Latest Posts:

Mostrando las entradas con la etiqueta anatomia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta anatomia. Mostrar todas las entradas

22 de septiembre de 2018

Cómo la menstruación cambia el cerebro de las mujeres (para bien)

En el comienzo, se trataba de "histeria". Desde los magos médicos del antiguo Egipto hasta los filósofos barbudos de la Grecia clásica, los hombres han reflexionado sobre esta condición durante miles de años.

Los síntomas de esta eran bastante amplios e incluían desde ansiedad hasta las fantasías eróticas. Una cosa estaba clara: sólo les ocurre a las mujeres.


Platón creía que la histeria era causada por el "útero en duelo", que estaba triste cuando no cargaba un hijo.

Sus contemporáneos creían que se daba cuando este órgano quedaba atrapado en diferentes partes del cuerpo, una que creencia persistió hasta el siglo XIX, una época en la que este desorden famosamente se trataba haciendo llegar a las mujeres al orgasmo con un vibrador.

Incluso ahora, la noción de que la biología de una mujer puede aturdir su cerebro es parte de la cultura popular.

Si una mujer está de mal humor, se le pregunta si "está en sus días". Si tiene deseo sexual se le dice que "podría estar ovulando".

Resulta que esto no está infundado. Algunas mujeres realmente se sienten más ansiosas e irritables alrededor de su periodo, y es cierto que tenemos más motivación sexual cuando estamos ovulando. (Aunque los síntomas no pueden explicarse siempre así).

Pero lo que no todos saben es que el ciclo menstrual también puede afectar el cerebro de una mujer de forma positiva.

Las mujeres son mejores en ciertas habilidades, como la conciencia espacial, después de su período.

Tres semanas antes son significativamente mejores comunicadoras y, aunque parezca raro, son particularmente buenas detectando cuando alguien tiene miedo.

Además, durante parte de su ciclo sus cerebros son más grandes.

¿Qué ocurre?

Los "úteros vagabundos" no son la principalmente fuente de estos cambios. Son los ovarios que liberan estrógeno y progesterona en distintas cantidades durante el mes.

Esas hormonas, que deciden cuándo liberar un óvulo, tienen efectos profundos en los cerebros y la conducta de las mujeres.

El artículo completo en: BBC Mundo

16 de septiembre de 2018

Qué es el "ojo silencioso", el fenómeno que diferencia a los mejores atletas del resto


El "ojo silencioso" de los atletas les permite procesar más rápido la información para activar la respuesta motora del cuerpo.

Si alguien sabe cómo lograr una victoria estando al borde del precipicio de la derrota esa persona es Serena Williams.

Lo ha hecho una y otra vez en su carrera, salvando juegos que tenía prácticamente perdidos, con bolas de partido en contra y rivales preparadas para dar la estocada final.

Ocurrió contra la belga Kim Clijsters en 2003 en las semifinales del Abierto de Australia, repitió en el mismo escenario en 2005, en Wimbledon en 2009 y en el Abierto de China en 2014.

Fue en situaciones de presión extrema cuando Williams marcó la diferencia y en lugar de aceptar el esperado desenlace lo que hizo fue agudizar su concentración.

Un estado en el que ocurre una variedad de procesos mentales que definen que una atleta como la tenista estadounidense se destaque sobre el resto, según logró identificar recientemente un grupo de psicólogos y neurocientíficos.

Siendo el más intrigante de todos el fenómeno que denominaron "ojo silencioso", que se trata de una especie de aumento en la percepción visual que permite a los deportistas eliminar cualquier distracción al tiempo que preparan su siguiente movimiento.

Tiempo detenido

Lo que más le llama la atención a los científicos es que este fenómeno aparece principalmente en situación de estrés, evitando que el deportista se "congele" en momentos de máxima presión.

Este proceso mental no solo afecta a los deportistas y ese mismo nivel de concentración es el que ayuda a los cirujanos durante las intervenciones quirúrgicas y está atrayendo interés de otros sectores como el militar.

