una ventana a multitud de conocimientos sobre el Universo. "Estos objetos son importantes, ya que pueden ayudarnos tanto a comprender más sobre cómo pueden eyectarse planetas de sistemas planetarios, como a entender cómo objetos muy ligeros pueden resultar del proceso de formación de una estrella", afirma Philippe Delorme. "Si este pequeño objeto es un planeta que ha sido eyectado de su sistema original, saca de la nada la asombrosa imagen de mundos huérfanos, a la deriva en el vacío del espacio".

Sin embargo, las investigaciones aún deben continuar para certificar si este objeto es definitivamente un planeta errante.

Fuente:

El Mundo Ciencia

4 de noviembre de 2012

La prueba que necesitaba Einstein está en tu bolsillo

¿Tienes un teléfono con GPS en tu bolsillo? Entonces tienes la prueba de que Einstein tenía razón cuando enunció su teoría de la relatividad especial y general.


Moneda alemana conmemorativa sobre la obra de Albert Einstein.

Pero, ¿qué me estás contando? Sí, ya sé que suena un poco loco, pero vamos a ir por partes y explicar primero grosso modo cómo funciona un GPS.

Cómo funciona un GPS (in a nutshell)

El sistema de posicionamiento global funciona gracias a un conjunto de satélites, en concreto 24, formando una  constelación que nos permite tener en todo momento 4 “a la vista”. Además hay 7 satélites de reemplazo. Los satélites orbitan alrededor de la tierra emitiendo continuamente datos sobre su posición y tiempo. Y es que un satélite del sistema GPS es básicamente un reloj atómico que da vueltas alrededor de nuestro planeta. Los satélites contienen además unos propulsores para realizar correcciones en su órbita.


Constelación de satélites GPS

Por otro lado, existe una serie de estaciones de seguimiento en tierra, además de una estación base, desde las que se controla el funcionamiento de los satélites y se les envía instrucciones cuando hay que hacer correcciones.

Finalmente tenemos el terminal de usuario. En este caso, se trata de un receptor que “escucha” en el ancho de banda correspondiente a las señales GPS (1575.42 MHz para la señal civil) y realiza los cálculos necesarios para obtener su posición.

Todo el sistema de satélites y estaciones base ha sido creado y mantenido por el departamento de defensa de EEUU; esta es una de las razones por las que la UE está preparando ahora su sistema Galileo, que será compatible con GPS y, aparte de evitar la dependencia de este sistema, permitirá una mejor localización en zonas cercanas a los polos. Actualmente, el servicio GPS es muy poco fiable cuando se usa en latitudes cercanas a los polos.

Qué información envía un satélite y cómo se usa

Los satélites GPS emiten a varias frecuencias, pero vamos a centrarnos en la que nos importa a los civiles, ya que el resto están codificadas y son de uso gubernamental y militar.

La señal civil de GPS consta de paquetes (frames) de 1500 bits (±188 bytes) que a su vez se dividen en 5 subpaquetes (subframes) de 300 bits cada uno.


Formato de un paquete de datos usado por GPS

En cada subframe se envía la siguiente información:
  • Subframe 1: información de salud del satélite y valores de corrección para el cálculo de posición.
  • Subframe 2 y 3: “efemérides” del satélite. Aquí van entre otras cosas los datos de órbita del satélite, el tiempo de su reloj atómico cuando emitió la señal, datos de configuración… Todo lo necesario para realizar los cálculos de posición.
  • Subframe 4: (almanac) información de los satélites auxiliares y otros datos.
  • Subframe 5: (almanac) información resumida de efemérides y salud del resto de 24 satélites del sistema principal.
De esta forma, en cada envío del satélite recibimos los subframes del 1 al 3 completo y una de las 25 partes de las que consta la información completa de los subrames 4 y 5. Para el cálculo de posición realmente lo que vamos a necesitar son los 3 primeros subframes. La información recibida en los campos almanac es necesaria, pero tiene un vigencia muy larga y casi siempre es válida la que ya tiene almacenada nuestro dispositivo.

El ancho de banda con el que se envía esta señal es de 50bps, es decir, se necesitan 30 segundos para recibir un frame completo. El satélite emite continuamente estos paquetes, por lo que un mensaje completo de 25 frames se completaría en unos 13 minutos.

Los primeros satélites se pusieron en órbita entre 1978 y 1985. El acceso civil al servicio se permitió a partir de 1983, aunque ha habido periodos de indisponibilidad, como durante la guerra del golfo (1990-1991). En 1993 se autorizó el uso civil libre de cargo, es decir, gratis.

