Latest Posts:

Mostrando las entradas con la etiqueta historia de la ciencia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta historia de la ciencia. Mostrar todas las entradas

24 de enero de 2016

Martín López Corredoira: "Estamos ante el ocaso de la ciencia"

El autor, Martín López Corredoira, (del Instituto de Astrofísica de Canrias, España) cree que el éxito de la ciencia "viene más bien de las rentas del prestigio del pasado" porque "la ciencia camina entrelazada con las fuerzas económicas en vez de con los sueños humanos".

La historia nos muestra muchos amaneceres y muchos ocasos en las diferentes facetas de los seres humanos. Mirando al pasado podemos poner fecha y entender las razones para el nacimiento y auge de las ciencias. Su declive es más difícil de pronosticar, aunque hay ya razones para pensar que no está muy lejos. Después de un verano muy caliente siempre llega la estación de la caída de las hojas. Hablo aquí de las ciencias puras, en cuanto a vías del conocimiento; las ciencias aplicadas tienen un gran presente y tendrán un gran futuro por largo tiempo.
No está habiendo una revolución en las ciencias puras, sólo evolución de algo que se ha echado a rodar y se desarrolla gracias sobre todo a los desarrollos tecnológicos que no eran accesibles en el pasado
La ciencia ha ganado reconocimiento de la sociedad y es hoy en día uno de los centros de poder que toca sus resortes. Algunos de sus sacerdotes ocupan un estatus importante y se invierten en sus proyectos cantidades ingentes de dinero. Cada poco se baten nuevos récords de costes: 6.000 millones de euros por la construcción del LHC (Large Hadron Collider) del CERN más el mantenimiento de unos 700 millones de euros al año; del orden de mil o dos mil millones de euros cada telescopio espacial... Se publican muchísimos artículos, se citan frecuentemente unos autores a otros, hay muchos congresos, más que nunca, la comunicación a través de los medios de comunicación sobre los descubrimientos realizados muestra un gran interés por la ciencia del público no profesional.

Una visión superficial puede llevarnos a creer que vivimos en una época dorada de la ciencia, pero lo cierto es que el éxito aparente del presente viene más bien de las rentas del prestigio del pasado y del mucho ruido con pocas nueces actual. No está habiendo una revolución en las ciencias puras, sólo evolución de algo que se ha echado a rodar y se desarrolla gracias sobre todo a los desarrollos tecnológicos que no eran accesibles en el pasado.
Nuestra sociedad se ahoga entre inmensas cantidades de conocimientos, la mayoría de ellos sobre cosas de poca importancia para nuestra visión del cosmos, o sin producir avances en los fundamentos básicos de las ciencias puras, sólo aplicaciones técnicas o detalles secundarios"
Nuestra sociedad se ahoga entre inmensas cantidades de conocimientos, la mayoría de ellos sobre cosas de poca importancia para nuestra visión del cosmos, o sin producir avances en los fundamentos básicos de las ciencias puras, sólo aplicaciones técnicas o detalles secundarios. En los pocos campos donde surgen algunos aspectos importantes de cuestiones sin resolver, grupos poderosos controlan los flujos de información y empujan hacia verdades consensuadas en vez de haber discusiones objetivas dentro de una metodología científica, lo que da pocas garantías de que estemos obteniendo nuevas verdades sólidas sobre la naturaleza.

Además, la creatividad individual está condenada a desaparecer en favor de las grandes corporaciones de administradores y políticos de la ciencia especializados en buscar formas de obtener fondos del Estado en megaproyectos con costes crecientes y retornos decrecientes. En astrofísica y física de partículas, por ejemplo, tenemos el caso de la búsqueda de partículas supersimétricas de la supuesta materia oscura, que ha ocupado en las últimas décadas a más de un millar de investigadores en el CERN, y a una cantidad mayor aun de astrofísicos y cosmólogos en lo que se refiere a la problemática de la materia oscura en general. ¿Y qué pasa cuando, después de un largo periodo de búsqueda, se han gastado inmensas cantidades de dinero y los experimentos u observaciones no encuentran esa enigmática materia? Entonces los grupos de investigación proclaman que se deben explorar más altas energías y piden más dinero.
La creatividad individual está condenada a desaparecer en favor de las grandes corporaciones de administradores y políticos de la ciencia especializados en buscar formas de obtener fondos del Estado en megaproyectos con costes crecientes y retornos decrecientes"
Las fuerzas que empujaron a la humanidad a caminar hacia el conocimiento, la ilustración y la razón empujan ahora muy débilmente. La ciencia continúa funcionando por su inercia pero está sujeta a la fricción debida a su erosión. Camina entrelazada con las fuerzas económicas en vez de con los sueños humanos. El científico de prestigio de hoy en día utiliza más sus habilidades como gestor y administrador que como físico, matemático, químico o biólogo, con el fin de conseguir fondos para hacer un instrumento más caro que el anterior y conquistar nuevas metas del conocimiento gracias a la tecnología bruta, que no a la inteligencia.