El artículo completo en:

BBC Mundo

5 de agosto de 2018

La ciencia en tus manos: lo que dicen de ti tus huellas dactilares

Las huellas dactilares se han consolidado como el “código de barras” que identifica a cada uno de los individuos de la especie humana. Son la prueba forense más preciada para los criminólogos y se están convirtiendo en una herramienta cotidiana en la oficina e incluso en la pantalla de tu smartphone. ¿Por qué son tan singulares e irreemplazables las huellas dactilares? ¿Cuál es el secreto de esas peculiares marcas?

Sabemos que los patrones que dan lugar a las huellas dactilares son únicos para cada individuo desde hace más de 2.000 años, aunque solo llevamos 2 siglos estudiando el porqué. En este reportaje repasamos algunas de las cosas que tus huellas dactilares dicen de ti desde perspectivas científicas sorprendentes.

Un código de barras con más de 2000 años de historia

Las huellas dactilares son los patrones o dibujos de las yemas de los dedos, aunque también existen en las palmas (palmetogramas) y en las plantas de los pies (pelmatogramas).
Sabías qué: los dactilogramas o huellas dactilares se crean alrededor de la décima semana de embarazo (cuando el feto mide unos 7.62 cm aprox.) y son definitivas cuando cumple los 6 meses.
Las huellas dactilares son únicas en cada individuo, pero además son inmutables: permanecen inalterables desde que se forman en el feto y hasta la muerte, pues a pesar de los daños que pueda sufrir la piel, se regeneran siempre siguiendo el patrón original. Aunque están determinadas por la información genética de cada individuo, su desarrollo está influenciado por factores físicos (la ubicación exacta del feto en el útero, la densidad del líquido amniótico …), por lo que ni siquiera en gemelos idénticos o en un clon (con el mismo ADN) las huellas dactilares de dos individuos pueden ser iguales. Sin embargo, sí que existe la excepcional situación de las personas que nacen sin huellas dactilares, una condición que se conoce como adermatoglifia.

Lea el artículo completo en:

OpenMind

¿Todos pisamos igual al correr?

No. Los biomecánicos (y los fabricantes de calzado) distinguen tres tipos de “pisadores” en carrera: 


Supinador. Es el que apoya sobre todo la parte externa de la planta. Tienen la bóveda de la planta pronunciada, y el tobillo algo salido. Hay un 10% de corredores de este tipo. 

Neutro. Corre del modo más equilibrado. Su pisada comienza como la del supinador, pero se corrige hacia adentro (pronador) por la zona del mediopié, y termina despegando el antepié (zona de los dedos) por el centro. Hay un 40% de personas que pisan así. 

Pronador. Al revés que el supinador, apoya más sobre la zona interna del talón y la planta.

Puedes descubri que clase de "pisador" eres observando las huelass de tus pies mojados en el suelo o en la arena.

Otra manera de averiguar tu tipo de pisada es observando como se desgastan tus zapatillas por la parte del talón. Veamos:

Entendiendo la pronación


Definimos la pronación como el movimiento que hace el pie justo después que éste aterrice en el suelo. Este momento, contacto inicial, es parte de la fase de apoyo del ciclo de pisada. Sin la pronación, el impacto de cada zancada sería transmitido a la parte superior de las piernas y afectaría la mecánica normal de las extremidades inferiores. La pronación actúa de amortiguador de impactos.

Las zapatillas de running son diseñadas específicamente para diferentes tipos de pisada. La mejor forma de averiguar cómo es tu pisada es consultar a un experto, quien realizará un análisis de pisada. El desgaste de la suela da una idea de tu tipo de pisada que puede ser:

Neutra: El desgaste de la suela de tus zapatillas tiene forma de S, desde el exterior del talón (lateral) hasta el dedo gordo del pie.


 
Supinadora: Se da cuando el pie no prona mucho. El exterior del lateral golpea el suelo con un ángulo mayor, y se da una pequeña pronación resultando en una gran transmisión del impacto a través del tren inferior. Los supinadores usualmente desgastan las zapatillas en la zona exterior del talón, y la parte superior puede estar desplazada, e incluso deformada, hacia el lateral exterior.