Y cómo se calcula la posición

Las órbitas de los satélites están calculadas para que en todo momento podamos tener disponible la señal de cuatro satélites en cualquier punto de la Tierra. El método usado para realizar el cálculo de la posición se llama trilateración.

Cada satélite, como hemos dicho anteriormente, emite sus datos de posición en el espacio, y el valor de tiempo de su reloj atómico cuando se emitió la señal. Si nuestro aparato estuviera sincronizado con esa hora atómica, podría calcular el tiempo que ha tardado en llegar la señal a su posición.

Mediante un cálculo que tiene en cuenta el retraso que sufrirá la luz por el efecto de la atmósfera, se puede calcular la distancia que ha recorrido la señal en ese tiempo: r(t). Con ese dato tendremos una primera esfera (en este caso de ejemplo una circunferencia) con centro en la posición del satélite y radio igual a la distancia recorrida por la señal.

 

Con la señal de un segundo satélite se puede realizar el mismo cálculo, con lo que obtendremos dos puntos en los que se cruzan las circunferencias (si tuviéramos esferas obtendríamos una elipse en su intersección).

Con la señal de un tercer satélite, conseguimos un solo punto en el que coinciden las tres circunferencias, que será nuestra posición si estuviéramos haciendo el cálculo en 2 dimensiones. Cuando hacemos en cálculo en 3 dimensiones en este punto tendríamos 3 esferas y dos puntos de intersección, por lo que necesitaríamos una cuarta esfera para obtener un solo punto.

¿Nuestro GPS tiene la hora atómica para poder realizar este cálculo? En principio no, la hora atómica, o mejor dicho la diferencia de tiempo entre la hora interna de nuestro GPS y la hora atómica de los satélites es un parámetro más a calcular.

Así tenemos los valores para cada uno de los satélites y nuestro GPS deberá calcular sus propios valores para .

Cuatro incógnitas, cuatro ecuaciones y cuatro satélites, parece que la cosa cuadra. No obstante hemos dicho que se puede llegar a hacer el cálculo con tres satélites.

Cuando tenemos 3 satélites y por tanto tres esferas para realizar el cálculo, tenemos dos puntos candidatos a ser la posición de nuestro GPS, pues bien, uno estará en el espacio y otro en la superficie de la tierra, así que es fácil descartar uno de los dos.

El cálculo no es tan sencillo como puede parecer, ya que hay que tener en cuenta la desviación de la onda electromagnética que emite el satélite por la atmósfera y el retraso que se produce al viajar en un medio distinto del vacío; además, la señal puede rebotar en objetos cercanos al receptor y puede recibirse más de una vez. El aparato que realiza el cálculo de posicionamiento tiene que tener en cuenta todas estas fuentes de error y finalmente el cálculo de la posición no se hace con una simple resolución de 4 ecuaciones de 4 incógnitas, sino que se utilizan técnicas de análisis numérico.

Tu propio reloj atómico

Hemos dicho que además de las tres coordenadas de posición, se calcula también una cuarta que es el tiempo. Esta cuarta coordenada es el tiempo atómico mantenido por el sistema GPS. Todos los satélites están sincronizados y cuando se realiza un posicionamiento el dispositivo GPS en cuestión pasa a estar sincronizado con estos. Pues bien, esta es una utilidad muy importante para muchos laboratorios que realizan investigaciones en las que la precisión en el tiempo es muy importante. En lugar de instalar un reloj atómico, es suficiente con instalar un receptor GPS en el laboratorio y de esa forma mantener sincronizados sus relojes continuamente con la hora atómica del sistema GPS.

¿Por qué no funciona el GPS dentro de edificios y túneles?

La transmisión se realiza a 1575.42 MHz, una frecuencia que no permite que la señal atraviese obstáculos como edificios o montañas, aunque algunos GPS en dispositivos móviles pueden resolver este problema obteniendo su posición mediante triangulación de antenas móviles.

¿Por qué el GPS en mi móvil es tan rápido y el de mi coche tan lento cuando lo enciendo?

Los móviles con GPS normalmente llevan una modalidad denominada A-GPS o GPS asistido. Lo que hacen es aprovechar su conexión a internet para obtener datos de configuración de los satélites de una forma más rápida que si tuvieran que obtenerlos a través de los propios satélites. Además, pueden utilizar funciones de la red para mejorar el cálculo de la posición o incluso realizarlo.