No es vano el esfuerzo y gracias a eso se han realizado algunas hazañas gloriosas en ciencia de los últimos tiempos: como el proyecto Genoma Humano, el presunto descubrimiento del bosón de Higgs u otros. No obstante, la pregunta que cabe plantearse es hasta dónde llegará esta carrera del desarrollo de la ciencia por esta vía. Hasta que se alcance el límite de gastos que los Estados pueden soportar, y entonces oiremos a los científicos lamentarse de que no se da suficiente dinero para la investigación. Ya sucede tal hoy en día. Realmente, lo que subyace detrás de ese malestar del científico es su convencimiento de que ya no se puede hacer ciencia de primera sin hablar de cifras económicas multimillonarias, y se prefiere descargar sobre el político o sobre la sociedad la impotencia de una ciencia abocada a morir de éxito.
La ciencia sigue hoy en día la estructura del capitalismo, de modo que debe crecer siempre para no caer en crisis"
La ciencia sigue hoy en día la estructura del capitalismo, de modo que debe crecer siempre para no caer en crisis. La ciencia experimental u observacional se vuelve cada vez más cara, y ha optado por un camino sin retorno: crecer a base de incrementar los fondos invertidos en tecnología, la única salida que le queda, pues lo que se puede hacer con la sola inteligencia y con pequeñas inversiones ya ha sido hecho. Dicho en términos pesqueros: esquilmados los mares de las verdades fáciles, ya no se puede pescar con caña en ellos y hay que acceder a embarcaciones con costosos aparatos de pesca para poder sacar algo: mayores aceleradores de partículas, mayores telescopios, etc. Pero cuando la investigación científica alcance el límite donde no puede seguir creciendo a base de mayores inversiones económicas en tecnología, la crisis será inevitable.

Eel artículo completo en: El País (España)

11 de diciembre de 2015

La primera persona que vio un microbio lo hizo porque tenía diarrea

En 1681, Antonie van Leeuwenhoek se convirtió en lap rimera persona en la historia que pudo ver un microbio. Pero su interés no habría sido tal si no sufriera diarrea, una aparatosa descomposición fecal. 



Debido precisamente a ella, Leeuwenhoek se vio obligado a examinar sus propios desechos acuosos bajo su microscopio. Según su informe, distinguió unos “animálculos moviéndose muy graciosamente… algo más largos que anchos, con el vientre… provisto de varias patitas”. 

Lo que había visto Leeuwenhoek es lo que hoy en día identificaríamos como un protozoo llamado Giardia, una causa común de diarrea. Pero el investigador fue más allá, tal y como describe en el libro Abrir en caso de Apocalipsis Lewis Dartnell:

No pasó mucho tiempo sin que Leeuwenhoek llegara a observar microbios en gotitas de agua, y nubes de bacterias en heces y dientes cariados. Examinando su propio semen, descubrió el vigoroso serpenteo de los espermatozoides responsables de la reproducción sexual de todos los animales (aunque él insistió en que no había obtenido sus propias muestras por “ninguna artimaña pecaminosa” y que estas eran el “excedente que me proporcionó la naturaleza en mis relaciones conyugales”.
Antes de que se inventara el primer telescopio ya se habían lanzado algunas especulaciones acerca de la existencia de pequeños organismos invisibles, como la del autor romano Marco Terencio Varrón, allá por el año 36 a.C.

Fuente:

Xakata Ciencia

20 de noviembre de 2015

Un cura dio la “más bella explicación de la Creación”, según Einstein

El padre del Big Bang, Georges Lemaître, fue sacerdote además de formidable matemático.

Sabido es que ciencia y religión nunca han mezclado demasiado bien. Hubo un tiempo, ya lejano, en el que conciliar ambos términos era no sólo recomendable, sino casi obligatorio. Y, si no, que le pregunten a las cenizas de Giordano Bruno o a su compatriota Galileo, conminado muy a su pesar a recolocar la Tierra en el centro del Universo cuando ésta ya había encontrado su lugar. Si los católicos lo pasaban mal, mejor no les iba a los protestantes y así, Kepler, coetáneo de los anteriores, a punto estuvo de ver a su madre arder en la hoguera igual que al fantasioso de Bruno por su supuesta brujería.

Sin embargo, no siempre los prejuicios circulan en el mismo sentido. Incluso en tiempos más recientes.

Tal vez un ejemplo de ello sea el físico y matemático belga Georges Lemaître. Apenas un cráter en la Luna y el nombre de un vehículo espacial de la ESA –el ATV5, ya igualmente convertido en cenizas– nos lo recuerdan. Y eso que estamos hablando del hombre que se atrevió a corregir –educadamente, eso sí– al mismísimo Albert Einstein, prediciendo lo que más tarde Edwin Hubble comprobaría con los telescopios de Monte Wilson: la expansión del Universo. Lo que hoy todos conocemos como el Big Bang.

