Latest Posts:

Mostrando las entradas con la etiqueta ondas. Mostrar todas las entradas
Mostrando las entradas con la etiqueta ondas. Mostrar todas las entradas

23 de septiembre de 2013

¿Porque el cielo es azul?



¿Porque el cielo es azul durante el día y rojizo durante el amanecer y el atardecer?¿Porque las nubes son blancas y tienden al negro según van teniendo más carga de agua? Estas preguntas tienen, como respuesta, dos nombres propios: John William Strutt, tercer Barón de Rayleigh y Gustav Mie.
Pero para comprender bien el porqué de estos fenomenos, primero deberíamos responder dos preguntas previas. Por un lado ¿que es la luz?, y por el otro ¿que es el color?.
¿Que es la luz?
La luz es una radiación electromagnética, que es posible ser percibida por el ojo humano. Esta radiación electromagnética está producida por unas partículas subatómicas denominadas fotones, que son las responsables de todas las radiaciones electromagnéticas  incluyendo los rayos gamma, los rayos X, la luz ultravioleta, la luz visible, la luz infrarroja, las microondas y las ondas de radio.
Como todas las partículas subatómicas tiene una naturaleza corpusculo-ondulatoria, es decir, que por un lado se comporta como un objeto físico (corpusculo) y por otro, tiene un comportamiento de una onda. El primer comportamiento es fácil de entender: el fotón es una partícula física que se encuentra en un espacio determinado. 

El segundo comportamiento (ondulatorio) viene dado porque los fotones viajan en "grupos" o "paquetes", a los que denominamos "cuanto" (de estos paquetitos, viene el nombre de cuántico, que procede del latín  "quantus" -cuanto-). La distancia entre estos paquetitos, nos da lo que conocemos como longitud de onda.

Ahora ya estamos en disposición de contestar a la segunda cuestión...

¿Que es el color?

Podríamos decir que los colores son el conjunto de las diferentes longitudes de onda de radiación electromagnética que puede percibir el ojo humano. En el gráfico podemos ver las diferentes longitudes de onda y a que tipo de onda que corresponden. A las ondas que se pueden percibir por nuestros ojos, las llamamos "espectro del visible". Dentro del espectro del visible, los paquetitos que viajan más separados entre si (mayor longitud de onda), corresponden con el color rojo, que va poco a poco tendiendo hacia el violeta, según va haciéndose menor esa longitud de onda (los paquetitos viajan más cerca unos de otros). Las ondas que tienen una longitud de onda tan alta que se salen del espectro del visible se denominan "infrarrojas" y las que tienen una longitud de onda tan corta que tampoco las podemos ver, se denominan "ultra violeta".

Hay que poner atención el que el color no es una propiedad de los objetos o de la onda electromagnética, sino que es un fenómeno profundamente psicológico. El hecho de que veamos los objetos de nuestro alrededor de un determinado color, se debe a que nuestro cerebro interpreta así la señal recibida desde los ojos. Es necesario que exista una persona (o animal con visión cromática) para que exista el color. Esto explica enfermedades como el daltonismo o la acromatopsia, por no hablar trastornos como la micropsia, también conocida como "Sindrome de Alicia en el país de las maravillas" .

Y ahora ya si que si, estamos en disposición de responder a la pregunta que da título a nuestro post de hoy...

Dispersión de Rayleigh y Mie

La dispersión de Rayleigh (en honor a Lord Rayleigh) es la dispersión de la luz visible o cualquier otra radiación electromagnética por partículas cuyo tamaño es mucho menor que la longitud de onda de los fotones dispersados. 
El sol, nos envía radiación electromagnética en multitud e longitudes de onda, que al llegar a nuestra atmósfera choca con las diferentes partículas del aire. Parte de la energía que transmiten los fotones se transfiere a estas partículas que vibran y emiten luz en todas las direcciones. Las ondas cortas (como hemos visto antes, las azules y las violetas) son las que tienen una mayor carga energética y, por tanto, mayor difusión. Como la luz blanca contiene más de azul que de violeta y, a lo demás, nuestros ojos son más perceptivos al azul, el color que percibimos de forma genérica en el cielo, es el azul.
En el amanecer y el atardecer, la luz solar no da de forma perpendicular, sino que tiene un mayor ángulo. Esto hace que la luz tenga que recorrer mucha más distancia a través de la atmósfera, lo cual hace que se pierdan las longitudes de onda cortas y permanezcan las largas. Por ese motivo prevalecen los colores rojizos. En este efecto también influye la cantidad de polvo que haya en la atmósfera.