En cambio, un GPS sin conexión a internet depende únicamente de la señal de los satélites para obtener la información de efemérides almanac, necesarios para los cálculos. La información de efemérides tiene una validez de 2-6 horas y si no está disponible necesitamos esperar unos 45 segundos para que se descargue por completo en nuestro dispositivo. La información de almanac tiene una vigencia mayor, pero de perderla necesitaremos más de 12 minutos para recibirla al completo.

Todo esto está muy bien, pero ¿qué pasa con Einstein?

Al principio hablábamos de Einstein, y es que Albert tiene mucho que decir en el funcionamiento del GPS.
Como hemos dicho, cada satélite del sistema esta continuamente emitiendo su órbita, coordenadas y el tiempo que marca su reloj atómico. Pues bien, la clave está en el reloj y en la velocidad del satélite y su altura.

La teoría de la relatividad especial tiene como consecuencia que un reloj que viaja a una velocidad mayor que otro reloj, atrase respecto a este último.

La teoría de la relatividad general tiene como consecuencia que los relojes que se encuentran en un campo gravitatorio mayor (más afectados por la fuerza de la gravedad) atrasan respecto a los que se encuentran en uno menor.

Un satélite del sistema GPS da varias vueltas al día a la Tierra a una gran velocidad (unos 12.000 km/h), por lo que su reloj atrasa respecto a uno situado en la Tierra al ir a mayor velocidad que este último. Por otro lado, el satélite se encuentra menos afectado por la gravedad terrestre que uno situado en la superficie, así que irá más rápido el reloj del satélite que uno situado en la Tierra. En concreto, los satélites GPS orbitan a una altura de unos 20.000 km.

Sumando los dos efectos, el resultado final es que un reloj en una de las órbitas del sistema GPS es más rápido que un reloj en la superficie terrestre (el efecto gravitatorio es mayor que el producido por la velocidad). En concreto, el adelanto es de unos 38 milisegundos al día. Parece un adelanto bastante ridículo, pero lo parece menos si sabemos que un error de esta magnitud en el tiempo lleva al sistema de GPS a un error de 10 km en la posición a lo largo de un día.

El ajuste sobre los satélites se lleva a cabo reduciendo la frecuencia a la que funcionan los relojes atómicos para ajustar esos 38 milisegundos de adelanto.

Antes de los satélites GPS, la NASA ya había hecho una prueba para demostrar el adelanto de un reloj atómico en un campo gravitatorio menor:

Y no hace mucho se lanzó Gravity Probe B, que demostró otras consecuencias de la teoría de la relatividad general.

Gran parte de la historia de la física en el sistema de posicionamiento

Hemos visto, que para calcular nuestra posición con el sistema GPS se usan las teorías de la relatividad general y especial de Einstein, las leyes de Kepler (para el cálculo de órbitas), los conocimientos sobre la desviación de las ondas electromagnéticas en distintos medios (para calcular la desviación de las señales por la acción de la atmósfera) e incluso se tiene en cuenta el efecto doppler en los terminales, ya que se están moviendo y por tanto ese movimiento afecta a la forma en la que se recibe la señal.

En definitiva, cuando encendemos un GPS estamos ante una maravilla de la tecnología y una demostración del conocimiento físico que tenemos desde Kepler hasta Einstein. Como dijo Newton en una ocasión: “Si he visto más lejos es porque estoy sentado sobre los hombros de gigantes”.

Fuente:

2 de noviembre de 2012

El reto de comunicarse entre planetas

Curiosity

El robot Curiosity lleva desde agosto fotografiando y explorando la superficie de Marte.

"Una vez fue un pequeño paso… Ahora son seis grandes ruedas", exclamó el robot Curiosity a través de la red social Twitter tras aterrizar en Marte el pasado mes de agosto.

Apenas se tardó una fracción de segundo en colgar el mensaje, pero el equipo de la Nasa -la agencia espacial estadounidense- que lo escribió tuvo que esperar un cuarto de hora la señal de radio enviada por el robot confirmando su llegada a planeta rojo. 

Este lapso de tiempo se debe a que los datos no se pueden enviar a una velocidad mayor que la de la luz. Al día de hoy las conversaciones en tiempo real entre planetas todavía son una fantasía de la ciencia ficción.

Pero la ciencia trabaja duro para poder en un futuro enviar más datos ampliando el ancho de banda, y así algún día quizás poder emitir imágenes en video de alta definición (HD) desde la superficie de Marte.