Lemaître nació en Charleroi (Bélgica) en 1894. Apasionado por las ciencias y la ingeniería, tuvo que interrumpir sus estudios con veinte años para defender a su país, inmerso en la Primera Guerra Mundial, siendo incluso condecorado como oficial de artillería. No debió de gustarle nada lo que allí vivió y, horrorizado, decidió tomar los hábitos y ordenarse sacerdote. Corría el año 1923. Pero Lemaître no abandonó su primera vocación. Su formación académica en física y matemáticas fue formidable, comenzando por su paso por la Universidad de Cambridge y terminando con su doctorado en el todavía mítico MIT estadounidense, institución en la que se doctoraría.

Poco después –en el año 1927– publicaría en una revista local el esbozo de su modelo de universo. Partiendo de los postulados de Einstein –un cosmos estático de masa constante– llega a un resultado totalmente diferente: el radio del universo tenía que crecer de forma continua para ser estable. Al enterarse, el genio alemán rechaza la idea con virulencia: "Sus cálculos son correctos, pero el modelo físico es atroz". Y eso que Lemaître siempre haría uso de la famosa constante cosmológica inventada por el propio Einstein, de la que más tarde el alemán renegaría con mayor vehemencia incluso que la utilizada por Galileo para escapar de la pira purificadora. En 1931 su trabajo alcanza las páginas de Nature, y en él se detalla su teoría completa del ‘átomo primigenio’ o ‘huevo cósmico’, derivándose de entre sus líneas lo que luego daría en llamarse exclusivamente Ley de… Hubble.

Einstein y Lemaître coincidirían en varias ocasiones. Einstein, agnóstico, recelaba del cura belga, puesto que su modelo cosmológico lógicamente arrastraba a un origen ¿divino? en el espacio-tiempo, y eso no le gustaba ni a él ni a muchos astrofísicos. Pero lo admiraba. En una ocasión, durante una estancia en Bruselas y disertando ante un erudito auditorio, Einstein espetó: "Supongo que no habrán entendido nada, a excepción claro está del abate Lemaître". En territorio comanche, juntos en Princeton, Einstein también dejaría caer al oír predicar a su colega belga: "Ésta [por Lemaître] es la más hermosa explicación de la Creación que nunca haya escuchado". Otra cosa es que hablara realmente en serio.

Como es natural, la fama de Lemaître no tardó en llegar al Vaticano. A pesar de los despectivos intentos del tan brillante como lenguaraz Fred Hoyle y los seguidores de la teoría del universo estacionario –el mismo Hoyle, durante un programa de radio de la BBC, bautizaría con bastante mala intención la teoría de Lemaître como Big Bang en 1949–, el modelo de universo en permanente expansión era imparable. Georges Lemaître ocuparía durante su vida distintos cargos en la Academia Pontificia de las Ciencias, siendo asesor personal del papa Pío XII. Y éste no quería dejar pasar semejante oportunidad. Si el Universo tiene 13.700 millones de años, ¿importaría mucho que se creara en los siete días bíblicos o en poco más de 10-35 segundos? Con gran pesar de Pío XII –que, curiosamente, fue elogiado por Einstein en su defensa de los judíos durante la Segunda Guerra Mundial–, Lemaître huyó de explotar la ciencia en beneficio de la religión. Suyas son las palabras:
Tras escuchar a Lemaître, el prudente Pío XII abandonó la idea de hacer del Big Bang un dogma de fe

"El científico cristiano tiene los mismos medios que su colega no creyente. También tiene la misma libertad de espíritu, al menos si la idea que se hace de las verdades religiosas está a la altura de su formación científica. Sabe que todo ha sido hecho por Dios, pero sabe también que Dios no sustituye a sus criaturas. Nunca se podrá reducir el Ser Supremo a una hipótesis científica. Por tanto, el científico cristiano va hacia adelante libremente, con la seguridad de que su investigación no puede entrar en conflicto con su fe". Tras escuchar a Lemaître, el prudente Pío XII abandonó la idea de hacer del Big Bang un dogma de fe.

Georges Lemaître falleció en 1966, sólo dos años después del hallazgo irrefutable de la radiación del fondo de microondas, el eco proveniente del origen del Universo, de su Big Bang. Quizá su nombre pintado en la chapa de un carguero espacial no haga justicia suficiente a una mente —creyente o no— divina.

Tomado de:

El País Ciencia

6 de noviembre de 2015

2015: Teoría de la relatividad de Einstein sigue vigente 100 años después



"Einstein cambió nuestra percepción de las cosas más fundamentales, que son el espacio y el tiempo, y nos abrió los ojos al cosmos y a algunos de sus objetos más interesantes, como los agujeros negros", explicó David Kaiser, profesor de física y de historia de la ciencia del prestigioso Instituto de Tecnología de Massachusetts (MIT).

El célebre físico que pasó los últimos años de su vida en la Universidad de Princeton, en el este de Estados Unidos, presentó su teoría el 25 de noviembre de 1915 ante la Academia Prusiana de las Ciencias. El documento fue publicado en marzo de 1916 en la revista Annalen Der Physik.