La difusión de Mie es la dispersión de la luz visible o cualquier otra radiación electromagnética por partículas cuyo tamaño es mayuor que la longitud de onda de los fotones dispersados. 
Este fenómeno se aplica, de forma tradicional, a las nubes. Las partículas absorben una parte de la luz y reflejan el resto, como pequeños espejos. Aquí el color depende de la composición de la partícula. En el caso de las nubes, si son poco densas, tienden a reflejar todas las longitudes de onda. Pero si están muy cargadas de agua, este efecto se acentúa y favorece la aparición de colores grises. 

El que haya una gran cantidad de aerosoles en la atmósfera también provoca un acentuamiento de esta dispersión. La dispersión de Mie produce una mayor difusión de la partículas hacia delante o hacia el frente de ella. Conforme aumenta el tamaño de la partícula, la dispersión hacia enfrente también aumenta (el tamaño de la partícula directamente proporcional con la dispersión). Esta característica genera amaneceres más rojos que lo que serían solo por el efecto de la Dispersión de Rayleigh.
El efecto Mie domina la atmósfera de Marte. Su cielo no es azul sino de un plomizo rojo y amarillo. Carl Sagan describe la decepción de la prensa cuando mostraron las primeras fotos del cielo de Marte. Nada comparable a nuestro hermoso cielo azul.
Pd: Parte de la información aquí mostrada, ha sido modificada a partir del gran artículo sobre el Efecto Rayleigh y efecto Mie, publicado en Astromia.com, a quienes es de justicia darles las gracias.
Fdo.: Jose Enrique Carrera Portillo
Tomado de:

7 de agosto de 2013

Debate: ¿Las plantas pueden oir?

Investigadores internacionales sugieren que, además de ser sensibles a las señales químicas y las lumínicas, las plantas pueden interceptar los estímulos sonoros a su alrededor. Otros expertos rebaten estas supuestas nuevas formas de comunicación.







Las plantas de chile reducen su crecimiento en presencia del hinojo a su lado. / Petr Kratochvil
Las plantas pueden intercambiar información con su entorno. Hace décadas que se sabe que se comunican entre ellas mediante señales químicas. Por ejemplo, las hojas de la planta de tabaco emiten una sustancia química que, al entrar en contacto con la saliva de la oruga, atrae a otros insectos que la devorarán, salvando a la planta de un fatal destino. Y la planta conocida como “no me toques” (Impatiens pallida) gasta menos energía en crecer cuando se sabe rodeada de plantas de su familia, con quienes comparte los nutrientes. Sin embargo, el papel que pueda jugar el sonido en este entramado de señales sigue siendo una incógnita para los científicos y, de hecho, las incursiones en este campo son muy escasas.

La bióloga Monica Gagliano se ha inmerso con su equipo en el inexplorado campo de la comunicación acústica en las plantas, para indagar científicamente si son capaces de percibir y emitir sonidos. Esta investigadora está convencida de que hay que prestar atención a estos fenómenos, porque, en su opinión “es posible que se haya subestimado la complejidad de las formas de comunicación de las plantas”. Sus resultados, publicados en publicaciones como Cell Press y PLoS ONE, han sido recibidos por la comunidad científica con escepticismo.

“El enfoque del estudio es peligroso, porque a menudo se tiende a atribuir a las plantas características propias de los humanos”, explica Javier Fuertes, investigador en biología evolutiva de las plantas del Jardín Botánico de Madrid, quien opina que “no hay que olvidar que las plantas carecen de cerebro y por tanto de conciencia, no deciden activamente realizar una acción u otra, simplemente reaccionan a ciertos estímulos cuando poseen los receptores apropiados”, añade.