Si los esfuerzos de los científicos por sustituir el uso de ondas de radio por sistemas basados en rayos láser dan sus frutos, puede que futuras misiones no tengan las mismas restricciones.

A través del espacio

Orbitador

Las señales de Curiosity son recibidas por los orbitadores antes de ser enviadas a estaciones en la Tierra.

Las ondas de radio tienen una frecuencia más baja que la luz visible, pero pertenecen al mismo espectro electromagnético y pueden viajar a través del espacio a la misma velocidad: 300.000 km. por segundo.

Para enviar instrucciones diarias a Curiosity, la Nasa utiliza transmisiones directas a la Tierra, contactando al robot a través del segmento banda X del espectro electromagnético radial, porción que se reserva para comunicaciones en el espacio profundo.

No obstante, para enviar fotografías a color, se utiliza un sistema de radio distinto.

"Las imágenes se almacenan digitalmente en la computadora del Curiosity, (y luego enviadas) a uno de los dos orbitadores de Marte: Odyssey y Reconnaissance, que vuelan por encima desde el mediodía hasta la tarde en Marte", explica Rob Manning, ingeniero en jefe del proyecto Curiosity en el Laboratorio de Propulsión Jet (JPL) de la Nasa.

Odyssey envía la información a un ritmo de 256 kilobytes por segundo (Kbps), mucho más lento que el Reconnaissance, que lo hace a 2 megabytes por segundo (Mbps).

Antenas

Antenas en la Tierra reciben las señales de Curiosity y las envían a la Nasa.

También hay un tercer orbitador europeo llamado Mars Express, pero la Nasa la usa únicamente como respaldo.

Una vez que los orbitadores reciben los datos, éstos se envían a unas grandes antenas con forma de disco de la Red del Espacio Profundo (DSN). Hay tres estaciones DSN en la Tierra: en España, Australia y California, y los datos son recibidos por la antena que esté mejor alineada con el orbitador que los envía.

La señal debe viajar millones de kilómetros a través del espacio. La distancia entre la Tierra y Marte cambia constantemente porque los dos planetas viajan alrededor del Sol a distintas velocidades y la distancia media entre ellos es de 225 millones de kilómetros.

Pero cuando los planetas están más cerca la señal tarda menos de media hora en llegar a las estaciones DSN, cuenta Manning.

Así que la mayor velocidad con la que una imagen a color de alta resolución puede llegar a la Nasa desde el Curiosity es de unos 30 minutos, aunque el proceso puede llevar incluso varias horas.

Detectores de luz

camara_curiosity

Curiosity puede sacar fotos en color de alta resolución con la cámara que tiene en el extremo de su brazo mecánico.

En el futuro podría ser posible enviar más datos entre planetas e incluso emisiones en video HD.

Científicos del Instituto Tecnológico de Massachusetts (MIT) y el JPL están desarrollando detectores capaces de percibir las señales laser en el área infrarroja del espectro óptico, llegando incluso a percibir las unidades más pequeñas de la luz; los fotones.

Las señales ópticas tienen un ancho de banda más reducido que el de las frecuencias de radio, lo que implica una mayor capacidad de envío de datos.

Lo que hace un detector de este tipo es transformar la señal de fotones en un impulso eléctrico que luego pueda ser procesado para recuperar datos.
"No sustituirá a las frecuencias de radio a corto plazo pero mejorará nuestra capacidad de comunicación"
Stephen Townes, director de tecnologías de comunicación de JPL

"La comunicación óptica en misiones interplanetarias estará operativa la próxima década", asegura Stephen Townes, director de tecnologías de comunicación de JPL.

"No sustituirá a las frecuencias de radio a corto plazo pero mejorará nuestra capacidad de comunicación".

La agencia especial estadounidense espera poner a prueba estos detectores en 2013, durante un experimento llamado Demostración de Comunicación Láser Lunar.

La tecnología tratará de transferir datos de la Luna a la Tierra a un ritmo de 622 Mbps, mucho más rápido que la velocidad media del ancho de banda, aunque todavía más lento que las redes más rápidas de la Tierra, que envían datos a una velocidad de 20 Gbps.

Para Marte, supondría incrementar la transferencia de datos a un ritmo de 250Mbps en 2018, dice Townes, y si la próxima generación de robots espaciales están preparados para emitir video, quizás algún día los televidentes de la Tierra podrán tener una mejor visión de cómo es moverse por el planeta rojo.