"La Relatividad General, una de las teorías científicas más revolucionarias de la historia, representó un salto inmenso respecto a la ley de gravitación universal de Isaac Newton de 1687, al mostrar que el espacio y el tiempo no son inmutables, sino fenómenos dinámicos sometidos a una evolución, igual que otros procesos del Universo", explica Michael Turner, profesor de física y de cosmología de la Universidad de Chicago.

Einstein ya avanzó la teoría de la Relatividad Restringida en 1905 al describir la distorsión del tiempo y del espacio mediante un objeto que avanza a una velocidad cercana a la velocidad de la luz, que sí es inmutable. También produjo su célebre ecuación E = mc2, que puso en entredicho las hipótesis de entonces, según las cuales la energía y la masa eran diferentes. Él demostró que se trataba de la misma cosa, pero bajo formas diferentes.


La teoría de la Relatividad General de Albert  Einstein, que transformó nuestra comprensión del Universo y de sus fenómenos, celebra su centenario este año sin haber perdido vigencia. Todos los experimentos llevados a cabo para verificarla la han corroborado.
Diez años más tarde, la Relatividad General ofreció una visión más amplia al explicar que la gravedad es una curvatura en el espacio-tiempo en presencia de una masa. Así, el tiempo pasa más lentamente en proximidad de un campo gravitacional como el de un planeta que en el vacío del espacio. 

El artículo completo en:

12 de octubre de 2015

"El origen y la evolución de la forma de comprender el mundo" por Steven Weinberg

 

Isaac Newton con el prisma para descomponer la luz blanca en el espectro. Lo acompaña su compañero de habitación de Cambridge John Wickins. Grabado de 1874.

Steven Weinberg (Nueva York, 1933) es seguramente ‘el’ gran físico vivo, y el coautor de una de las grandes unificaciones de la historia de la ciencia, la que condujo al llamado modelo estándar, nuestro gran cuadro del mundo subatómico que recibió el espaldarazo definitivo con el hallazgo del bosón de Higgs. Tiene el premio Nobel, como parece lógico, pero también el premio Lewis Thomas al mejor escritor divulgativo. Publica ahora en español la que tal vez sea su obra más ambiciosa, Explicar el mundo. El descubrimiento de la ciencia moderna (Taurus), donde narra su visión del origen y la evolución de nuestra forma de comprender el mundo. Un libro para aprender a pensar como solo han pensado los grandes.

“Lo verdaderamente incomprensible”, dijo Einstein, “es que el mundo sea comprensible”. Así que una buena pregunta para un físico teórico es: ¿Por qué es el mundo comprensible? “No sabemos si lo es”, responde Weinberg desde Pasadera, California. “Al igual que resulta imposible enseñar mecánica cuántica a un chimpancé, por más esfuerzos que uno dedique a ello, puede que la teoría correcta que explique todos los fenómenos físicos, la teoría final, esté más allá de nuestra capacidad”. Si uno de los cerebros más incisivos del planeta está dispuesto a admitir eso, dan ganas, en efecto, de tirar la toalla. Pero eso tampoco está al alcance de la naturaleza humana, ¿verdad?

Explicar el mundo no tiene mucho que ver con un libro de ciencia al uso. No empieza por Newton, de hecho, sino que acaba por él. Porque lo que importa a Weinberg aquí no es tanto la historia de la ciencia como la de nuestra forma de pensar. Los científicos actuales están tan acostumbrados a esa forma de pensar que la dan por hecha, pero el autor muestra de manera aplastante que no está en nuestra naturaleza, sino que es el producto de varios milenios de fracaso contumaz y humillante. Nuestro cerebro evolucionó en la sabana, donde el comportamiento de los quarks importaba mucho menos que el de las panteras. La mente humana no está hecha para entender el mundo: solo puede aprender a hacerlo, y solo con gran penalidad.

Pero entonces, le pregunto, ¿sería la ciencia la misma en el planeta Mongo? Weinberg se parte de risa.

— Disculpe que me ría, —dice,— es que el planeta Mongo salía aquí en un tebeo que ahora no me acuerdo…

Flash Gordon.

— ¡Sí, de Flash Gordon, por supuesto, ja ja ja!

Clint Eastwood pensaba de joven que el western y el jazz eran localismos norteamericanos, y se llevó una gran sorpresa al ver que también eran géneros populares en Europa y otras partes. Weinberg creía lo mismo de los tebeos de Flash Gordon.

“Bien, respondiendo a su pregunta, yo creo que las ‘conclusiones’ de la ciencia serían las mismas en Mongo, por supuesto; pero la historia de la ciencia sería muy distinta, probablemente; sabemos por nuestra propia historia que el progreso del conocimiento está plagado de errores y salidas en falso; de hecho, ese fue el gran problema para llegar, hace solo unos siglos, a la revolución de la ciencia moderna; pero ese tipo de pensamiento conduce al final a los resultados correctos”.