Los clicks del maíz

“Hemos identificado que las plantas responden a ciertos sonidos y que emiten los suyos propios” explica Gagliano, bióloga del Centro de Biología Evolutiva de la Universidad de Australia del Oeste.

En uno de los primeros experimentos publicado en Cell Press, Monica Gagliano detectó unos sonidos provenientes de una planta de maíz, una serie de clicks que se producen cuando las burbujas de aire pasan por los conductos que llevan agua y nutrientes a la planta. Se emitían a una frecuencia muy baja, de 220 hz y se captaron gracias a un equipo especializado que los científicos colocaron muy cerca de la planta, por lo que sería muy difícil que un humano los escuchara en circunstancias normales, teniendo en cuenta que las raíces están bajo tierra. Para saber si este sonido sería perceptible por otras plantas, lo reprodujeron a diferentes frecuencias ante un ejemplar de la misma especie. “La planta de maíz demostró tener una sensibilidad selectiva hacia los sonidos emitidos en la misma frecuencia en la que ella los produce, pero no hacia frecuencias más bajas ni más altas que esa”, explica Gagliano.




Raíces del maizAmpliar
La planta de maíz dobla sus raíces en dirección a la fuente de sonido / Monica Gagliano
Gracias a la técnica de timelapse (series de fotografías reproducidas como una película a gran velocidad), los científicos apreciaron que las raíces de la planta se doblaban en dirección hacia la fuente de sonido a 220hz. “Todavía no podemos explicar por qué lo hace, pero sabemos que algo está pasando a esa frecuencia que genera una respuesta en la planta” afirma Gagliano.

Captar las vibraciones

Todavía es necesario investigar qué ventajas supondría este comportamiento para la planta, aunque algunos investigadores ajenos al estudio sugieren que podría ser una forma de buscar corrientes de agua en entornos secos. Lo que sí está claro es que los resultados son interesantes y podrían abrir una “puerta hacia nuevas formas de comprender la sensibilidad de las plantas ante estímulos físicos que no sean la luz ni las señales químicas”, según explica Rafael Rodríguez, profesor investigador en biología de la Universidad de Wisconsin-Milwaukee, ajeno al estudio y co-autor de un artículo en el que se destacan los puntos más interesantes del trabajo de Gagliano así como los más débiles.

Lea el artículo completo en:

Materia 

Lea también:

Las plantas que revivieron después de 400 añoso

Conozca la planta que se riega a si misma y la planta que sufre de estrés...

5 de agosto de 2013

Cómo se vería el Wi-Fi si sus señales fuesen visibles

Convivimos con ellas pero no las vemos. Las ondas de Wi-Fi están alrededor nuestro en casi todos los ambientes en los que convivimos. En la oficina, plazas, cafés y en nuestra casa convivimos con estas ondas. ¿Cómo sería vivir en un mundo en donde las podamos ver? Eso fue lo que imagino el artista Nicholay Lamm del sitio Mydeals.com, quién trabajó en conjunto con M. Browning Vogel, quién tiene un doctorado en astrobiología y trabajó en la NASA por cinco años.


El artista ilustró en distintos escenarios cómo se verían las señales de Wi-Fi, utilizando diferentes colores para dividir los distintos subcanales de la banda en la que se transmite la señal.


Según sostienen en el sitio, "una imagen congelada de los pulsos generados por las ondas de Wi-Fi se encuentran a 6 pulgadas de distancia. Los routers Wi-Fi son antenas que pueden enviar datos sobre múltiples frecuencias a la misma vez. Estas frecuencias se muestran en color azul, verde, amarillo y rojo que invaden el espacio".



Toamdo de:

InfoTechnology

7 de junio de 2013

¿Por qué las nubes son de color blanco?



El cielo es azul y las nubes blancas. Eso está claro. ¿Y por qué no al revés? ¿O de otro color?