Fuente:


Contenido relacionado

31 de octubre de 2012

Una de dos: O la información es mas rápida que la luz, o todo el Universo está relacionado entre sí

20120801012312I[1]

El entrelazamiento cuántico debe ser una de los fenómenos más sorprendentes de la física: Al enlazar dos o más partículas en un solo estado cuántico, cuando posteriormente se observa el estado de una de las partículas, uno puede prever el estado de la otra partícula sin importar la distancia que las separe. Es como si una supiera lo que hace la otra instantáneamente y se comunicaran entre sí.

Lo interesante es que numerosos experimentos han demostrado que las dos partículas ‘comunican’ su estado entre dos lugares de medición distintos a una velocidad que superaría a la de la luz. La explicación estándar a este fenómeno –la no-localidad– es considerar que las partículas entrelazadas son realmente un sólo sistema cuántico, aunque estén muy separadas. Es una idea que incomoda a muchos (incluso a Albert Einstein) pero que preserva el principio de la relatividad.

Para encontrar otra explicación, muchas ideas se han propuesto en las ultimas décadas, las que en su mayoría caían en la categoría de variables escondidas que no podemos observar directamente mediante experimentos, por lo que no habríamos podido ocupar este fenómeno para la comunicación.

Sin embargo, un nuevo análisis de un equipo de académicos que publicó la revista Nature Physics nos indicaría que cualquier explicación a este fenómeno inevitablemente nos abriría a la posibilidad de comunicaciones mas rápidas que la luz, pues el entrelazamiento cuántico no puede traspasar información, a cualquier velocidad –incluso si es inaccesible por medio de la experimentación porque es interna–, sin involucrar también otros tipos de interacciones que sí violarían la teoría de la relatividad.

Esto es debido a que hay dos opciones: O existen estas variables escondidas y el entrelazamiento cuántico implica intercambiar información a una velocidad mayor a la de la luz, desafiando a la relatividad; o no hay influencias invisibles por lo que las existentes pueden ser infinitamente rápidas, lo que implicaría que el Universo completo es no-local, o sea que todos sus puntos se pueden conectar entre sí instantáneamente.

Uno de los miembros del equipo de académicos, el profesor de la Universidad de Ginebra, Nicolas Gisin, asegura que “nuestros resultados nos dan la idea de que, de alguna forma, las correlaciones cuánticas surgen desde afuera del espacio-tiempo“. Algo nada menor.


Fuente:

FayerWayer

29 de octubre de 2012

La idea matemática que hizo volar al Voyager

Las sondas Voyager

Sonda Voyager
  • Voyager 2 fue lanzada el 20 de agosto de 1977, y Voyager 1 despegó el 5 de septiembre del mismo año
  • Sus misiones oficiales buscaban estudiar Júpiter y Saturno, pero las sondas fueron capaces de continuar su viaje
  • La sonda Voyager 1 es el objeto construido por el hombre que ha llegado más lejos de la Tierra
  • Las dos astronaves llevan discos con grabaciones que muestran la diversidad cultural del planeta Tierra


Michael Minovitch

Michael Minovitch solucionó el "problema de los tres cuerpos" en 1961, e impulsó la misión del Voyager.

La sonda espacial Voyager ha cautivado al mundo con su proeza en los confines del Sistema Solar, pero su lanzamiento en 1977 sólo fue posible gracias a las ideas matemáticas y la persistencia de un estudiante de doctorado que descubrió cómo catapultar sondas al espacio.

En 1942, por primera vez en la historia un objeto creado por el hombre cruzó la invisible línea de Karman, que marca el borde del espacio. Sólo 70 años después, otra nave espacial viaja hasta la última frontera del Sistema Solar.  
 
La sonda Voyager 1, 35 años después de haber despegado, está a 18.400 millones de kilómetros de la Tierra y a punto de cruzar el límite que marca el alcance de la influencia del sol, donde el viento solar se encuentra con el espacio interestelar.
Así contado parece fácil, pero la puerta al más allá del Sistema Solar permaneció cerrada durante los primeros 20 años de la carrera espacial. 

El problema de los tres cuerpos

Computadora IBM

Minovitch utilizó la computadora más potente del momento.

Desde 1957, cuando el Sputnik 1 se convirtió en la primera obra de ingeniería que pudo orbitar sobre la Tierra, la ciencia comenzó a mirar cada vez más allá en el cosmos.

Se enviaron naves a la Luna, a Venus y a Marte. Pero un factor crucial impedía alcanzar distancias más lejanas.

Para viajar a los planetas exteriores hace falta escapar de la fuerza gravitacional que ejerce el Sol, y para eso es necesaria una nave espacial muy grande.