Pocas profesiones le llevarán a uno a vivir en una ciudad tan extraña. La vida profesional de Weinberg ha transcurrido entre las avenidas de la relatividad de Einstein y la mecánica cuántica, los dos grandes pilares de la física moderna, y por las callejuelas a menudo sombrías y cegadas por las masas de datos que escupían los aceleradores de partículas y el ‘zoo’ de entidades incomprensibles y caprichosas que emergieron de ellos durante 60 años.

La gran aportación de Weinberg fue, de hecho, ‘imaginar’ una posible salida de ese atolladero, una posibilidad matemáticamente precisa y físicamente iluminadora que lograra ordenar esa niebla caprichosa de fenómenos en unos pocos principios simples y elegantes, de someter la exuberancia del cosmos al punto de vista correcto, el que permite entenderlo. La confirmación experimental de sus ideas llegó años después, y gracias a ellas. Los grandes saltos en nuestra comprensión de la realidad ocurren raramente, pero siguen a menudo esas mismas pautas. Cuando Weinberg habla de la historia de la ciencia, sabe muy bien de lo que habla.

El artículo compleo en:

El País Ciencia

3 de marzo de 2015

Cuando los jesuitas rezaban y oraban contra los átomos


Rastro de un protón dejado en una cámara de burbujas de Fermilab

La idea de que el universo está compuesto de partículas indivisibles que se combinan entre sí se remonta al siglo V a.C. cuando los filósofos griegos Leucipo y Demócrito especulaban con que incluso las cosas inmateriales estaban compuestas por estos corpúsculos invisibles. Durante muchos siglos, y gracias entre otras cosas a la influencia de Aristóteles, la teoría fue desterrada y no sería hasta el Renacimiento cuando comenzara a estar de nuevo en el ambiente y contribuyera a fraguar un cambio que terminaría siendo una conmoción en el pensamiento de la época.

El escritor Stephen Greenblatt describe en su libro "El Giro" la influencia que tuvo en este cambio la obra del poeta romano Lucrecio "De rerum natura" en la que recogía las ideas de Epicuro y describía el mundo en términos físicos con un atomismo primitivo. Redescubierto en 1417, el texto comenzó a distribuirse a pesar su confrontación con la doctrina de la Iglesia y contribuyó a la aparición de nuevas ideas sobre la naturaleza del mundo. Según se descubrió hace unos años, al propio Galileo le trajeron casi tantos problemas sus ideas sobre el atomismo que su defensa del heliocentrismo, y fue acusado por sus adversarios de defender una teoría que atentaba contra una de las bases de la religión católica: el rito de la eucaristía.

Si el universo estaba compuesto de átomos, razonaban los jesuitas, la idea de la transubstanciación (la conversión del pan y el vino en el cuerpo y la sangre de Cristo) carecía de sentido, así que aquello era una herejía. La persecución de las ideas atomistas fue tal que se prohibió su enseñanza en las escuelas de la Compañía de Jesús y como relata Greenblatt en su libro se llegaron a recitar oraciones contra los átomos en algunos centros de enseñanza. Estaoración en latín se recomendaba recitar a diario a los jóvenes de la Universidad de Pisa:

"Nada sale de los átomos
Todos los cuerpos del mundo resplandecen con la hermosura de sus formas.
Sin ellas el orbe sería solo un caos inmenso.
Al principio creó Dios todas las cosas, para que ellas pudieran engendrar algo.
Ten en nada aquello de lo que no puede salir nada.
Tú, Demócrito, no formas nada nuevo a partir de los átomos.
Los átomos no producen nada, luego los átomos no son nada".
La idea era impedir que los jóvenes cayeran en la tentación de explicar las cosas por lo que veían sus sentidos. Todo era una obra de perfección de Dios y cuestionarlo era una herejía. El 1 de agosto de 1632 la Compañía de Jesús prohibió y condenó al doctrina de los átomos. En un documento del Santo Oficio encontrado a principios de los años 80 por el estudioso italiano Pietro Redondi se detallaban las herejías encontradas en la obra de Galileo "El ensayadora propósito del atomismo. Aquellas afirmaciones, según Redondi, ponían en peligro los dogmas católicos y pudieron ser uno de los detonantes por el que se abrió todo el proceso contra él. Aunque hay distintas visiones sobre el tema, parece fuera de duda que pensar en un mundo hecho de átomos también le trajo problemas.

Fuente

Fogonazos

10 de septiembre de 2014

¿Qué le debemos a la ciencia del Romanticismo?

He estado leyendo un libro maravilloso. Uno de esos libros con los que he  aprendido, disfrutado, pensado, emocionado, horrorizado, reflexionado, sonreído y al terminar he dicho: quiero más.

prodigios
He leído  “La edad de los prodigios. Terror y belleza en la ciencia del Romanticismo” de Richard Holmes, asombrada por mi propia ignorancia sobre un montón de cosas pero también fascinada al descubrir la curiosidad inmensa y nunca saciada de los personajes que aparecen en el libro y que creo que nosotros, en nuestra época, hemos perdido completamente. ¿Cuando fue la última vez que escuchamos la palabra prodigio?