Cuando un rayo de luz topa con un objeto, determinadas longitudes de onda son absorbidas mientras otras son reflejadas. El color asociado a aquellas que rebotan es el que nuestros ojos perciben y por ello decimos que el objeto en cuestión es de determinado color. Ahora bien, cuando el objeto con el que la luz topa no es sólido o bien siéndolo no opone resistencia o pone poca al paso de la luz (objetos transparentes o translúcidos) la luz los atraviesa.

El cielo es de color azul porque las minúsculas partículas de polvo y de agua en suspensión que contiene son más pequeñas que las longitudes de ondas de la luz visible. Así que no tienen un tamaño suficiente grande como para repeler la onda y solamente la desvian ligeramente de su camino original y nuestros ojos perciben el color azul.

Pero cuando los corpúsculos difusores de la luz, esto es, las gotas de agua en suspensión que forman la nubes, son bastante más grandes que la longitud de onda de la luz, actúan como simples reflectores. Y todos los componentes de la radiación visible se comportan del mismo modo y la luz solar difusa mantiene el mismo color: el blanco.

Ahora bien. No siempre son blancas, a veces son grises. Y las nubes de tormenta prácticamente son negras.

¿Por qué?

Cuanto más densa es la aglomeración de gotas de agua en suspensión, menos luz solar llega a atravesarlas, y la tonalidad se oscurece hasta diferentes tonos de gris.

Y en las nubes de tormenta, la acumulación de agua es tal que la luz no llega a atravesarlas. Y por ello las vemos de color negro.

Tomado de:

Saber Curioso

28 de mayo de 2013

¿Cómo se mide el sonido?


Como-se-mide-el-sonido-3.jpg  

iStockphoto/Thinkstock
 
¿Sabes cómo se mide el sonido? -A diario escuchamos sobre decibelios, hertz, ondas... muchos conceptos entreverados que puede que no sepamos muy bien qué significan. No te preocupes, es más sencillo de lo que parece. Sigue leyendo para descubrir cómo se mide el sonido.

Cómo medir el sonido

En un mundo en que parece no haber silencio, los oídos son uno de los sentidos que más usamos, junto con la vista.

El sonido es una vibración del aire o del agua -nunca se puede producir en el vacío-, que llega a nuestra oreja, hace que esta vibre, y de esa forma escuchamos algo. Esta vibración se realiza en forma de ondas sonoras.

Cualidades del sonido

El sonido tiene distintas cualidades:
  • Altura: nos permite distinguir entre un sonido agudo y uno grave. Se mide en Hertz (Hz, frecuencia)
  • Timbre: nos permite reconocer las características de la fuente sonora (si es un instrumento de cuerda, de metal, una voz... cada uno tendrá sus características propias: el sonido puede ser más brillante, opaco, aterciopelado, metálico, etcétera)
  • Intensidad: Nos permite reconocer un sonido fuerte de uno débil o suave (comunmente lo conocemos como "volumen" en los equipos de sonido). Se mide en decibelios (dB)
Esas son las las tres principales, pues son propios de lo sonoro. Pero hay otros dos factores, que coinciden con la variable Tiempo y Espacio (que por cierto, rige a todas las cosas): Duración (podemos distinguir un sonido largo de uno corto) y Espacialidad (somos capaces de reconocer de dónde proviene un sonido, si de la izquierda, la derecha, arriba, abajo, cercano o lejano).

Por lo tanto, los sonidos pueden ser medidos de distintas formas. Algunos medidores nos pueden determinar la intensidad, mientras que otros nos permiten reconocer la altura, la duración, o muchas cualidades a la vez.

Cómo se miden las frecuencias del sonido

Los sonidos se pueden identificar por su espectro de frecuencias. El elemento fundamental de estas frecuencias es la onda sinusoidal, es decir, una superposición lineal de sinusoides.

Cada sinusoide se caracteriza por su amplitud, su frecuencia y su relación con la marca de tiempo cero. Los sonidos más graves tendrán ondas sonoras más alargadas (una frecuencia más baja), mientras que los sonidos más agudos serán representados por ondas de sonido más cortas (una frecuencia más alta y por lo tanto más Hertz).