-Sobrepronadora: Más conocida simplemente como pronación, es cuando el pie rota en mayor medida, o cuando no debería hacerlo, por ejemplo al final de la fase de apoyo. Las zapatillas de running de un 'pronador' muestran un desgaste extra en todo el talón y en la cara interior de la puntera, especialmente a la altura del dedo gordo del pie.


Hasta la próxima

Prof. Leonardo Sánchez Coello

Fuentes:

QUO y Running (en español)

6 de febrero de 2018

¿Qué es mejor para el dolor de garganta? Esto dice la ciencia

¿Limón, miel o alcohol? Hoy te hablamos sobre estos populares remedios para el dolor de garganta y cuál obtiene mejores resultados.
¿Qué es lo mejor para calmar el dolor de garganta? Apelamos a la base científica de los remedios caseros más comunes: la miel, el limón, el alcohol y las especias.

Miel y limón



Generalmente, una bebida caliente hecha en casa con zumo de limón y miel suele ser la opción más popular, seguida por zumo de limón recién exprimido y calentado. Esta inclinación hacia la miel y el limón proviene del conocimiento transmitido generación tras generación (por recomendación de familiares) y de los propios medios de comunicación (publicando estudios basados en los componentes de la miel y el limón).

El limón es habitual en las bebidas debido a sus altos niveles de vitamina C. De hecho,
el interés por el uso de la vitamina C para tratar el resfriado común se remonta a la década de 1940, pero los resultados de los diversos ensayos clínicos realizados desde entonces varían. Mientras que los primeros estudios concluían que tomar vitamina C reducía la duración del resfriado, el consenso actual es que para la población general, es ineficaz.


Aunque existen ciertos grupos de personas que pueden beneficiarse de la vitamina C cuando se avecina un resfriado (como aquellos que realizan ejercicio físico intenso o aquellos con niveles de vitamina C por debajo de los niveles recomendados), lo cierto es que no hay evidencia de que el limón alivie el dolor de garganta.

La miel, los virus y el dolor


La miel es bien conocida por sus propiedades antimicrobianas. Un estudio publicado en la revista
Anesthesiology and Pain Medicine encontró que la miel Manuka es efectiva para reducir la rapidez con la que se reproduce el virus de la gripe, la causa de la gripe.

Cuando se trata de dolor, la miel se ha estudiado principalmente en el contexto de la amigdalectomía, y las investigaciones han demostrado que la miel sí que es efectiva.

Otros estudios han analizado la efectividad de la miel para reducir la tos, asociada con el resfriado común y la gripe. Aquí, varios ensayos clínicos han mostrado
una pequeña mejoría en la tos nocturna y la calidad del sueño en niños mayores de 1 año.

Bebidas alcohólicas


Muchos piensan que las bebidas alcohólicas, calientes o frías, alivian el dolor de garganta. Si bien hay evidencia de que el alcohol puede matar a los virus responsables del resfriado común y la gripe, se trata de geles alcohólicos para manos y desinfectantes o pastillas que contengan alcohol, no de las bebidas alcohólicas en sí.
 
El alcohol tiene efectos anestésicos, pero no hay evidencia científica de los beneficios que atribuimos a varias infusiones alcohólicas para calmar el dolor de garganta. Es pura especulación.

¿Y las especias?



La primera especia que se nos viene a la mente es el jengibre. Suele exponerse como un método eficaz para calmar el dolor de garganta. Pero, ¿qué dice la ciencia? En efecto, se ha demostrado que el jengibre reduce el dolor.

En un estudio publicado en la revista
Genomics Inform, los investigadores usaron modelos informáticos para descubrir si el jengibre podría prevenir la infección de influenza (gripe), particularmente la cepa H1N1 que causa la gripe porcina. El equipo descubrió que el ingrediente activo del jengibre evita que el virus infecte las células humanas.