A los científicos de finales del siglo XVIII y principios del XIX (término acuñado justo en esa época) les debemos el concepto de ciencia accesible, una ciencia practicada para llegar a todo el mundo. No sólo a un reducido grupo de eruditos que compartían sus hallazgos y teorías en latín. Con el romanticismo llegó la ciencia aplicada a la vida diaria, a mejoras que salvaron las vidas de miles de personas como por ejemplo las de los mineros que dejaron de estar indefensos ante las fugas de grisú y sus descontroladas explosiones gracias a la lámpara de seguridad creada por Humphry Davy.

En el romanticismo aparecieron ideas y conceptos que hoy en día seguimos teniendo presentes y que Holmes señala en el prólogo para hacernos entender la importancia de aquella época y como las vidas de los científicos que tan amenamente nos cuenta repercuten en nuestra vida diaria aunque no nos demos cuenta.

William Herschel, su hermana Caroline y el hijo del primero, John. Ilustración de Jean-Léon Huens.
William Herschel, su hermana Caroline y el hijo del primero, John. Ilustración de Jean-Léon Huens.
Del romanticismo hemos heredado “la deslumbrante idea del “genio” científico solitario, imprudente, en su búsqueda del conocimiento como fin en sí mismo y puede que a cualquier precio”. Las vidas de Mungo Park con su misteriosa desaparición en África o la de Humphry Davy dedicado en cuerpo y alma a sus investigaciones o la  inmortal obra de ficción de Mary Shelley con el mito de Frankenstein creado por una sola mente “genial” están en el origen de toda esa imaginería de científico loco y solitario que creemos que ha sido creada por el cine o la televisión.

Unida a esta imagen, encontramos también el concepto “eureka” ese momento mágico en el que el científico tiene un instante de lucidez brillante, un flechazo intelectual que le hace descubrir de manera súbita la solución a un problema. En el Romanticismo este momento se aliaba con la inspiración poética y la creatividad. Es curioso como en aquella época no parecía existir la famosa brecha entre “ciencias” y “letras” en la que vivimos actualmente y los más destacados científicos,químicos, astrónomos y  físicos, encontraban en la poesía y otras formas de literatura un vehículo perfecto para pensar en sus descubrimientos de otra manera, para compartirlos o para intentar encajarlos en su visión general de la vida. Del mismo modo, los mayores poetas de la época sentían una fascinación enorme por las investigaciones de los científicos, no sólo por los descubrimientos sino también por los trabajos de laboratorio, las exploraciones y las observaciones astronómicas. Era un flujo de relaciones en ambos sentidos que enriquecía todos los campos y que lamentablemente hemos perdido (casi) completamente.

La Naturaleza. Nos hemos acostumbrado tanto a ella que vivimos sin mirarla y cuando nos fijamos en ella casi siempre es para quejarnos. Vivimos creyendo que podemos controlar la Naturaleza, que hemos “avanzado” tanto que no hay nada misterioso en ella y que está al servicio del hombre. Cuando nos sorprende, casi siempre por alguna desgracia de la que somos más culpables que víctimas aunque sólo sea por imprudencia, nos impresiona darnos cuenta de su poder y magnificencia.

En el Romanticismo “existía la creencia generalizada en una naturaleza misteriosa, infinita, que esperaba a ser descubierta o seducida para revelar todos sus secretos”. James Cook da la vuelta al mundo en el Endeavour y  en su viaje le acompaña Joseph Banks que deja un diario en el que escribe cada maravilla que contempla, cada sorpresa que se encuentra; es el primer europeo que contempla el surf y queda fascinado por la visión de unos cuantos tahitianos cabalgando unas “olas pavorosas”.

Al mismo tiempo que hemos dejado de mirar la Naturaleza estamos tan acostumbrados a verla que nada nos sorprende. Nos subimos a un avión por primera vez y nos sorprende más la comida en miniatura y el poder ver una película que la increíble y maravillosa visión de la Tierra desde el aire…

Montgolfier

En el Romanticismo, se elevan por los cielos de Europa los primeros globos aerostáticos. “El mundo entero se había transformado en un mapa o alfombra de bellos colores.” Nosotros, acostumbrados a los aviones, a los cohetes, a los drones somos incapaces de  imaginar la emoción de los primeros viajeros del aire al contemplar los caminos, los montes y sus ciudades desde el aire.

El artículo completo en:

Cultura Científica

28 de junio de 2014

BBC: 10 grandes errores de cálculo de la ciencia y la ingeniería

Regla métrica

¿Conoces la diferencia entre el sistema métrico decimal y el sistema de unidades anglosajón?

El descubrimiento de la compañía ferroviaria estatal francesa SNCF de que sus trenes nuevos eran demasiado anchos para la mayoría de las estaciones es embarazoso.

Pero no es la primera vez que un pequeño error de cálculo ha tenido serias repercusiones.