Como-se-mide-el-sonido-1.jpg  

Ingram Publishing/Thinkstock

El sonido se mide por la amplitud de los componentes espectrales, mediante la colocación de un metro calibrado de sonido en el centro de la cabeza de un oyente potencial.

El oído humano es capaz de captar las ondas coprendidas entre los 20 Hertz y los 20.000 Hertz (aproximadamente). Las ondas que están por debajo de los 20 Hertz (aproximadamente) son sonidos tan graves que nuestro oido no es capaz de captarlas y las conocemos como Infrasonido. Por otra parte, las ondas más cortas (más agudas, mayores a los 20.000 Hz) las conocemos como Ultrasonido. Tampoco las podemos captar con nuestro oído, pero otros animales como los murciélagos las suelen utilizar para sus vuelos nocturnos.

Debemos tener en cuenta también que el oído humano no es igualmente sensible a los tonos diferentes en un mismo nivel de presión, ya que son diferentes frecuencias. A esto se le llama sonoridad. Para medir esto se utilizan las ondas isofónicas, que relacionan el tono de un sonido en dB con su nivel de sonoridad subjetiva (como dijimos, entre los 3 kHz y los 20kHz el oído es más sensible, por encima y por debajo de estos valores no).

Cómo se mide la intensidad del sonido

El primer medidor: el microPa

En un primer momento, el sonido se medía en microPa o Pa, el nivel de presión de la onda. El rango audible en los humanos iba de 20 microPa a 20 Pa -un nivel doloroso-. Sin embargo, como esta era una escala muy grande, se comenzaron a utilizar los decibelios (dB).

Los decibelios, la medida actual de intensidad sonora

En este nuevo rango, el esquema de audición humano iría de los 0 dB a 120-140 dB, en los que ya notamos dolor en los oídos. En 0 dB está el sonido más bajo que podemos escuchar, y significa casi silencio absoluto. Una conversación normal está aproximadamente en los 60 dB, un concierto de rock en los 120 dB, y un disparo de un arma en 140 dB.

A partir de los 85 dB podemos tener pérdidas auditivas: podemos identificar este nivel cuando para conversar tenemos que levantar la voz. Ocho horas al día con esta intensidad causa daños en los oídos.

Como-se-mide-el-sonido-2.jpg  

iStockphoto/Thinkstock

Por lo general, las mediciones de sonido siempre deben hacerse en dB, pero en caso de que estemos hablando de la audición humana, es importante hacerlo también relacionado a este valor subjetivo.

El daño auditivo depende del nivel del sonido y del tiempo de exposición al mismo. También debemos tener en cuenta que la distancia afecta la intensidad del sonido: si estamos lejos de él, la potencia disminuye.
Los dejo con una pregunta para reflexionar: si un árbol cae en un bosque, y no hay nadie para oírlo, ¿hay sonido?

Fuente:

Ojo Científico

4 de mayo de 2013

¿De qué color es un espejo?

Bajo luz blanca, la cual incluye la longitud de onda de todo el espectro visible, el color de un objeto está determinado por las longitudes de onda de luz que la superficie de sus átomos no logran absorber.

Un espejo perfecto reflejaría todos los colores comprendidos en la luz blanca, por lo tanto, sería blanco.

Sin embargo, los espejos reales no son perfectos y los átomos de su superficie le dan a sus proyecciones un tenue tinte verde, ya que los átomos del vidrio reflejan la luz verde más fuertemente que cualquier otro color.

Fuente:

BBC Ciencia

1 de abril de 2013

¿Quién me empuja? El fundamento del principio de Huygens

Todos sabemos que el sonido dobla las esquinas: escuchamos chismorreos tras una puerta abierta, nos alertamos al escuchar una ambulancia que se acerca por una calle que aún no hemos visto o escuchamos el claxon de un coche que está a punto de salir de la cochera. Es una experiencia cotidiana cuya explicación se basa en el principio de Christian Huygens.