La segunda especia en nuestra lista es la canela. Según las investigaciones, un componente encontrado en el aceite esencial de la canela inhibió el crecimiento del virus de la gripe, pero
no hay estudios específicos que analicen la canela y el dolor de garganta.

Referencia: Post Tonsillectomy Pain: Can Honey Reduce the Analgesic Requirements? Anesth Pain Med. 2013 / Identification of Suitable Natural Inhibitor against Influenza A (H1N1) Neuraminidase Protein by Molecular Docking Genomics Inform. 2016 /


17 de octubre de 2017

Así aprende el cerebro a reconocer las caras

Un estudio sugiere que la capacidad del cerebro para reconocer a otros a través de sus rasgos no es innata

El hallazgo podría ayudar a desarrollar terapias para trastornos neurológicos como el autismo


La frontera entre lo aprendido y lo innato ha atraído desde siempre a científicos de diferentes disciplinas. Una tarea básica en la vida de un ser humano como es identificar y distinguir a los demás, por ejemplo, era hasta ahora considerada como una habilidad instintiva, tanto en el Homo sapiens como en otros primates. Sin embargo, una nueva investigación cuyos resultados aparecen este lunes en la revista Nature Neuroscience pone en tela de juicio esta teoría y sugiere que la capacidad del cerebro para reconocer a los demás a través de sus rasgos se adquiere con la práctica.

Un equipo de neurobiólogos de la Escuela de Medicina de la Universidad de Harvard, liderado por la profesora Margaret Livingstone, afirma en el artículo que las regiones del cerebro responsables del reconocimiento facial se forman y se desarrollan a través de la experiencia.

Livingstone y su equipo llevaron a cabo un experimento en el que monitorizaron la actividad cerebral de dos grupos de macacos, una especie que se utiliza habitualmente en este tipo de estudios por su estrecha relación evolutiva con los humanos. De acuerdo con los investigadores, el papel formativo que las primeras experiencias tienen en el desarrollo sensorial y cognitivo es el punto crucial para adquirir esta habilidad social.

Los autores confían en que sus resultados contribuyan además a arrojar nueva luz sobre algunos trastornos del desarrollo neurológico, como el autismo o la prosopagnosia, un síndrome que impide reconocer ninguna cara, incluida la propia.

"Algunos de los déficits de habilidades sociales que se desarrollan en personas con trastornos del espectro autista pueden ser un efecto secundario derivado de la falta de experiencia a mirar a la cara", explica Livingston, "algo que los niños con estos síndromes tienden a evitar". De confirmarse, los resultados apuntan a que terapias que fomentan la exposición temprana a rostros humanos podrían jugar un papel clave para paliar problemas de habilidades sociales.

Los autores explican que, pasados los 200 días de vida, aparecen grupos de neuronas asociados con el reconocimiento facial, agrupados en un área del cerebro llamada surco temporal. Esta aparición temprana, combinada con el hecho de que los niños muestran durante los primeros meses de vida tendencia a fijarse en los rostros antes que en otras partes del cuerpo, han sido los principales argumentos para afirmar que esta capacidad puede ser innata.

Sin embargo, los especialistas de Harvard rebaten esta teoría de reconocimiento de rostros. Señalan que tanto los seres humanos como otros primates desarrollan áreas en el cerebro que responden a estímulos que sólo existen desde hace poco tiempo -en términos evolutivos- como pueden ser edificios y/o textos. Esto implicaría, a su juicio, que su conocimiento no puede depender de la herencia genética.

El experimento

Para comprender mejor las bases del reconocimiento facial, los científicos dividieron a los macacos en dos grupos. En el primero, utilizado como grupo de control, los animales fueron criados por sus madres e interactuaron libremente con otros especímenes, además de con sus cuidadores humanos. El segundo fue criado durante un año exclusivamente por seres humanos que llevaron máscaras a lo largo de todo el experimento.

Cuando ambos grupos alcanzaron los 200 días de vida, los investigadores comenzaron a realizar resonancias magnéticas para obtener imágenes cerebrales e identificar la presencia de los grupos de neuronas responsables del reconocimiento facial, así como de otras regiones claves en la identificación tanto de objetos y como de otras partes del cuerpo. La única diferencia significativa entre ambos grupos fue la detectada en las células encargadas del reconocimiento facial, que no se habían desarrollado en el grupo criado por sólo por humanos.