Trenes franceses

Francia compró trenes que no caben en la mayoría de sus estaciones.
En este caso se gastaron US$20.500 millones en la compra de 2.000 trenes que no entran en muchas de las estaciones francesas.

Según SNCF, el fiasco de los trenes franceses ha sido culpa del operador nacional de las vías RFF.

El ministro de Transporte, Frederic Cuvillier, culpó a lo que calificó de un sistema ferroviario absurdo en el que el operador de las vías es distinto de la compañía de trenes.

Pero a veces no hay nadie más con quien compartir la responsabilidad.

He aquí otros 9 ejemplos en los que un pequeño error ha resultado ser muy caro, o incluso fatal.

El Orbitador del Clima de Marte

Orbitador de Marte

Se cree que el orbitador se destruyó al contacto con la atmósfera de Marte.

Diseñado para orbitar Marte como el primer satélite meteorológico interplanetario, el Orbitador de Marte se perdió en 1999 porque el equipo de la NASA utilizó el sistema imperial o anglosajón de unidades (que utiliza medidas como las pulgadas, millas o galones) mientras que uno de los contratistas utilizó el sistema métrico decimal (que se basa en medidas como el metro, el kilo o el litro).

La sonda de U$125 millones se acercó demasiado a Marte cuando intentaba maniobrar hacia su órbita, y se cree que se destruyó al entrar en contacto con la atmósfera del planeta.

Una investigación dijo que la causa original de la pérdida fue "el error de conversión de las unidades inglesas a unidades métricas" en una pieza del programa informático que operaba la nave desde la Tierra.

La nave Vasa

Nave Vesa

La nave Vesa fue recuperada del mar en 1961.

En 1628, una multitud presenció con horror en Suecia el hundimiento de Vesa, un nuevo buque de guerra, a menos de dos kilómetros de la costa y en su viaje inaugural. En el suceso murieron 30 tripulantes.

Armado con 64 cañones de bronce, había sido considerada como el barco de guerra más poderoso del mundo.

Los expertos que lo estudiaron desde que fue izado desde el mar en 1961 dicen que la nave es asimétrica: más gruesa a babor que a estribor.

Una razón para esto podría ser que los obreros que la construyeron utilizaron diferentes sistemas de medidas. Los arqueólogos han encontrado cuatro reglas usadas por los constructores: dos estaban calibradas en pies suecos, que tenían 12 pulgadas, mientras que otras dos medían pies de Ámsterdam, con 11 pulgadas.

El planeador de Gimli

Avión de Air Canada

Los aviones modernos de Air Canadá usan el sistema métrico decimal.

En 1983, un vuelo de la compañía Air Canada se quedó sin combustible cuando volaba sobre el pueblo de Gimli, en la provincia de Manitoba. Canadá había cambiado al sistema métrico decimal en 1970, y el avión había sido el primero de Air Canada en usar medidas métricas.

El calibrador de combustible a bordo del avión no estaba funcionando, por lo que la tripulación utilizó un tubo para medir cuánto combustible había cargado al repostar.

Pero las cosas se complicaron cuando convirtieron estas mediciones de volumen en medidas de peso: tenían el número correcto pero mal la unidad al confundir libras de combustible por kilogramos.

Como resultado, el avión llevaba alrededor de la mitad del combustible que creían.

Por suerte, el piloto fue capaz de aterrizar la aeronave en la carretera de Gimli.

El Telescopio Espacial Hubble

Imagen espacial del Hubble

Imagen del Hubble de la nebulosa Cabeza de Mono.

El Hubble es famoso por sus hermosas imágenes del espacio y se considera un gran éxito de la NASA. Sin embargo, despegó tras un comienzo difícil.

Las primeras imágenes que envió eran borrosas porque el espejo principal del telescopio era demasiado plano. No por mucho –sólo 2,2 micrones, o el equivalente de algo unas 50 veces más delgado de un cabello humano– pero lo suficiente como para poner en peligro el proyecto.
 
Una teoría es que una diminuta mancha de pintura en un dispositivo usado para probar el espejo provocó las mediciones distorsionadas.

Afortunadamente, los científicos lograron solucionar el problema en 1993, usando un instrumento llamado Reemplazo Axial Correctivo Óptico de Telescopio Espacial (Costar, por sus siglas en inglés).

Big Ben

Campana del Big Ben

La campana del Big Ben está quebrada desde el siglo XIX.

La campana del Big Ben en el Parlamento de Londres se rompió en una prueba en 1857 y fue fundida para ser moldeada de nuevo. Pero la nueva campana, cuya colocación llevó tres días en 1859, se rompió también rápidamente.

Se encendieron las disputas sobre quién era responsable: se inició incluso un caso de difamación.

Una teoría es que el enorme percutor, que pesaba 6,5 centenas (alrededor de 330 kilos), era demasiado pesado, al menos para la aleación particular de la que estaba hecha la campana (siete partes de estaño y 22 de cobre).

Los fundidores que moldearon las campanas siempre argumentaron que este material era demasiado frágil.