El sonido no es más que una propagación en forma de onda que está generado por la vibración de un cuerpo. Cuando un cuerpo vibra, mueve el aire ( u otro medio) que está a su alrededor produciendo una diferencia de presión que se va propagando a través de dicho medio.  El sonido es una onda longitudinal, es decir, que el medio se comprime y se descomprime en la dirección de la propagación, como si fuera un muelle.

i87b28a4446428197938c129a7577ffdb ¿Quién me empuja? El fundamento del principio de Huygens


Por ejemplo, cuando la membrana de un altavoz vibra hacia delante y atrás, y cuando se abomba hacia afuera comprime un poco el aire y en ese lugar aumenta la presión. Esta presión se propaga en todas direcciones porque, debido al empujón que les ha proporcionado la membrana, las moléculas de aire colisionan con sus vecinas y les transmite la energía recibida. La molécula en cuestión no llega muy lejos, lo justo para empujar a la siguiente y que la onda se propague.

20070924klpcnafyq 132.Ees.SCO ¿Quién me empuja? El fundamento del principio de Huygens


Según este planteamiento, de entrada una onda sonora se expande en forma de esfera alrededor de la fuente. Sin embargo, los choques entre las partículas de aire no se producen estrictamente en la dirección de propagación, sino aleatoriamente en todas las direcciones. Fue el físico neerlandés Christian Huygens quien ya descubrió en el siglo XVII que en realidad hay que ver en cada punto del frente de onda (el lugar geométrico en que los puntos del medio son alcanzados en un mismo instante por una determinada onda) un punto de partida de una nueva onda.

 ¿Quién me empuja? El fundamento del principio de Huygens




Las partículas no saben si el empuje lo han recibido directamente de la fuente sonora o si ya es el enésimo eslabón de una larga cadena de choques sucesivos.

¿Por qué suponer que cada punto de un frente de ondas actúa como fuente de ondas esféricas secundarias? Pues por algo muy sencillo:

Supongamos que el altavoz vibra y empuja a las partículas que están justo en contacto con él. Estas primeras partículas a las que llega la perturbación será el primer frente de ondas. Las partículas de este frente pasan el testigo a las siguientes y así sucesivamente. Pero ¿saben estas partículas si han sido empujadas por el altavoz o por otras partículas? Las partículas no saben si el empuje lo han recibido directamente de la fuente sonora o si ya es el enésimo eslabón de una larga cadena de choques sucesivos. Por tanto, cada partícula que forme parte de un frente de ondas y que haya sido perturbada actúa como una fuente de ondas.

Por tanto, el frente de ondas que llega al cruce de calles es a su vez fuente de nuevas ondas sonoras, de modo que los conductores que circulan por la calle transversal perciben el sonido.

 ¿Quién me empuja? El fundamento del principio de Huygens

Imagen extraída de bitacorasonora.org

Tomado de:

Ciencia Explicada

13 de febrero de 2013

¿El WiFi es perjudicial para la salud?


WiFi

Probablemente sería más peligroso tropezar con todos los cables que necesitaríamos si no existiera el Wi-Fi.

El WiFi se basa en ondas de radiofrecuencia, similar a la de los microondas.

Teniendo en cuenta que en los hornos microondas se puede hacer, por ejemplo, nuggets de pollo, no sorprende la posibilidad de que la exposición al WiFi sea perjudicial para la salud.

Afortunadamente, aunque son bastante omnipresentes, las ondas wifi se emiten a intensidades mucho más bajas que las de los hornos de microondas.

Por lo tanto, no pueden producir los mismos efectos de calor.

Aun así, a algunos les preocupa que pueda resultar dañino después de años de exposición.

Hasta la fecha, los epidemiólogos no han revelado ninguna evidencia consistente que compruebe que es perjudicial.

En cambio, sugieren que nos preocupemos por cosas verdaderamente peligrosas, como tropezar con los cables que necesitaríamos si no usáramos los dispositivos WiFi.


Fuente:

BBC Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0