Posteriormente, los investigadores mostraron fotografías de humanos y primates a ambos grupos. El grupo de control prestaba atención principalmente a las caras mientras que los macacos criados sin exposición facial se fijaban más en las manos. De acuerdo con los científicos, estos resultados sugieren que la privación sensorial tiene un efecto selectivo muy importante en la forma en la que el cerebro crea sus conexiones. "El cerebro tiende a ser muy bueno en reconocer cosas que el individuo ve a menudo", declaró Livingstone, "y muy pobre en reconocer cosas que nunca o rara vez ve".

Fuente:

El Mundo Ciencia

28 de septiembre de 2017

Oxitocina: la hormona responsable del amor...

La oxitocina, la hormona responsable de que amemos, seamos fieles, compasivos, amables… y de que podamos parir y tener leche materna, entre muchas de sus funciones.





La oxitocina es una molécula orgánica pequeña, un oligopéptido que consta de sólo nueve aminoácidos. Se produce en el sistema nervioso central, concretamente en el hipotálamo. Desde allí se transfiere a la hipófisis, una glándula que está en nuestro cerebro, dónde se almacena y desde donde se secreta cuando se necesita. La oxitocina se descubrió a principios del siglo pasado y se sintetizó artificialmente por primera vez en 1953.

Du Vigneaud recibió en 1955 el premio Nobel por la síntesis de este compuesto. Funcionalmente lo primero que se sabe de ella es que es una hormona. Viaja por el torrente sanguíneo y actúa en tejidos alejados de su lugar de síntesis. Entre sus acciones periféricas es responsable de los movimientos de contracción-relajación de fibras musculares lisas como las que forman el cuerpo del útero o los conductos galactóforos y, por tanto, produce las contracciones de parto y la secreción de la leche materna. Por este motivo, la oxitocina sintética se ha venido usando en los partos desde los años setenta del siglo pasado. Se administra intraparto por vía intravenosa. Su uso para acelerar las contracciones de parto permite “controlar” en cierto sentido el proceso y se usa en muchos sitios de forma rutinaria, en lo que se denomina protocolo de manejo activo del parto». 

El artículo completo en:

ABC Familia

16 de agosto de 2016

¿Cómo funcionan los músculos de Usain Bolt?

El doctor John Brewer, experto de la Universidad de St. Marys, analizó los movimientos de Bolt durante la final de 100 metros.




A diferencia del resto de los mortales, el 80% de la musculatura de Usain Bolt está compuesta de fibras rápidas.


Detuvo el cronómetro en 9,81 segundos y se adjudicó su tercera medalla olímpica consecutiva en los 100 metros planos masculinos. Muchos dicen que Usain Bolt no corre, vuela. Otros, que simplemente no es de carne y hueso.

Pero el programa Today de la Radio 4 de la BBC invitó a un destacado doctor a ver la final de los 100 metros planos y analizar los movimientos de Usain Bolt, para entender qué pasa con su cuerpo durante la carrera.

Estas son las explicaciones de John Brewer, director de la Escuela de Salud Deportiva y Ciencias Aplicadas de la Universidad de St. Marys (EE.UU.).

Para enfrentar una carrera como la final de los 100 metros planos, los corredores deben llegar recuperados de la semifinal, realizada una hora y media antes, y haber calentado para asegurarse de que sus músculos estén flexibles, calientes y elásticos, con menos posibilidad de lesión.

La mayoría de estos músculos contienen lo que llamamos fibra muscular de contractura rápida: músculos fuertes, poderosos y rápidos de contraerse, pero también fáciles de fatigarse.

Muchos tenemos cerca de mitad de músculos con fibras rápidas y la mitad con fibras lentas. Pero Usain Bolt tiene 80% de su musculatura compuesta de fibras rápidas.

El artículo completo en:

BBC


google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0