La segunda campana no fue reemplazada (aún está rota), sólo se giró su posición. El percutor, en cambio, fue reemplazado por uno más ligero

Lea el artículo completo en:

BBC Ciencia

28 de enero de 2014

La historia del término fotón


Dibujo20140103 troland paper 1917 on experimental psychology - origin term photon

Hoy en día todo el mundo asocia el término fotón al bosón gauge del campo electromagnético, sin embargo, su uso no fue generalizado hasta después de la Segunda Guerra Mundial. El término fotón fue usado por los físicos L.T. Troland (1889-1932) en 1916, J. Joly (1857-1933) en 1921 y G.N. Lewis (1875-1946) en 1926 con tres significados diferentes, ninguno de ellos como sinónimo del cuanto de luz que A. Einstein (1879-1955) introdujo en 1905 para explicar el efecto fotoeléctrico. Hoy en día, dichos significados del término fotón han sido olvidados. Nos los recuerda el danés Helge Kragh, “Photon: New light on an old name,” arXiv:1401.0293 [physics.hist-ph].


El cuanto de luz fue introducido por Einstein en su famoso artículo de 1905 publicado en Annalen der Physik que le llevó a obtener el Premio Nobel de Física (“Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,” Annalen der Physik 17: 132-148, Mar 1905; pdf gratis). En dicho artículo propuso que la radiación electromagnética monocromática de frecuencia ν está compuesta de “cuantos de energía” dados por E = hν. Gracias a ello pudo explicar el efecto fotoeléctrico y la regla de Stokes de la fotoluminiscencia. El cuanto de energía fue tratado como una partícula cuando Einstein en 1917 le asignó un momento lineal p = hν/c. Por ello, expertos en historia de la física como Abraham Pais afirman que Einstein introdujo el concepto de  fotón en 1917.

La nota completa en:

La ciencia de la mula Francis

17 de enero de 2014

La muerte (poco heroica) de algunos científicos


Hay científicos que han muerto probando sus experimentos en sí mismos; otros lo han hecho tras un empacho al celebrar algún hallazgo; otros murieron por su exceso de confianza; otros por pura mala suerte.

Sea como fuere, a continuación os mostramos algunos casos de científicos que murieron de forma, digamos, indigna, impropia, poco heroica. De una forma que posiblemente los interfectos habrían preferido que no se aireara en un artículo como éste. Al estilo Humayun, el emperador indio al que se le enredó la túnica en el pie, cayó por las escaleras de su templo y se partió la crisma.

Empédocles se quemó

Al menos la leyenda nos cuenta que Empédocles (490-430 a. JC), el filósofo griego, saltó en secreto a un volcán en busca de preguntas acuciantes sobre su funcionamiento interno. El problema es que desapareció sin dejar rastro.

Celebrándolo hasta reventar

El filósofo y médico francés Julien Ofray de la Mettrie (1709-1751) estaba muy contento y ufano por haber curado a un paciente. Tanto que, en la fiesta que el propio paciente había celebrado en su honor, el médico murió por comer demasiado paté de trufa.

Transfusión de malaria y otras enfermedades

Alexander Bogdanov (1873-1928) fue un físico ruso que murió tras realizarse una autotransfusión de sangre… infectada de malaria y tuberculosis. Al mismo estilo cafre que Nicholas Chervin, de Gibraltar, que en el siglo XIX comió el “vómito negro y sanguinolento” de víctimas de la fiebre amarilla para dejar paladina constancia de que la enfermedad no se transmitía mediante contacto humano. Y el cirujano del siglo XVIII John Hunter, se infectó con “material venéreo” para comprobar si la sífilis y la gonorrea son la misma enfermedad.

Y En 1900, en Estados Unidos, durante el estudio de la transmisión de la fiebre amarilla en Cuba, el doctor William Lazear dejó que mosquitos infectados le picaran sin comunicarlo. Murió con 34 años y, posteriormente, su investigación fue reconocida como incalculablemente valiosa para el tratamiento de la enfermedad.

El abrigo paracaídas

Franz Reichelt (1879-1912), además de sastre, había hecho sus pinitos como inventor. Tanto es así que mezcló sus pasiones en un mismo objeto: un abrigo paracaídas. Lo probó él mismo saltando desde el primer piso de la Torre Eiffel, y ya nunca más lo contó.

Sadomasoquismo científico

El siguiente científico, finalmente, no murió, pero habida cuenta de todo lo que “sufrió”, podría haberlo hecho. A finales del siglo XIX, el doctor Hildebrandt puso a prueba la eficacia de la anestesia espinal permitiendo que su colega le sometiera a diversos actos de sadismo muy gráfico, tal y como explicita Ian Crafton en Historia de la ciencia sin los trozos aburridos:
permitiendo que lo quemara, le acuchillara el muslo, le oprimiera los testículos y le golpeara las espinillas con un martillo; de este modo demostró sin lugar a dudas que no podía sentir nada de cintura para abajo.

Tomado de:

Xakata Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0