El viaje hasta Neptuno, por ejemplo, a 2.500 millones de kilómetros, podría llevar fácilmente 30 o 40 años debido a esa fuerza.

En su momento, la Nasa no podía asegurar la vida útil de una sonda por más tiempo que unos meses, así que los planetas lejanos no estaban dentro de las posibilidades.
Hasta que un joven de 25 años llamado Michael Minovitch, entusiasmado por la nueva computadora IBM 7090, la más rápida en 1961, resolvió el problema más difícil de la ciencia mecánica celeste: el de "los tres cuerpos".

Se refiere al Sol, un planeta y un tercer objeto que puede ser un asteroide o un cometa viajando por el espacio con sus respectivas fuerzas de gravedad actuando entre ellos. La solución establece con exactitud cómo afectan la gravedad del Sol y la del planeta a la trayectoria del tercer objeto.

Sin amilanarse por el hecho de que las mentes más brillantes de la historia -la de Isaac Newton entre ellas- no lograron resolver esta incógnita, Minovitch se concentró en despejarla. Su intención era usar la computadora para buscar la solución a través de un método de repetición. 

Verano de 1961

Planeta lejano

Los cálculos de Minovitch permitieron la exploración de los planetas del Sistema Solar más lejanos.

En su tiempo libre, mientras estudiaba un doctorado en el verano de 1961, se puso a programar series de ecuaciones para aplicar al problema.

Minovitch llenó su modelo con datos de las órbitas planetarias, y durante una pasantía en el laboratorio de propulsión de la Nasa (Jet Propulsion Lab) obtuvo información más exacta sobre las posiciones de los planetas.

El joven estudiante demostró así que si una nave pasa cerca de un planeta que orbita alrededor del Sol puede apropiarse de parte de la velocidad orbital de ese astro y acelerar en dirección opuesta al Sol sin utilizar el combustible de propulsión de la nave.

Sin financiamiento para continuar con sus pruebas en la computadora, y en un intento por convencer a la Nasa de la importancia de su descubrimiento, dibujó a mano cientos de trayectorias de misiones teóricas al espacio exterior. Entre ellas había una ruta de vuelo específica que se convirtió en la trayectoria de las sondas Voyager.

Pero en 1962 el Jet Propulsion Lab estaba ocupado con el Proyecto Apolo, y nadie hizo mucho caso al hallazgo de Minovitch.

El origen de la expedición a Júpiter y Saturno

Sin embargo a Gary Flandro, quien realizó otras prácticas de verano en la Nasa, sí le llamó la atención.
Flandro, ingeniero espacial, sabía que cualquier misión a los planetas exteriores tenía que viajar lo más rápido posible para aprovechar al máximo la vida útil de las naves. 

Así que en el verano de 1965 investigó si el problema de los tres cuerpos podría utilizarse en la exploración de los planetas lejanos, y dibujó gráficos que indicaban la futura posición de los astros.

Sus trazados revelaron que Júpiter, Saturno, Urano y Neptuno iban a posicionarse en el mismo lado del Sistema Solar para finales de los años '70.

Con la solución del problema de los tres cuerpos, una misma misión en 1977 podría arrojar una sonda que pasara por los cuatro planetas en 12 años. Una oportunidad que no volvería a repetirse en 176 años.

Gracias a la insistencia de los jóvenes -y a la intervención de un consejero presidencial sobre asuntos espaciales- la Nasa finalmente aceptó la idea de una gran expedición a los planetas lejanos utilizando la fuerza de propulsión catapultada de Monovitch.

En 1970 se consiguieron los fondos para la construcción de las dos naves espaciales gemelas que se convertirían en las Voyagers.

Aunque no podían financiar una misión que fuera más allá de Saturno, los optimistas ingenieros de la Nasa equiparon las naves para que mantuvieran sus antenas orientadas hacia la Tierra décadas después de haber pasado ese planeta.

También construyeron un sistema generador de energía que duraría al menos hasta el año 2020. Pero lo más visionario fue incluir cinco experimentos a bordo capaces de medir las condiciones del espacio exterior si es que finalmente consigue salir de nuestro sistema planetario.

En 1977 las astronaves despegaron de la Tierra, y nadie se imaginaba que durarían tanto tiempo.

Pero en 2012 continúan su viaje, aún llegan sus señales debilitadas por la distancia, y aún les esperan fascinantes descubrimientos.

Fuente:

BBC Ciencia 

Contenido relacionado

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0